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AMIABLE AND ALMOST AMIABLE FIXED SETS.
EXTENSION OF THE BROUWER FIXED POINT

THEOREM

James F. Peters

University of Manitoba, Canada

Abstract. This paper introduces shape boundary regions in descrip-
tive proximity forms of CW (Closure-finite Weak) spaces as a source of
amiable fixed subsets as well as almost amiable fixed subsets of descrip-

tive proximally continuous (dpc) maps. A dpc map is an extension of
an Efremovič-Smirnov proximally continuous (pc) map introduced during
the early-1950s by V.A. Efremovič and Yu.M. Smirnov. Amiable fixed
sets and the Betti numbers of their free Abelian group representations are
derived from dpc’s relative to the description of the boundary region of
the sets. Almost amiable fixed sets are derived from dpc’s by relaxing
the matching description requirement for the descriptive closeness of the
sets. This relaxed form of amiable fixed sets works well for applications in
which closeness of fixed sets is approximate rather than exact. A number
of examples of amiable fixed sets are given in terms of wide ribbons. A
bi-product of this work is a variation of the Jordan curve theorem and
a fixed cell complex theorem, which is an extension of the Brouwer fixed
point theorem.

1. Introduction

This article introduces the boundary region of a cell complex in a Closure-
finite Weak (CW) space as a source of amiable fixed sets (introduced in [20, §3,
p. 9]). Amiable fixed sets are a byproduct of descriptive proximally continuous
maps that spawn fixed sets. Briefly, the boundary region of a planar shape
shE (denoted by ∂shE) in a space X is the set of all points in X external to
the closure of the shape. In keeping with recent work on characterizing fixed
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points [31], this paper introduces a sufficient condition for a function to have
a fixed set. This leads to an extension of Brouwer’s fixed point theorem and
carries over to a class of continuous functions from a CW space to itself.

Remark 1.1. Let bdy(shE) be the contour (bounding edge) of a pla-
nar shape shE in a space X . Contour bdy(shE) is a simple, closed curve.
Let int(shE) be the set of all points in the interior of shE. The closure of
shE = bdy(shE) ∪ int(shE) (denoted by cl(shE)). Let ∂(cl(shE)) denote the
boundary region external to cl(shE) and define

∂(cl(shE)) = X \ (bdy(shE) ∪ int(shE)).

Then

bdy(shE) = X \ (int(shE) ∪ ∂(cl(shE))),

int(shE) = X \ (bdy(shE) ∪ ∂(cl(shE))).

That is, the boundary region ∂shE of shape shE is the set of all points
not in cl(shE). The contour of a shape is commonly known as the boundary
of a simplicial complex and every such boundary is a cycle ([9, p. 104]).

A descriptive proximally continuous map, see [14, §1.7, p. 16], [7, §5.1],
is an extension of an Efremovič-Smirnov proximally continuous map, first
introduced by V.A. Efremovič in [8] and Yu.M. Smirnov in [22, 21] in 1952.
In its simplest form, proximal continuity is defined on a Čech proximity space
(X, δ), in which δ is a proximity relation that satisfies a number of axioms,
especially A ∩B 6= ∅ implies A δ B for subsets A,B in X ([15, §4, p. 20]). A
map f : (X, δ) → (X, δ) is proximally continuous, provided, for each pair of
subsets A,B ⊂ X , A δ B implies f(A) δ f(B).

Descriptive proximal continuity is an easy step beyond proximal conti-
nuity. For a Čech proximity space X containing a nonempty subset A ∈ 2X

(collection of subsets of X), a probe function Φ: 2X → R
n is defined by a fea-

ture vector Φ(A) that describes A, defined by1 Φ(A ∈ 2X) = {Φ(a) : a ∈ A}.
Let (X, δΦ1), (Y, δΦ2) be a pair of descriptive proximity spaces, equipped with
proximity relations δΦ1, δΦ2. For a pair of subsets A,B ⊂ X , A δΦ1 B reads
A is descriptively close to B. What we mean by descriptively close depends
on the definition of Φ(A ∈ 2X).

Example 1.2. For a single-holed ring torus ⊚⊚⊚ E in space X , define

Φ(e1) = diameter of⊚⊚⊚ E hole, Φ(e2) =⊚⊚⊚ E inner radius, and Φ(e3) =⊚⊚⊚
E outer radius. Then Φ(⊚⊚⊚ E) = (Φ(e1),Φ(e2),Φ(e3)), feature vector that

describes⊚⊚⊚ E.

1This form of probe function for the description of a set (suggested by A. Di Concilio)
first appeared in [7].
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Amap f : (X, δΦ1) → (Y, δΦ2) is a descriptive proximally continuous (dpc)
map, [16, §1.20.1, p. 48], provided there is at least one pair of subsetsA,B ⊂ X

such that A δΦ1 B implies f(A) δΦ2 f(B). Two important bi-products of dpc
maps are descriptive fixed sets and amiable fixed sets, provided the dpc maps
satisfy certain conditions (see Definition 3.2).

For a dpc map f on a CW space X equipped with the proximity δΦ, a
subset E ⊂ X is fixed, provided the description of f(E) matches the descrip-
tion of E. Briefly, a nonvoid collection of cell complexes X is a CW space, see
[2, §III, starting on page 124], [28, pp. 315-317], [29, §5, p. 223], provided X is
Hausdorff (every pair of distinct cells is contained in disjoint neighbourhoods,
[14, §5.1, p. 94]) and the collection of cell complexes in K satisfy the con-
tainment condition (the closure of each cell complex is in K and each cell has
only a finite number of faces, [24]) and intersection condition (the nonempty
intersection of cell complexes is in K).

Results given here for dpc maps spring from the fundamental result for
fixed points given by L.E.J. Brouwer ([5]).

Remark 1.3. Brouwer proved theorem:
Satz 4: Eine eindeurtige und stetige Transformation eines n-dimensionalen
Elementes in sich besitz sicher einen Fixpunkt (German), [5, p. 114] [Theorem
4. A definite and constant transformation of an n-dimensional element in
itself has a fixed point]. In this work, we use the E.B. Spanier formulation
of Brouwer’s result from [23, §4.7, p. 194], given in the context of simplicial
complexes.

Let En denote an n-ball of Rn.

Theorem 1.4 (Brouwer fixed point theorem [23, §4.7, p. 194]). For n ≥
0, every continuous map from En to itself has a fixed point.

2. Preliminaries

The simplest form of proximity relation (denoted by δ) on a nonempty set
was introduced by E. Čech [6]. A nonempty set X equipped with the relation
δ is a Čech proximity space (denoted by (X, δ)), provided the following axioms
are satisfied.

Čech Axioms

(P.0) All nonempty subsets in X are far from the empty set, i.e., A 6 δ ∅ for
all A ⊆ X .

(P.1) A δ B ⇒ B δ A.
(P.2) A ∩B 6= ∅ ⇒ A δ B.
(P.3) A δ (B ∪C) ⇒ A δ B or A δ C.

A filled triangle is a triangle with a nonvoid interior. Sample filled triangles
are shown in Figure 1.
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Figure 1. Sample shapes and shape boundary regions

Example 2.1 (Proximal filled triangles). Let (K, δ) be a Čech proximity
space, represented in Figure 1. The spaceK contains a shape shE constructed
from three filled triangles NE1,NE2,NE3. We have

NE1 ∩ {NE2 ∪ NE3} 6= ∅.

Hence

NE1 δ {NE2 ∪ NE3} (from Axiom P.2).

Many other examples of Čech proximities can be found in shape shE.

Given that a nonempty set E has k ≥ 1 features such as Fermi en-
ergy EFe, cardinality Ecard, a description Φ(E) of E is a feature vector,
i.e., Φ(E) = (EFe, Ecard). Nonempty sets A,B with overlapping descriptions
are descriptively proximal (denoted by A δΦ B).

Definition 2.2 (Descriptive intersection). There are two cases to con-
sider.

1o Let A,B ∈ 2X, nonempty subsets in a collection of subsets in a space
X. The descriptive intersection [7] of nonempty subsets in A ∪ B

(denoted by A∩
Φ
B) is defined by

A∩
Φ
B =

i.e., Φ(A) & Φ(B) overlap and possibly A ∩B 6= ∅.
︷ ︸︸ ︷

{x ∈ A ∪B : Φ(x) ∈ Φ(A) ∩ Φ(B)} .
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2o Let A ∈ 2X , B ∈ 2X
′

, nonempty subsets in collections of subsets in
distinct spaces X,X ′. In that case, A∩B = ∅ and A∩

Φ
B is defined by

A∩
Φ
B =

i.e., Φ(A) & Φ(B) overlap but always A ∩B = ∅.
︷ ︸︸ ︷

{x ∈ A or x ∈ B : Φ(x) ∈ Φ(A) ∩ Φ(B)} .

In the context of dpc maps f : (X, δΦ) → (X, δΦ) or f : (X, δΦ) → (X ′, δΦ), the
presence of a nonempty f(A)∩

Φ
A yields amiable fixed sets (cf. Definition 3.2).

Remark 2.3. From Definition 2.2, amiable fixed sets can be subsets in
dpc maps from a proximity space to itself or from dpc maps from one prox-
imity space X to a different proximity space X ′. The model for descriptive
intersection for the second form of dpc is the more natural one in the phys-
ical world, where it is common that to find objects in different spaces (e.g.,
distinct spaces separated by time and place) that have matching descriptions.

Let 2X denote the collection of all subsets in a nonvoid setX . A nonempty
set X equipped with the relation δΦ with nonvoid subsets A,B,C ∈ 2X is a
descriptive proximity space, provided the following descriptive forms of the
Čech axioms are satisfied.

Descriptive Čech Axioms

(dP.0) All nonempty subsets in 2X are descriptively far from the empty set,
i.e., A 6 δΦ ∅ for all A ∈ 2X .

(dP.1) A δΦ B ⇒ B δΦ A.
(dP.2) A∩

Φ
B 6= ∅ ⇒ A δΦ B.

(dP.3) A δΦ (B ∪ C) ⇒ A δΦ B or A δΦ C.

The converse of Axiom (dP.2) also holds.

Lemma 2.4 ([17]). Let X be equipped with the relation δΦ, A,B ∈ 2X .
Then A δΦ B implies A∩

Φ
B 6= ∅.

Proof. Let A,B ∈ 2X . By definition, A δΦ B implies that there is at
least one member x ∈ A and y ∈ B so that Φ(x) = Φ(y), i.e., x and y have
the same description. Then x, y ∈ A∩

Φ
B. Hence, A∩

Φ
B 6= ∅, which is the

converse of (dP.2).

The Betti number β0 ([32]) is a count of the number of cells in a cell
complex. Here, β0 is a count of the number of filled triangles in a shape.

Example 2.5 (Descriptively proximal shapes). Let (K, δΦ), (K
′, δΦ) be a

pair of descriptive proximity spaces, represented in Figure 1 defined in terms
of the same descriptive proximity δΦ with

Φ(E) = β0(E) for E ⊂ K.
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For a pair of shapes in two different spaces K,K ′, we have shE ∩
Φ
shE′ 6= ∅,

since
Φ(shE) = β0(shE) = Φ(shE′) = β0(shE

′) = 3.

That is, both shapes have the same description, since both shapes are con-
structed with 3 filled triangles. Hence, from Axiom dP.2, shE δΦ shE′.

Table 1. Minimal planar cell complexes

Minimal Complex Type Ki, i = 0, 1, 2 Planar Geometry Interior

bc

K0 Vertex nonempty

b

b

bc

bc

K1 Edge nonempty

bc

bc

bc
K2 Filled triangle nonempty

3. CW Spaces

In this work, a CW space is a collection of cells in a finite, bounded region
of Euclidean space. A cell in the Euclidean plane is either a 0-cell (vertex
K0) or 1-cell (edge K1) or 2-cell (filled triangle K2). A cell complex is
a collection of cells attached to each other by 0- or 1-cells or by having one
or more common cells. The planar geometry of minimal cell complexes with
nonempty interiors are displayed in Table 1. Collections of filled cycles (e.g.,
Figure 3) and ribbons (e.g., Figure 4) are examples of cell complexes.

Example 3.1. A collection of cell complexes defined by overlapping, filled
and non-filled 1-cycles that define a shape shE in a CW space K is shown
in Figure 2. The white areas represent the boundary region of shE. Let
v1, v2, v3, v4, v5, v8 be path-connected vertexes on bi-directional edges in a
number of different cycles such as

cycEmin−filled =

sequence of maps in traversal on Emin−filled
︷ ︸︸ ︷

v0 → v1 → v5 → v3 → v0 (traversal from v0 to v0).

Enon−filled =

sequence of maps in traversal on cycEnon−filled
︷ ︸︸ ︷
v2 → v8 → v4 → v2 .

The filled cycles in Figure 2 have nonvoid interiors represented by �.
Filled cycle Emin−filled has the shortest path that starts and ends with v0.
The path defined by Emin−filled is simple (it has no loops) and closed (each
complete traversal that starts with a particular vertex ends with the same
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K

Figure 2. Shape shE in CW spaceK is a collection of cycles
with vertexes v0, v1, v3, v5 residing in minimal-length filled
cycle cycEmin−filled & vertexes v2, v4, v8 in non-filled cycle
cycEnon−filled.

vertex). Cycle cycEnon−filled is non-filled cycle, since its interior is part of
the white boundary region.

A nonvoid collection of cell complexes K has a Closure finite Weak (CW)
topology, provided K is Hausdorff (every pair of distinct cells is contained in
disjoint neighbourhoods [14, §5.1, p. 94]) and the collection of cell complexes in
K satisfy the Alexandroff-Hopf-Whitehead [2, §III, starting on page 124], [28,
pp. 315-317], [29, §5, p. 223] conditions, namely, containment (the closure of
each cell complex is in K) and intersection (the nonempty intersection of cell
complexes is in K).

A number of important results in this paper spring from descriptive prox-
imally continuous maps.

Definition 3.2 ([20, §3, p. 8] Descriptive fixed sets and amiable fixed
sets). Let (X, δΦ) be a descriptive Čech proximity space and f : (X, δΦ) →
(X, δΦ) a descriptive proximally continuous map (our dpc map).

(i) A is a descriptive fixed subset of f , provided Φ(f(A)) = Φ(A).
(ii) A and f(A) are amiable fixed sets, provided f(A)∩

Φ
A 6= ∅.

Let K be a CW space. Briefly, the boundary ∂A of a cell complex A in
K is the set of all points not in A.

Example 3.3. Let the CW space K be represented by Figure 1.1. Let
f : (K, δΦ) → (K, δΦ) be a descriptive proximally continuous map defined by

f(A) = K \ ∂A, for cell complex A ∈ K.

For shape shE in Figure 1.1, f(shE) = K \ ∂shE = shE. From Example 2.5,
Φ(f(shE)) = Φ(shE). Hence, shE is a descriptive fixed subset of f . Also,
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from Example 2.5, f(shE) and shape shE are amiable, since f(shE)∩
Φ
shE 6=

∅.
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3.2: Intersecting cycles cycA, cycB with
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ors, i.e., int(cycB) ⊂ int(cycA) & free
finitely-generated Abelian group with gen-
erator vertices v0, vo′

Figure 3. Sample filled cycles cycE and cycA, cycB

4. 1-Cycles, Cyclic group representations and Betti numbers

This section revisits filled 1-cycles (briefly, cycles), which are fundamental
structures in a CW space K.

Definition 4.1 (Filled cycle). A filled cycle cycE in a CW space K is
defined by

v, v0 ∈ bdyE (contains vertexes v & generator vertex v0).

bdy(cycE) =

each v can be reached by k moves from v0
︷ ︸︸ ︷

{v ∈ K : ∃v0, v = kv0} .

defines a simple closed curve
︷ ︸︸ ︷

collection of path-connected vertexes with no end vertex.

int(cycE) = nonvoid interior of cycE, such that

cycE = bdy(cycE) ∪ int(cycE).

In other words, a filled cycle is a bounded region with a simple, closed curve
defined by a collection of path-connected vertexes with no end vertex and a
nonvoid interior within its boundary.
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Example 4.2. A filled cycle cycE with boundary bdy(cycE) and interior
int(cycE) containing a cyclic group generator vertex v0 is shown in Figure 3.1.
For each vertex v ∈ bdy(cycE), there is a minimal sequence of k moves in a
traversal of the edges between v0 and v. For this reason, we write

v =

k moves to reach v from v0
︷︸︸︷

kv0.

Theorem 4.3. The closure of a planar shape is a filled 1-cycle in a CW
space.

Proof. Let cl(shE) be the closure of a shape shE, which is a cell complex
in CW space. From Lemma 4.15 [18], we have

(α) cl(shE) = bdy(shE) ∪ int(shE).

The boundary of a planar shape is a simple, closed curve that can be de-
composed into a collection of path-connected vertexes with no end vertex.
Consequently, a shape boundary is the boundary of a filled 1-cycle. Hence,
cl(shE) is a filled 1-cycle (from (α) and Definition 4.1).

Remark 4.4. An application of filled cycles viewed as planar models
of wide ribbons can be found in tracking the determination of final loci of
fluid circulation [30, §5.5]. A slice of a moving fluid such as water in a tube
or in an ocean wave approaching the slope of a shoreline is a collection of
nested, usually non-concentric filled cycles. By considering an expander graph
approach to nested filled cycles such as Vigolo wide ribbon expanders [27],
we obtain a formal method useful in the study of fluid flow as well as the
interaction of a moving fluid along its boundaries.

Recall that a cyclic group is a nonempty set G with a binary operation
+ and generator g ∈ G (denoted by G({g} ,+)) so that every other element
g′ ∈ G can be written as a multiple of g, i.e.,

g′ =

g′ is a linear combination of generator g
︷ ︸︸ ︷

g + · · ·+ g = kg.

We write G(〈g〉,+) to denote a cyclic group with a single generator.
The vertex v0 in Example 4.2 serves as a generator of a cyclic group. Let

0v represent zero moves from any vertex v ∈ bdyE. Moving k moves backward
from vertex v is denoted by −kv. This gives us kv− kv = (k− k)v = 0v. For
k = 1, v − v = (1− 1)v = 0v (i.e., −v is the additive (move) inverse of v. Let
v, v′ ∈ bdyE and let v+ v′ represent a move from vertex v to vertex v′. Then
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we have

k, k′ > 0, k 6= k′,

v + v′ = kv0 + k′v0

= (k + k′)v0

= (k′ + k)v0

= k′v0 + kv0

= v′ + v.

Hence, the move operation + is Abelian and G({v0} ,+) is a cyclic group that
is Abelian. This gives us the result in Lemma 4.5.

Lemma 4.5. The boundary of a filled cycle has an Abelian cyclic group
representation.

Definition 4.6 (Free finitely-generated Abelian group and its Betti num-
ber). A free finitely-generated (fg) Abelian group G with binary operation +
is a group containing n cyclic subgroups (each with its own generator) [9,
§A.9, pp. 217-218], denoted by G ({g1, . . . , gn} ,+). An Abelian group G is
free, [26, §1.2, p. 2], provided every member v of G generator v0 has a unique
representation of the form

v =
∑

v0∈G

kv0 =

k moves to reach v from v0
︷ ︸︸ ︷

v0 + · · ·+ v0.

The Betti number for G (denoted by βα(G)) is a count of the number of
generators in G (its rank) [12, §4, p. 24].

Example 4.7 (Free fg Abelian group representation for path-connected
cycles). Intersecting filled cycles cycA, cycB with boundaries bdyA, bdyB,
interiors intA, intB define shape shE, and generators v0, v0′ , respectively, is
shown in Figure 3.2. For each vertex v ∈ bdy(cycA), there is a minimal
sequence of k moves in a traversal of the edges between v0 and v. For this
reason, we write

v =

k moves to reach v from v0
︷︸︸︷

kv0.

From Definition 4.6, we have

Free fg Abelian group representation G ({v0, v
′

0} ,+). The free property of G
stems from the choice of minimal path to reach a vertex v from a
generator v0.

Betti number βα(shE) = 2.

Example 4.8. A filled cycle cycE with boundary bdyE and interior intE
containing a cyclic group generator vertex v0 is shown in Figure 3.1. For each
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vertex v ∈ bdyE, there is a minimal sequence of k moves in a traversal of the
edges between v0 and v. For this reason, we write

v =

k moves to reach v from v0
︷︸︸︷

kv0.

From Definition 4.6, we have

Free fg Abelian group representation cycE ({v0} ,+).
Betti number βα(cycE) = 1.
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Figure 4. Sample boundary regions ∂(shE) and ∂(rbE)

5. Shape boundary and Ribbon boundary

Let K be a CW space, bounded region reE in K. Recall that a simple
closed curve is a curve that has no self-loops (no self-intersections), has no
endpoints and which completely encloses a surface region. A surface region
reE is defined by a cover. A collection of subsets A of K is a cover of a
bounded region reE of K, provided the union of the elements of A ⊇ reE [13,
§26, p. 164].

A nonvoid region shape reE in CW space K is the set of points in K

that are either on the bordering edge of reE (a simple closed curve denoted
by bdy(reE)) or in the interior of reE (denoted by int(reE)). The boundary
region of K exterior to reE (denoted by ∂shE) is the set of all points in K

not included in the closure of reE. Let 2K be the collection of all subsets of
space K. Recall that the closure of a nonempty set E ∈ 2K (denoted by clE)
is the set of points x ∈ K such that the Hausdorff distance between x and E

(denoted by D(x,E)) is zero [14, §1.3,p. 5], i.e.,

cl(reE) =

Closure cl(reE) is the set all points of x in region reE.
︷ ︸︸ ︷

{x ∈ K : D(x, reE) = 0} .

= bdy(reE) ∪ int(reE)
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A CW space K containing a nonvoid region cl(reE) is prescribed by

K = cl(reE) ∪ ∂(cl(reE)).

Definition 5.1. For the boundary ∂cl(reE) of the closure of a region
reE, we have

∂cl(reE) =

∂cl(reE) is the set all points in K exterior to cl(reE).
︷ ︸︸ ︷

{x ∈ K : x 6∈ cl(reE)} = K \ cl(reE).

Recall that a planar shape is a finite region of the Euclidean plane bounded
by a simple closed curve (shape contour) with a nonempty interior (shape
content) [18, p. ix].

Example 5.2. Let shE be a shape in a CW space K. We identify all
boundary region points that are not in the closure of shape shE (denoted by
∂(cl(shE))), e.g.,

∂(cl(shE)) =

∂cl(shE) is the set all points in K not in cl(shE).
︷ ︸︸ ︷

K \ cl(shE).

In other words, the boundary of a shape contains all points in K that are
not in the shape. For example, in Figure 4.1, the orange region � represents
the boundary region ∂cl(shE) containing all points in K that are not in the
shape shE.
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Figure 5. Vigolo Hawaiian earrings HeE,HeE′ with inter-
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Similarly, consider the boundary region of a planar ribbon. Recall that a
cycle (also called a 1-cycle [18, §1.12, p. 29]) in a CW space is a simple closed
curve defined by a sequence of path-connected vertexes with no end vertex.

Definition 5.3 (Planar ribbon [19]). Let cycA, cycB be nesting filled
cycles (with cycB in the interior of cycA) defined on a finite, bounded, planar
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region in a CW space K. A planar ribbon E (denoted by rbE) is defined by

rbE =

bdy(cl(cycB)) defines the inner boundary of cl(rbE).
︷ ︸︸ ︷

{cl(cycA) \ {cl(cycB) \ int(cycB)} : bdy(cl(cycB)) ⊂ cl(rbE)} .

In a CW space, each planar ribbon has a boundary region. The boundary
region of a ribbon rbE in a space K contains all parts of the space not in the
closure of the ribbon, i.e.,

∂(cl(rbE)) =

∂cl(rbE) is the set all points of K not in cl(rbE).
︷ ︸︸ ︷

K \ cl(rbE) =� ∩ cycA = � ∩ bdy(cycB) = ∅.

In other words, the boundary of a ribbon contains all points in K that are
not in the cycles or in the interior of the ribbon.

Example 5.4. In Figure 4.2, the two orange regions (� surrounding the
ribbon border cycle cycA and � inside the region of K in the interior of the
inner cycle cycB, which is not part of the ribbon) represent the boundary
region ∂cl(rbE) containing all points in K that are not in the ribbon rbE.

A pair of Vigolo Hawaiian earrings2 have inner and outer borders con-
structed from a pair intersecting symmetric smooth curves. A Vigolo Hawai-
ian earring is a modified Brooks wide ribbon constructed from the intersection
of a pair of smooth curves. A Brooks wide ribbon ([4]) is constructed from a
pair of smooth, non-intersecting, closed curves which are boundaries wrapped
around a spatial region. Unlike a Brooks wide ribbon, a Vigolo Hawaiian
earring is a wide ribbon with inner and outer border curves that intersect.
To carry this a step further, a planar wide ribbon in a CW space has borders
that are possibly intersecting 1-cycles. In a CW space, a wide ribbon has an
outer ribbon border that is a partially filled 1-cycle and an inner border that
is a non-filled 1-cycle. Unlike either a Brooks wide ribbon ([4]) or a Vigolo
Hawaiian earring ([27]), the interior of CW space wide ribbon is nonempty.
By definition, a CW space wide ribbon complex is an example of a shape, i.e.,
a ribbon shape is a region of the space with an outer border that is a simple
closed curve with a non-empty interior (our filled 1-cycle).

Example 5.5. The orange region � of the CW space K external to the
outer borders cycA, cycA′ of the Hawaiian earrings HeE,HeE′ as well the two
symmetric white regions enclosed by inner earring border cycles cycB, cycB′

in Figure 5 constitute the complete border region of the earrings, i.e.

∂ (HeE ∪ HeE′) = K \ (HeE ∪ HeE′).

Theorem 5.6 ([20]). Let (K, δΦ) be a descriptive proximity space over
a CW space K with probe function Φ: 2K → R

n, ribbon rbA ∈ 2K , and

2introduced by F. Vigolo in [27, §3.31, p. 79].
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f : (K, δΦ) → (K, δΦ) a descriptive proximally continuous map such that
f(rbA)∩

Φ
rbA 6= ∅. Then rbA, f(rbA) are amiable fixed sets.

Proof. Immediate from Definition 3.2.

Example 5.7. A pair of Hawaiian earrings HeE,HeE′ in a CW space K

are represented in Figure 5. For a nonvoid region reE = HeE ∪HeE′ ∈ K, let
{v0, v

′

0} be generator vertexes in a free Abelian group representation of the
earrings and let βreE be the Betti number ([12]) defined by

βreE =

No. of generators in free group representing HeE ∪ HeE′.
︷ ︸︸ ︷

rank of group GreE({{v0, v′0}} ,+).

Also, let f : (K, δΦ) → (K, δΦ) be a descriptive proximally continuous map
defined by

f(reE) = K \ ∂(reE).

Then f(HeE ∪HeE′) = K \ ∂(HeE ∪HeE′) = HeE ∪HeE′, i.e., HeE ∪HeE′

is a fixed subset of f . We also have f(HeE ∪HeE′)∩
Φ
K \ ∂(HeE ∪HeE′) 6= ∅,

since

Φ(HeE ∪ HeE′) = Φ(K \ ∂(HeE ∪ HeE′)) = 2.

Hence, from Theorem 5.6, f(HeE∪HeE′),HeE∪HeE′ are amiable fixed sets.

6. Main results

Our observations about the boundary region of a cell complex in a CW
space lead to a variation of the Jordan curve theorem (see Theorem 6.1),
which launches P. Alexandroff’s introduction to Algebraic Topology ([1]).

Theorem 6.1 (Jordan curve theorem [10]). A simple closed curve lying on
the plane divides the plane into two regions and forms their common boundary.

Proof. For the first complete proof, see O. Veblen [25]. For a simplified
proof via the Brouwer fixed point theorem, see R. Maehara [11]. For an
elaborate proof, see J.R. Munkres [13, §63, 390–391, Theorem 63.4].

The boundary region of any planar shape contains all cell complexes that
are not part of the shape in a CW space.

Theorem 6.2 (Shape boundary region Jordan curve theorem). The
boundary of a nonempty planar shape shE in a CW space K separates the
space into two disjoint regions.

Proof. From Definition 5.1, there are two disjoint regions of a CW space
K, namely, ∂cl(reE) and cl(reE). A shape shE in K is a nonvoid region of
K. From Theorem 4.3, shE is a filled cycle defined by its closure, namely, the
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union of the shape perimeter, which is a simple, closed curve and its nonempty
shape interior. That is, by definition, we have

K = cl(shE) ∪ ∂(cl(shE))

and

∂(cl(shE)) = K \ cl(shE).

Hence, cl(shE)∩ ∂cl(shE) = ∅, i.e., cl(shE) and ∂cl(shE) are disjoint regions
whose union is K.
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Figure 6. Hawaiian necklace HnE & Hawaiian butterfly HbE

Definition 6.3 (Descriptive closure). Let 2K be a collection of cell com-
plexes, (K, δΦ) a descriptive proximity space, E ∈ 2K , Φ(E) a description of
E. The descriptive closure of E (denoted by clΦ(E)) is defined by

clΦ(E) =
{
A ∈ 2K : A δΦ E

}
.

Theorem 6.4 (Fixed cell complex theorem). Let K be a planar CW
space. Every descriptive proximally continuous map from K to itself has a
fixed cell complex.

Proof. Let (K, δΦ) be a descriptive proximity space. Also, let clΦ(shE) ∈
Φ(K) be the descriptive closure of a shape shE and let Φ(∂(shE)) ∈ Φ(K)
be the description of the boundary region in clΦ(shE). In addition, let
f : (K, δΦ) → (K, δΦ) be a descriptive proximally continuous map, defined
by

Φ(K) =
{
Φ(A) : A ∈ 2K

}
.

Φ(∂(cl(shE))) =
{

Φ(A) : A ∈ 2∂(cl(shE))
}

.

f(clΦ(shE)) = Φ(K) \ Φ(∂(cl(shE))) such that

Φ(∂(cl(shE))) = Φ(K) \ clΦ(shE) (from Definition 5.1 & Theorem 6.2), i.e.,
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Φ(∂(cl(shE))) contains the descriptions of all cell complexes not in the de-
scriptive closure of shape shE and Φ(K)\clΦ(shE) contains that part of Φ(K)
not in Φ(∂(cl(shE))), namely, clΦ(shE). Hence, f(clΦ(shE)) = clΦ(shE).

Theorem 6.5 (Planar wide ribbon fixed set theorem). Every descriptive
proximally continuous map from a planar wide ribbon to itself in a CW space
has a fixed set.

Proof. Let rbE be a wide ribbon in a planar CW space K. Replace K

with rbE in the proof of Theorem 6.4 and the desired result follows.

Example 6.6. From Theorem 6.5, the Hawaiian necklace HnE and
Hawaiian butterfly HbE wide ribbons in Figure 6 are fixed subsets of a de-
scriptive proximally continuous function f .

For a CW spaceK containing a cell complex shE, let (K, δΦ) be a descrip-
tive proximity space and let f : (K, δΦ) → (K, δΦ) be a descriptive proximally
continuous map. In addition, we have

Φ(K) = {Φ(A) : A ∈ K} ,

Φ(K \ shE) = {Φ(B) : B ∈ K & B 6∈ shE} .

Theorem 6.7. Let f : (K, δΦ) → (K, δΦ) be a descriptive proximally con-
tinuous map for a CW space K containing a cell complex shE, defined by
f(cl(shE)) = K \ ∂cl(shE). Then:

1o a shape boundary ∂(cl(shE)) is a fixed set subset of f ,
2o f(∂(cl(shE))), ∂(cl(shE)) are amiable.

Proof. 1o: By Definition 2, ∂(cl(shE))) ∈ K. Then

f(∂(cl(shE))) = K \ ∂(∂cl(shE)) = ∂(cl(shE)).

Hence, the boundary ∂(cl(shE)) is a fixed set subset of f .
2o: From 1o, f(∂(cl(shE))) = ∂(cl(shE)) implies

Φ(f(∂(cl(shE)))) = Φ(∂(cl(shE))).

Then, f(∂(cl(shE)))∩
Φ
∂(cl(shE)) 6= ∅. Hence, f(∂(cl(shE))), ∂(cl(shE)) are

amiable.

In considering applications of amiable shapes, we relax the amiability
matching description requirement. In practice, physical shapes seldom have
descriptions that exactly match. Hence, we consider cases where shapes with
descriptions are, in some sense, close. For example, Balko-Pór-Scheucher-
Swanepoel-Valtr almost equidistant sets ([3]) have a counterpart in what are
known as almost amiable planar shapes. In a 2-dimensional Euclidean space,
a set of points are almost equidistant, provided, for any three points from the
set, a least two of the points are distance 1 apart. For example, the pair of
Hawaiian earrings in Figure 5 are a distance of 1 edge apart.
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Definition 6.8 (Almost amiable shapes). Let (X, δΦ) be a descriptive
Čech proximity space and f : (X, δΦ) → (X, δΦ) a descriptive proximally con-
tinuous map. Planar shapes shE, shE′ ∈ X are almost amiable, provided
Φ(f(shE)),Φ(f(shE′) are real numbers and

|Φ(f(shE))− Φ(f(shE′))| ≤ th.

for threshold th > 0.

A more general view of almost amiable shapes (not considered, here)
would be to consider descriptions of shapes that are n-dimensional vectors in
R

n, instead of single-valued (real) descriptions.

Theorem 6.9 (Almost amiable cell complexes with close Betti numbers).
Let f : (K, δΦ) → (K, δΦ) be a descriptive proximally continuous map for a
CW space K containing cell complexes with free fg Abelian group represen-
tations and with descriptions that are close Betti numbers. Then the cell
complexes are almost amiable.

Proof. Let shE, shE′ ∈ K be cell complexes with free fg Abelian
group representations and with descriptions that are close Betti numbers
βα(f(shE)), βα(f(shE

′)) in CW space K and let threshold th > 1. Assume

f(shE) = shE 6= f(shE′) = shE′,

Φ(f(shE)) = βα(f(shE))

Φ(f(shE′)) = βα(f(shE
′))

such that

|Φ(f(shE))− Φ(f(shE′))| ≤ th.

Then, from Definition 6.8, shE, shE′ are almost amiable.

Geometrically, shapes with close Betti numbers describe almost amiable
structures, provided the shapes have almost the same number of generators
in their free fg Abelian group representations. This is a common occurrence
among members of the same class of shapes such as the wide ribbon models
of different types of Hawaiian jewelry.

Example 6.10. From Example 6.10 the Hawaiian necklace HnE and
Hawaiian butterfly HbE wide ribbons in Figure 6 each is a fixed subset of
a descriptive proximally continuous function f . In addition, HnE,HbE with
generator vertexes g, g′, v′0 and v0, v1, v2 have free fg Abelian group repre-
sentations G({g, g′, v′0} ,+), G({v0, v1, v2} ,+). Let the description of each of
these ribbons be equal to the Betti number that corresponds to their group
representations. This gives us

f(HnE) = HnE = f(HbE) = HbE.
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Then

Φ(f(HnE)) = βα(f(HnE)),

Φ(f(HbE)) = βα(f(HbE))

such that

|βα(f(HnE))− βα(f(HbE))| = 0.

Hence, from Theorem 6.9, HnE and HbE are both amiable and almost amiable
for any threshold th > 0.

The Hawaiian earrings HeE in Figure 5 and the Hawaiian necklace HnE
in Figure 6 are almost amiable but not amiable for threshold th ≥ 1. For
example, we have

f(HeE) = HeE 6= f(HbE) = HbE.

Also

Φ(f(HeE)) = βα(f(HeE)) = 2,

Φ(f(HnE)) = βα(f(HnE)) = 3

such that

|Φ(f(HeE))− Φ(f(HnE))| = 1.

Hence, HeE and HnE are almost amiable. However, f(HeE),HnE are not
amiable, since f(HeE)∩

Φ
HnE = ∅.
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