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Abstract. The purpose of this paper is to prove the following result.
Let n ≥ 3 be some fixed integer and let R be a (n + 1)!2n−2-torsion free
semiprime unital ring. Suppose there exists an additive mapping D : R →

R satisfying the relation

2n−2D(xn)

=

(

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i

)

+ (2n−2 − 1)(D(x)xn−1 + xn−1D(x))

+

n−2
∑

i=1

(

i
∑

k=2

(2k−1
− 1)

(

n−k−2
i−k

)

+

n−1−i
∑

k=2

(2k−1
− 1)

(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i

for all x ∈ R. In this case D is a derivation. The history of this result

goes back to a classical result of Herstein, which states that any Jordan
derivation on a 2-torsion free prime ring is a derivation.

Throughout, R will represent an associative ring with center Z(R). Given
an integer n > 1, a ring R is said to be n-torsion free if for x ∈ R, nx = 0
implies x = 0. As usual, the commutator xy − yx will be denoted by [x, y].
Recall that a ring R is prime if for a, b ∈ R, aRb = (0) implies either a = 0 or
b = 0 and is semiprime in case aRa = (0) implies a = 0.

An additive mapping D : R → R, where R is an arbitrary ring, is called
a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. A
derivation is inner in case there exists a ∈ R such that D(x) = [a, x] holds for
all x ∈ R. An additive mapping D : R → R is called a Jordan derivation in
case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R. Every derivation is a
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Jordan derivation. The converse is in general not true. A classical result of
Herstein ([13]) asserts that any Jordan derivation on a 2-torsion free prime ring
is a derivation. A brief proof of Herstein theorem can be found in [3]. Cusack
([6]) has generalized Herstein theorem to 2-torsion free semiprime rings (see
[4] for an alternative proof). Beidar, Brešar, Chebotar and Martindale ([2])
have fairly generalized Herstein theorem.

Brešar ([5]) has proved the following result (see [16] for a generalization).

Theorem 1. Let R be a 2-torsion free semiprime ring and let D : R → R

be an additive mapping satisfying the relation

(1) D(xyx) = D(x)yx + xD(y)x + xyD(x)

for all x, y ∈ R. In this case D is a derivation.

An additive mapping D, which maps an arbitrary ring R into itself and
satisfies the relation (1) for all pairs x, y ∈ R, is called a Jordan triple deriva-
tion. One can easily prove that any Jordan derivation on an arbitrary 2-torsion
free ring is a Jordan triple derivation, which means that Theorem 1 generalizes
Cusack’s generalization of Herstein theorem.

The above result represents a motivation for many other results (for ex-
ample [10, 14, 17]). Vukman ([18]) conjectured that in case there exists an
additive mapping D : R → R, where R is a 2-torsion free semiprime ring,
satisfying the relation

(2) 2D(xyx) = D(xy)x + xyD(x) +D(x)yx+ xD(yx)

for all x, y ∈ R, then D is a derivation. Putting x for y in relations (1) and
(2) leads to

D(x3) = D(x)x2 + xD(x)x + x2D(x),(3)

2D(x3) = D(x2)x+ x2D(x) +D(x)x2 + xD(x2)(4)

for all x ∈ R. Recently, M. Fošner and the authors ([11]) proved the following
result regarding the relation (4), which is related to the Vukman’s conjecture
mentioned above.

Theorem 2. Let R be a 2-torsion free prime ring and let D : R → R be
an additive mapping satisfying the relation

2D(x3) = D(x2)x+ x2D(x) +D(x)x2 + xD(x2)

for all x ∈ R. In this case D is a derivation.

The relation (3) leads to the relation

D(xn) =

n
∑

i=1

xi−1D(x)xn−i,

which was studied on prime rings by Beidar, M. Brešar, Chebotar and Mar-
tindale ([2]) (see also [15] for the result regarding the above relation on unital
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semiprime rings). It is our aim in this paper to obtain and study the relation,
which generalizes the relation (4).

Putting x, x2, x3, . . . , xn−2 for y in (2) leads to the following system of
relations, respectively.

2D(x3) = D(x2)x+ x2D(x) +D(x)x2 + xD(x2),(5)

4D(x4) = 2D(x3)x+ 2x3D(x) + 2D(x)x3 + 2xD(x3),(6)

8D(x5) = 4D(x4)x+ 4x4D(x) + 4D(x)x4 + 4xD(x4),(7)

16D(x6) = 8D(x5)x+ 8x5D(x) + 8D(x)x5 + 8xD(x5),(8)

...

2n−2D(xn) = 2n−3D(xn−1)x+ 2n−3xn−1D(x) + 2n−3D(x)xn−1

+ 2n−3xD(xn−1).(9)

Considering (5) in (6) leads to

4D(x4) = 3D(x)x3 + xD(x)x2 + x2D(x)x + 3x3D(x) +D(x2)x2

+ 2xD(x2)x+ x2D(x2).

Putting the above relation in the relation (7) we obtain

8D(x5) = 7D(x)x4 + 4xD(x)x3 + 2x2D(x)x2 + 4x3D(x)x + 7x4D(x)

+D(x2)x3 + 3xD(x2)x2 + 3x2D(x2)x+ x3D(x2).

Considering the above relation in (8) we obtain

16D(x6) = 15D(x)x5 + 11xD(x)x4 + 6x2D(x)x3 + 6x3D(x)x2 + 11x4D(x)x

+ 15x5D(x) +D(x2)x4 + 4xD(x2)x3 + 6x2D(x2)x2 + 4x3D(x2)x

+ x4D(x2).

We see that in the above relations the coefficients of terms including
D(x2) follow as (1, 1), (1, 2, 1), (1, 3, 3, 1), (1, 4, 6, 4, 1) and therefore form a
Pascal triangle. The coefficients of terms including D(x) follow as (1, 0, 1),
(3, 1, 1, 3), (7, 4, 2, 4, 7), (15, 11, 6, 6, 11, 15). Is there any specific algorithm
that can foretell the coefficients of terms including D(x) as we proceed with
the above procedure? It turns out that the answer is positive. We will now
present the results regarding the above speculations.

Pellicer and Alvo ([1]) delivered the following definition.

Definition 3. The modified Pascal triangle P (m,n) generated by se-
quences {am} and {bn} is determined by relations:

(i) P (m, 0) = am,
(ii) P (0, n) = bn,
(iii) P (m,n) = P (m,n− 1) + P (m− 1, n)
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for all m,n ∈ N.

Below we can see the scheme of the modified Pascal triangle, which is
generated by the sequences {am} and {bn}.

P (0, 1) P (0, 2) P (0, 3) P (0, 4) P (0, 5) bn →

P (1, 0) P (1, 1) P (1, 2) P (1, 3) P (1, 4)
. . .

P (2, 0) P (2, 1) P (2, 2) P (2, 3)
. . .

P (3, 0) P (3, 1) P (3, 2)
. . .

P (4, 0) P (4, 1)
. . .

P (5, 0)
. . .

am
↓

In the same paper Pellicer and Alvo proved the following theorem, which
states that given the generating recursive additive pattern of a modified Pas-
cal triangle and given the border sequences, the inside triangle is uniquely
determined.

Theorem 4. Given a modified Pascal triangle P it holds that

P (m,n) =
m
∑

k=1

ak
(

m+n−k−1

m−k

)

+
n
∑

k=1

bk
(

m+n−k−1

n−k

)

for all m,n ∈ N.

We can now proceed with the work regarding the system of relations (5),
(6), (7), (8), (9). We have already mentioned that the coefficients for all terms
including D(x2) form a Pascal triangle. According to the theory above, the
coefficients for all terms including D(x) form the following modified Pascal
triangle, generated by the sequences

{am} = {bn} = (0, 1, 3, 7, 15, . . . , 2i−1 − 1, . . .), i = 1, 2, 3 . . . .

0 1 3 7 15 31 · · ·

0 0 1 4 11 26
. . .

1 1 2 6 17
. . .

3 4 6 12
. . .

7 11 17
. . .

15 26
. . .

31
. . .

... .
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According to Theorem 4, the induction and (9) lead to

2n−2D(xn)

=

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i +

n−1
∑

i=0

P (i, n− 1− i)xiD(x)xn−1−i

=

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i + P (0, n− 1)D(x)xn−1 + P (n− 1, 0)xn−1D(x)

+

n−2
∑

i=1

(

i
∑

k=1

ak
(

i+n−1−i−k−1
i−k

)

+

n−1−i
∑

k=1

bk
(

i+n−1−i−k−1
n−1−i−k

)

)

xiD(x)xn−1−i

=

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i + (2n−2 − 1)(D(x)xn−1 + xn−1D(x))

+

n−2
∑

i=1

(

i
∑

k=1

(2k−1 − 1)
(

n−k−2
i−k

)

+

n−1−i
∑

k=1

(2k−1 − 1)
(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i

=
n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i + (2n−2 − 1)(D(x)xn−1 + xn−1D(x))

+
n−2
∑

i=1

(

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

+
n−1−i
∑

k=2

(2k−1 − 1)
(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i.

Therefore

2n−2D(xn)

=

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i + (2n−2 − 1)(D(x)xn−1 + xn−1D(x))

+

n−2
∑

i=1

(

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

+

n−1−i
∑

k=2

(2k−1 − 1)
(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i.

Let us note that
∑1

k=2 f(k) = 0, for any function f .
We have to remark that the additive solutions of

∑n

i=0 cix
iD(xn−i) = 0

for fixed constants ci ∈ R, where R is a commutative ring, was partially
characterized by Ebanks ([7]) and Ebanks et al. ([8]). Later, the problem was
fully solved by Gselmann et al. ([12]) and Ebanks ([9]) independently using
different approach.

It is our aim in this paper to prove the following result.

Theorem 5. Let n ≥ 3 be some fixed integer, let R be a (n + 1)!2n−2-
torsion free unital semiprime ring and let D : R → R be an additive mapping
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satisfying the relation

2n−2D(x
n
)

=

n−2
∑

i=0

(

n−2
i

)

x iD(x
2
)x

n−2−i
+(2

n−2
−1 )(D(x )x

n−1
+xn−1D(x ))

+

n−2
∑

i=1

(

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

+

n−1−i
∑

k=2

(2k−1 − 1)
(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i

for all x ∈ R. In this case D is a derivation.

For the seek of completeness, we may mention that for commutative,
(n + 1)!2n−2-torsion free rings the above equation can be reduced to (n −
2)xn−1D(x) + xn−2D(x2) −D(xn) = 0. By [8], D has to be a derivation of
order at most 2. Since every derivation (of order 1) is clearly a solution of
this equation it is enough to verify that the equation for derivations of order
2 does not hold which can be checked by direct calculation.

For the proof of the above theorem, we will need the following lemma.

Lemma 6. The relation
n−2
∑

i=2

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

= (n− 4)2n−3 + 1

holds for all integers n ≥ 3.

Proof. Considering
∑n

k=0

(

n
k

)

= 2n in the next calculation proves the
lemma.

n−2
∑

i=2

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

=
2
∑

k=2

(2k−1 − 1)
(

n−k−2

2−k

)

+
3
∑

k=2

(2k−1 − 1)
(

n−k−2

3−k

)

+ · · ·

+

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−3

)

+

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−2

)

= (21 − 1)
(

(

n−4

0

)

+
(

n−4

1

)

+ · · ·+
(

n−4

n−4

)

)

+ (22 − 1)
(

(

n−5
0

)

+
(

n−5
1

)

+ · · ·+
(

n−5
n−5

)

)

+ · · ·

+ (2n−4 − 1)
((

1

0

)

+
(

1

1

))

+ (2n−3 − 1)
(

0

0

)

= (2− 1) 2n−4 +
(

22 − 1
)

2n−5 + · · ·+
(

2n−4 − 1
)

21 +
(

2n−3 − 1
)

20

= (n− 3) 2n−3 −
(

1 + 2 + 22 + 23 + · · ·+ 2n−5 + 2n−4
)

= (n− 3) 2n−3 −
(

2n−3 − 1
)
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= (n− 4) 2n−3 + 1.

We are now in the position to prove Theorem 5.

Proof of Theorem 5. We have the relation
(10)
2n−2D(xn)

=

n−2
∑

i=0

(

n−2
i

)

xiD(x2)xn−2−i + (2n−2 − 1)(D(x)xn−1 + xn−1D(x))

+

n−2
∑

i=1

(

i
∑

k=2

(2k−1 − 1)
(

n−k−2
i−k

)

+

n−1−i
∑

k=2

(2k−1 − 1)
(

n−k−2
n−i−k−1

)

)

xiD(x)xn−1−i.

We will denote the identity element of the ring R by e. Putting e for x in the
above relation we obtain

2n−2D(e) =

n−2
∑

i=0

(

n−2
i

)

D(e) + 2(2n−2 − 1)D(e)

+ 2(

2
∑

k=2

(2k−1 − 1)
(

n−k−2
2−k

)

+

3
∑

k=2

(2k−1 − 1)
(

n−k−2
3−k

)

+ · · ·

+

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−3

)

+

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−2

)

)D(e).

Lemma 6 reduces the above relation to

2n−2D(e) = 2n−2D(e) + 2(2n−2 − 1)D(e) + 2
(

(n− 4) 2n−3 + 1
)

D(e).

Further calculation leads to

(n− 2)2n−2D(e) = 0

and considering the torsion freeness, we obtain

(11) D(e) = 0.

Let y be an arbitrary element from Z(R). Putting x + y for x in the
relation (10) we obtain

2n−2

n
∑

i=0

(

n

i

)

D(xn−iyi)

=
(

n−2

0

)

D(x2 + 2xy + y2)

(

n−2
∑

i=0

(

n−2

i

)

xn−2−iyi

)

+
(

n−2

1

)

(x+ y)D(x2 + 2xy + y2)

(

n−3
∑

i=0

(

n−3

i

)

xn−3−iyi

)
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+ · · ·

+
(

n−2
n−3

)

(

n−3
∑

i=0

(

n−3
i

)

xn−3−iyi

)

D(x2 + 2xy + y2) (x+ y)

+
(

n−2
n−2

)

(

n−2
∑

i=0

(

n−2
i

)

xn−2−iyi

)

D(x2 + 2xy + y2)

+ (2n−2 − 1)

n−1
∑

i=0

(

n−1
i

)

(D(x + y)xn−1−iyi + xn−1−iyiD(x+ y))

+

(

1
∑

k=2

(2k−1 − 1)
(

n−k−2
1−k

)

+

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−2

)

)

· (x+ y)D(x + y)





n−2
∑

j=0

(

n−2
j

)

xn−2−jyj





(

2
∑

k=2

(2k−1 − 1)
(

n−k−2
2−k

)

+

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−3

)

)

· (x2 + 2xy + y2)D(x+ y)





n−3
∑

j=0

(

n−3
j

)

xn−3−jyj





+ · · ·

+

(

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−3

)

+
2
∑

k=2

(2k−1 − 1)
(

n−k−2

2−k

)

)

·





n−3
∑

j=0

(

n−3

j

)

xn−3−jyj



D(x + y)(x2 + 2xy + y2)

+

(

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−2

)

+
1
∑

k=2

(2k−1 − 1)
(

n−k−2

1−k

)

)

·





n−2
∑

j=0

(

n−2
j

)

xn−2−jyj



D(x + y)(x+ y).

Using (10) and rearranging the above relation in sense of collecting together
terms involving equal number of factors of y, we obtain

n−1
∑

i=1

fi (x, y) = 0,
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where fi (x, y) stands for the expression of terms involving i factors of y.

Replacing x by x + 2y, x + 3y, . . . , x + (n− 1) y in turn in the relation
(10) and expressing the resulting system of n − 1 homogeneous equations of
variables fi (x, y), i = 1, 2, ..., n− 1, we see that the coefficient matrix of the
system is a Vandermonde matrix











1 1 · · · 1
2 22 · · · 2n−1

...
...

. . .
...

n− 1 (n− 1)
2

· · · (n− 1)
n−1











.

Since the determinant of the matrix is different from zero, it follows that the
system has only a trivial solution. In particular, if y is replaced with the
identity element e and considering (11), we obtain

fn−2 (x, e)

= 2n−2
(

n
n−2

)

D(x2)−
(

n−2
0

)

(

(

n−2
n−2

)

D(x2) + 2
(

n−2
n−3

)

D(x)x
)

−
(

n−2

1

)

(
(

n−3

n−3

)

D(x2) + 2
(

n−3

n−4

)

D(x)x + 2
(

1

0

)

xD(x))

−
(

n−2

2

)

(
(

n−4

n−4

)

D(x2) + 2
(

n−4

n−5

)

D(x)x + 2
(

2

1

)

xD(x))

− · · ·

−
(

n−2
n−4

)

(
(

2
2

)

D(x2) + 2
(

2
1

)

D(x)x + 2
(

n−4
n−5

)

xD(x))

−
(

n−2
n−3

)

(
(

1
1

)

D(x2) + 2
(

1
0

)

D(x)x + 2
(

n−3
n−4

)

xD(x))

−
(

n−2

n−2

)

(

(

2

2

)

D(x2) + 2
(

n−2

n−3

)

xD(x)
)

− (2n−2 − 1)
(

n−1
n−2

)

(D(x)x + xD(x))

−

(

1
∑

k=2

(2k−1 − 1)
(

n−k−2
1−k

)

+

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−2

)

)

·
(

(

n−2
n−3

)

D(x)x +
(

1
0

)

xD(x)
)

−

(

2
∑

k=2

(2k−1 − 1)
(

n−k−2

2−k

)

+

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−3

)

)

·
(

(

n−3

n−4

)

D(x)x +
(

2

1

)

xD(x)
)

−

(

3
∑

k=2

(2k−1 − 1)
(

n−k−2
3−k

)

+

n−4
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−4

)

)

·
(

(

n−4
n−5

)

D(x)x +
(

3
2

)

xD(x)
)

− · · ·



104 I. KOSI-ULBL, N. ŠIROVNIK AND J. VUKMAN

−

(

n−4
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−4

)

+

3
∑

k=2

(2k−1 − 1)
(

n−k−2
3−k

)

)

·
(

(

3
2

)

D(x)x +
(

n−4
n−5

)

xD(x)
)

−

(

n−3
∑

k=2

(2k−1 − 1)
(

n−k−2

n−k−3

)

+

2
∑

k=2

(2k−1 − 1)
(

n−k−2

2−k

)

)

·
(

(

2

1

)

D(x)x +
(

n−3

n−4

)

xD(x)
)

−

(

n−2
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−2

)

+

1
∑

k=2

(2k−1 − 1)
(

n−k−2
1−k

)

)

·
(

(

1
0

)

D(x)x +
(

n−2
n−3

)

xD(x)
)

.

As the sums in the above relation are pairwise equal, the above relation re-
duces to

2n−2
(

n
n−2

)

D(x2)

= 2n−2D(x2)

+ 2
(

(

n−2
0

)

(n− 2) +
(

n−2
1

)

(n− 3) + · · ·+
(

n−2
n−4

)

2 +
(

n−2
n−3

)

)

· (D(x)x + xD(x))

+
(

2n−2 − 1
)

(n− 1) (D(x)x + xD(x))

+ (n− 1)
(

1
∑

k=2

(2k−1 − 1)
(

n−k−2

1−k

)

+

2
∑

k=2

(2k−1 − 1)
(

n−k−2

2−k

)

+ · · ·

+
n−3
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−3

)

+
n−2
∑

k=2

(2k−1 − 1)
(

n−k−2
n−k−2

)

)

(D(x)x + xD(x)) .

Using Lemma 6 in the above relation and some calculation leads to

(12)

2n−2
(

(

n

n−2

)

− 1
)

D(x2)

= 2

n−3
∑

k=0

(

n−2

k

)

(n− 2− k) (D(x)x + xD(x))

+ (n− 1) (2n−2 − 1) (D(x)x + xD(x))

+ (n− 1)
(

(n− 4)2n−3 + 1
)

(D(x)x + xD(x)) .
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Since
n−3
∑

k=0

(

n−2

k

)

(n− 2− k) =

n−2
∑

k=0

(

n−2

k

)

(n− 2− k)

=

n−2
∑

k=0

(

n−2

k

)

(n− 2)−

n−2
∑

k=0

(

n−2

k

)

k

= (n− 2)2n−2 − (n− 2)2n−3 = (n− 2)2n−3,

the relation (12) can be rewritten as

2n−3 (n+ 1) (n− 2)D(x2)

=
(

(n− 2)2n−2 + (n− 1)(2n−2 + (n− 4)2n−3)
)

(D(x)x + xD(x))

= ((n− 2)2n−2 + (n− 1)(n− 2)2n−3) (D(x)x + xD(x))

= 2n−3(n+ 1)(n− 2) (D(x)x + xD(x)) .

We therefore have

2n−3 (n+ 1) (n− 2)D(x2) = 2n−3(n+ 1)(n− 2) (D(x)x + xD(x)) .

Since R is (n+ 1)!2n−2-torsion free, the above relation reduces to

D(x2) = D(x)x + xD(x)

for all x ∈ R. In other words, D is a Jordan derivation on R. According to
Cusack’s generalization of Herstein theorem, one can conclude that D is a
derivation, which completes the proof of the theorem.
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