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Abstract—In 2020 we have witnessed the dawn of machine
learning enabled user experience. Now we can predict how
users will use an application. Research progressed beyond
recommendations, and we are ready to predict user events.
Whenever a human interacts with a system, user events are
dispatched. They can be as simple as a mouse click on a menu
item or more complex, such as buying a product from an
eCommerce site. Collaborative filtering (CF) has proven to be
an excellent approach to predict events. Because each user can
generate many events, this inevitably leads to a vast number
of events in a dataset. Unfortunately, the operation time of CF
increases exponentially with the increase of data-points. This
paper presents a generalized approach to reduce the dataset’s
size without compromising prediction accuracy. Our solution
transformed a dataset containing over 20 million user events
(20,692,840 rows) into a sparse matrix in about 7 minutes (434.08
s). We have used this matrix to train a neural network to
accurately predict user events.

Index Terms—behavior prediction, machine learning, collabo-
rative filtering, user events, Adam.

I. INTRODUCTION

One of the goals of user experience (UX) research is
understanding and predicting how humans (the users) will
interact with a computer system [1], [2]. When a user interacts
with any digital system, a series of events is being dispatched
and stored (logged). For example, an event could be buying or
viewing an item on an e-commerce website, starting to watch
a movie on a streaming platform, or even something as simple
as clicking on a website’s menu item.

To predict future events a user might dispatch, a new
research topic emerged, using unsupervised machine learning
(ML) to create better UX [3]. Collaborative filtering (CF)
has proven to be an excellent approach to predict events
[4]–[6]. CF algorithms calculate the probability of a user’s
future events based on the events dispatched by other users.
Traditionally, CF algorithms were used to predict the rating
a user would give to an item, for example, a movie, based
on the star rating from other users [7]. Unfortunately, most
events do not have ratings associated with them. Even where
it would be possible, such as buying an item from an online
store, users seldom leave ratings. Moreover, there are many
scenarios where we cannot rationally expect ratings.
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The foremost problem researchers faced when trying to
predict events was that it inevitably leads to a vast number of
events. Because the operation time of recommender engines
increases exponentially with the increase of data-points [8]
we need a way to reduce the training dataset in a way
which minimizes the effect of data reduction on the prediction
accuracy.

At SoftCOM 2020, we presented a solution reducing all
events between an item in an eCommerce shop and a user
(the event chain) to a single UX value in the [0, 1) range.
This number also depends on the sequentiality of the events.
After determining the UX value for all event chains, we store
it in a sparse matrix. This matrix can be generated from any
event dataset in linear time. Using a random split of the sparse
matrix, we trained a deep neural network to predict unknown
(null) values. We have implemented a machine learning model
featuring Adam optimizer, and dropout regularization [9].

In this paper, we present the generalization of the previous
research. Instead of items, this generalized method will work
on any event type and any object regardless of context. An
event’s object can be an item from an eCommerce site, a
function of software, or even a game-play choice in a computer
game. Hereinafter, we call them objects, although they can be
conceptually and programmatically different entities.

We assess the generalization experimentally with a dataset
consisting of 123 unique event types, with data from most of
2020 (January 5 to November 21) provided by the REES46
Marketing Platform on Kaggle [10].

Moreover, in the experimental assessment, we prove the
method’s scalability, with another dataset from REES46 [11].
This dataset contains over 20 million user events (20,692,840).
Our method transforms this ‘gargantuan’ dataset into a sparse
matrix ready for machine learning in about 7 minutes (434.08
s) on our test machine.

We have structured the remainder of this paper as follows:
After an overview of related works in Section II, we presented
the developed approach in Section III, followed by Section
IV, which documents the numerical evaluation of the devel-
oped approach, applied to multiple real-world datasets. We
concluded the paper with Section V.

II. RELATED WORKS

Relying on user events to create better experiences, usually
in the form of recommendations, has become a popular
research topic, and its popularity continues to increase in 2020.
Some of the papers which inspired the research presented in
this paper include Moscato, et al. creating a recommender
system based on the personality traits, moods, and emotions
of a user [12]. Next, Szabo et al. used ML, and behavioral
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analysis for user-tailored viewer experience for online video
streaming [13]. Hug published ‘Surprise’, a Python library
for recommender systems [14]. Beheshti et al. presented a
cognitive recommender system, which does not rely on domain
experts’ knowledge to adapt to new situations [15].

Real-world recommender engines often rely on data re-
duction to solve scalability and enhanced generalization by
reducing over-fitting. This step is essential for all ‘gargantuan’
datasets but can easily lead to low accuracy [16]–[18]. This
paper proposes a solution which efficiently reduces the data
to speed up training without sacrificing much of the accuracy,
as proven experimentally in Section IV

Neural CF needs hyper-parameters to control the learning
process, similarly to other neural network based machine
learning. Hyper-parameter optimization (HPO) aims to select
the hyper-parameters so that the loss function converges to
the minimum much faster, essentially making the learning
faster or more accurate given a time constraint [19], [20].
CF research papers usually omit HPO, probably because
traditional HPO can take a considerable amount of time. In
2019 Dacreama, et al. [21] while evaluating commonly used
CF datasets, found that they contain only a few hundred
thousand ratings. For those ‘tiny datasets’, as Dacrema et.
al. calls them, HPO ‘can take days or weeks.’ Therefore
‘gargantuan’ datasets, such as the ones from Section IV of
this paper, HPO could take a considerable amount of time. To
address this, in 2020 by Szabo and Genge presented a hybrid
hyper-parameter optimization (HPO) solution to find the best
hyperparameters for CF featuring an Adam optimizer-based
or one of the other modern stochastic gradient descent (SGD)
optimizers. This research also has implications for our current
research because it proves the problem’s practical solvability
in a scalable manner for gargantuan datasets [22]. That paper
shows that the learning algorithm converges to the minimum in
very few batches, especially with hybrid HPO. The researchers
got usable results after the first 30 minutes because of the fast
convergence even after the data reduction.

One of the shortcomings of the traditional CF system is
called the ‘cold-start problem,’ meaning that new items do
not get predictions meaningful until a few users interact
with them [23]. For rating-based recommenders, the cold-
start problem can mean weeks of delay. We find several
suggestions for alleviating these issues [24]–[26]. Castillejo
et al. suggests using data from the users’ social network
in a CF recommender system [27] to tackle the cold start
problem. Dong et al. described a solution for cold start named
‘MAMO’ (Memory-Augmented Meta-Optimization) with two
memory matrices. The feature-specific matrix for personalized
parameter initialization, while the task-specific matrix gives a
fast prediction of the user preference [28].

Data sparsity is another problem with traditional CF, mean-
ing that we lack data for a very high percentage of user-item
pairs. Natarajan et al. suggested resolving data sparsity and
cold start problem using Linked Open Data [29]. Zhang et al.
suggested clustering nodes in bipartite networks to tackle data
sparsity [30].

Contrary to the aforementioned papers, our approach ad-
dresses the cold-start and data sparsity problem by relying

on user events. New users start dispatching events as soon
as they start using the application and new objects get events
with no noticeable delay, so cold-start has almost zero impact
on our method. Moreover, event data is created and stored in
abundance. Virtually all users and objects will have significant
events within minutes, so data sparsity is not an issue.

The methodology documented in this paper distinguishes
itself by presenting a scalable solution to create accurate
predictions of user events. One of the significant contributions
is the generalization of the UX value function, a data reduction
solution, which enables relatively fast learning speeds and
accurate event predictions, as demonstrated in Section IV.

III. DEVELOPED APPROACH

Our solution predicts the probability of an event happening
for a user concerning an object. For example, the likelihood
of the user ‘Jane’ buying a ‘smartphone’ in a shop, or ‘Joe’
clicking on the ‘red car’ in a game.

We summarise the developed approach as the subsequent
execution of the following steps:

1) Calculate the event-type likelihood matrix
2) Choose an event-type to predict
3) Compute the User Experience (UX) value for all user-

object event chains for the event-type we want to predict
4) Store the UX values as a user-object sparse matrix
5) Train a neural network to predict the likelihood of all

events for unknown user-object pairs with minimal mean
squared error

In order to formally define the approach, we first introduce
the following notations: Let E denote the ordered set of all
user events (the dataset), and e ∈ E, an element of E. Let ei
denote the ith user event in E. It is assumed that given two
user events ei, and ej , if i < j, then user event ei precedes in
time user event ej .

We categorize the events into meaningful categories based
on their similarities. We call those categories an event types,
and denote the kth event type as Tk. Each event in E will be
associated with one and only one event type, so that Ei ∈ Tk.
Multiple events can be associated with the same event type. In
fact, we want to avoid creating event types with a low number
of events in them, as they are less useful in practice. Let |T | be
the cardinality of T . In other words, we will have |T | number
of event types.

A. Calculate the Event-type Likelihood Matrix

Let P(Tk) be the probability of the event type Tk in the
complete sample space, and P(Tk|Tl) the probability of event
type Tk given that the event type Tl has already occurred. We
assume that the probability of event type Tk is dependent of
the Tl event type. The event-likelihood matrix can be defined
as:

∀Tk(Tk ∈ T =⇒ P(Tk) 6= P(Tk|Tl))

P (Tk|Tl) =

{
0, if P(Tl) = 0
P(Tk∩Tl)

P(Tl)
, if P(Tl) ∈ (0, 1].

(1)

It is worth mentioning that the main diagonal should always
be 1, and ideally, all other probabilities should be less than 1.
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If any event type Tk occurs with a probability of 1 or near
that number, given another event Tl, we eliminate event type
Tk, as redundant, as summarised in the following equations:

k = l =⇒ P(Tk|Tl) = 1

k 6= l =⇒ P(Tk|Tl)� 1
(2)

B. Choose an Event-type to Predict

We need to choose an event-type we want to predict. For
example, buying an item or subscribing to a newsletter. Let Tc
be the event type we choose to be predicted so that Tc ∈ T .
The event-type likelihood matrix will contain the probability
of the chosen event, as defined in (1).

C. Compute the UX Value for an Event Chain

All events between the same user and the same object form
the UX event chain, where events are ordered based on their
recency, starting with the oldest event. The UX value function
transforms the most recent element of the UX event chain into
a scalar value.

Let u denote a specific user, and o a specific object. Let
Eu,o ⊆ E denote an event chain associated to user u and
specific to object o. Then, let Eu,o

i ∈ Eu,o be the ith element
of Eu,o. The members of the Eu,o event chain differ only in
event type. Let the event type of the given event be Tk ∈ T ,
the kth element of T . As a result, the UX function is defined
as:

UX(Eu,o
i ) =

{
0, if i = 0.

tanh(UX(Eu,o
i−1) + P(Tc, Tk)), if i > 0.

(3)
Similarly to the specific method described by us previously

[9], the hyperbolic tangent is used to assure that the function’s
return value is always in the [0, 1) range, acting as the UX
value’s normalizer.

D. Store the UX values

We define the Yu,o sparse matrix to contain the UX value
for the last event in the Eu,o event chain, as defined in the
following equation:

Yu,o ⇐ UX(Eu,o
max(i)) (4)

Our approach’s main benefit is that it has a computational
complexity of O(|E|), where |E| is the number of events. In
other words, it has a linear computation time. Another benefit
of the approach is that it yields a sparse user×objects matrix,
most of the values being zero, which can be constructed and
stored efficiently.

Let $ be the point above which a value is likely to result
in an event happening. As we will see in the experimental
assessment, this value is not necessarily 0.5. Moreover, $ is
not used for training or data preparation, but it will help us
understand the predictions.

We introduce the term ‘worst rational case number of
events,’ meaning the largest number of events we can ratio-
nally expect to happen between the same user and the same

object in a row. For example, we can expect at most one
remove from cart event. It doesn’t make sense to remove the
object from the cart right after it was removed. At least one
add to cart event has to happen before the removal can happen
again. Similarly, a play event for a movie can’t happen right
after the play event for the same film. For other events, it is
possible to have multiples in a row. For example, a user can
click add to cart after adding to cart. In theory, this can happen
an infinite number of times, but from the observation of real-
world datasets, such as [11] we can conclude that users will
rarely do this, and at most, three times.

Let W ∈ N denote the worst rational case number of events
of a certain event type Tk, affecting $. W can be calculated
with the empirical formula W = bµ + 3 × σc. We calculate
$ using the following equation:

$ = UX(Tc) +W1UX(T1) + . . .WnUX(Tn)

n ≤ |T | ; n 6= c
(5)

E. Train a Neural Network

To train a neural network, we split the ground truth Y sparse
matrix into three matrices with the same dimensions as Y
using a three-way data split.

For colossal datasets, holdout validation is recommended
by many authors [31], [32]. We used a three-way data split, a
common variant of holdout validation. This means that only
the trained model is evaluated against the test set, and the
validation set is used during HPO only.

Let ptrain, pval, and ptest be the probability of an event
chain being in the Ytrain, Yval, and Ytest matrices respectively,
we apply three-way data split using the following equation:

ptrain + pval + ptest = 1

ptrainYtrain + pvalYval + ptestYtest = Y
(6)

We need to train a neural network (NN) to predict the
likelihood of conversion for all the user-object pairs with
unknown UX values, represented as zero (which is ideal for a
sparse matrix).

Vavasis [33] proved that non-negative matrix factorization
is NP-hard. Therefore, it is unlikely that there is an exact
algorithm that runs in polynomial time. Algorithms that run
in time exponentially cannot reasonably be considered for
real-world applications due to the datasets’ large dimensions.
The deep neural network described below can approximate
the values with outstanding accuracy as demonstrated in the
experimental assessment, in section IV.

To predict the zeroes’ non-zero values in the sparse matrix,
we define the objective function, a loss function to be mini-
mized. Due to the UX value function described above, there
can be no outliers, as all values will fall in a relatively narrow
range, depending on the initial set of events. On the other
hand, the resulting data will have a small perturbation. This
small perturbation will significantly affect mean absolute error
(MAE), compared to mean squared error (MSE). Therefore we
have chosen MSE as our loss function.
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Let Ŷ store be q predictions about Y ground truth, as
calculated by our solution. We apply the MSE function to
the q data points. Hereinafter we will call this MSPE, short
for mean squared prediction error, defined in the following
equation:

MSPE(Ŷ , Y ) =
1

q

n+q∑
a=n+1

(Ya − Ŷa)2 (7)

Let backpropagation() be a function for backward propa-
gation of errors [34] and let Adam(lr, β1, β2) be the Adam
optimizer function to minimize MSPE. The Adam optimizer,
as introduced by Kingma et al. [35]. The Adam optimizer
combines the benefits of AdaGrad and RMSProp algorithms,
and it can handle sparse gradients on noisy problems. It was
proven to be a suitable optimizer for many modern problems,
including CF [36]–[38]. To use it, we need to define its hyper
parameters as such: Let lr ∈ (0, 1) be the learning rate, and
β1, β2 ∈ [0, 1) be the decay rates for moment estimates.

Let epochs ∈ N>0 denote the number of times the entire
dataset Ytrain is passed both forward and backward through
the NN. Let batch size ∈ N>0 denote the number of samples
evaluated before the model’s internal parameters are updated.
Our algorithm will run until Ytrain is passed forward and
backward through the NN epochs times. During each pass,

Ytrain

batch size number of batches are taken from Ytrain.
It’s worth noting that L2 regularization is not effective to

prevent overfitting in the case of Adam, as demonstrated by
Loshchilov et al. [39]. We could use decoupled weight decay
regularization [39] or dropout [40]. Weight decay penalizes
large weights, forcing all weights to be close to 0. Because
we work with gargantuan datasets, dropout regularization is
a much better option, because it means dropping units and
their connections from the neural network during training. Let
D() be a dropout regularization function, and P0 ∈ [0, 1) the
probability of eliminating units and their connections from the
NN during training [40], [41].

Let Embedding(x, y) be a lookup function that retrieves
embeddings. Let x be the size of the dictionary of embeddings,
and y be the size of each embedding vector. Let nf ∈ N>0

be the number of factors. Let userf be the user factors, and
users are the users found in the batch, so that userf ⇐
Embedding(users, nf ). Let userb be the user bias, so that
userb ⇐ Embedding(users, 1). Moreover let objf be the
object factors, and obj the objects found in the batch, so that
objf ⇐ Embedding(obj, nf ). Let objb be the object bias, so
that objb ⇐ Embedding(obj, 1).

In the developed algorithm the loss is calculated using
the MSPE function (Eq. (7)). Then, the backpropagation()
achieves the backward propagation of errors. Finally, the
Adam optimizer function is used to minimize the loss function.

After each epoch, the validation loss is calculated and
stored using MSPE(Ŷ , Yval). When we observe a decreasing
validation loss, we call this ‘learning’, because our solution is
getting closer and closer to predicting the events. The resulting
solution is summarized as Algorithm 1.

Algorithm 1 CF object prediction algorithm
function CF(Ytrain, Yval, lr, β1, β2, batch size, nf , P0 )

for i← 1, epochs do
for all batch ∈ Ytrain

batch size do
userf ⇐ Embedding(users, nf )
objectf ⇐ Embedding(obj, nf )
userb ⇐ Embedding(users, 1)
objectb ⇐ Embedding(obj, 1)
Ŷ ⇐

∑
(D(userf )×D(objf )) + userb + objb

loss⇐MSPE(Ŷ , Ytrain))
backpropagation(loss)
Adam(lr, β1, β2)

lossval ⇐MSPE(Ŷ , Yval))
return lossval

IV. EXPERIMENTAL ASSESSMENT

A. Implementation Details

We have used Python (version 3.8.5), SciPy (version 1.5.2),
PyTorch (version 1.7) with CUDA 11.0, and the PyTorch
Lightning lightweight wrapper [42] (version 1.0.8) to im-
plement the solution described in the previous section. The
Jupyter Notebooks can be found on the project’s repository
on GitHub: https://github.com/WSzP/uxml-ecommerce

The test machine we used had the following configuration:
Intel Core i9-9900K CPU (3.60GHz); 64 GiB RAM and
NVIDIA GeForce RTX 2080 Ti GPU for GPU based ML.

B. The Datasets

To test the scalability and generalizability of the developed
approach, we have used two ‘gargantuan’ datasets with real-
world user event data.

The first dataset is the ‘eCommerce Events History in
Cosmetics Shop’ dataset [11], an extended version of the
dataset used by us [9]. This extended version contains user data
from five months of user data instead of the two used previ-
ously, resulting in 20,692,840 events instead of 8,738,120. The
shape of the dataframe is 20692840× 9. The data preparation
procedure used for dataset 1 is summarised as Fig. 1.

The second dataset we used in our experimental assessment
is the ‘eCommerce purchase history from electronics store’
dataset [10]. This is a dataset unlike any other on Kaggle
because it covers purchases from a multi-category eCommerce
site, which happened in 2020 (January 5 to November 21 at the
time of writing this paper). This dataset was not solvable with
the method described in our previous paper [9], but as we will
demonstrate, it is possible to predict purchases of a category of
items, based on the purchase behavior demonstrated in other
categories, so the event types will be the item categories for
which we have enough purchase data. The data preparation
procedure used for dataset 2 is summarised as Fig. 2.

C. Data Cleansing and Reduction

When working with raw data coming directly from user
logs, first, we need to do a data reduction and cleansing. This
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Dataset: cosmetics shop
Timeframe: 5 months

Drop users with < 5 events
Keep columns: event_type,
product_id, user_id
Sort by: event_time

20,692,840 × 9

18,623,728 × 3

Calculate the event-type
likelihood matrix (Pr)

4 × 4

Select event: purchase
Apply the UX value function

396,046 × 53,619 (sparse)

Three-way data split 
70%-15%-15%

Prepared data

Fig. 1. Data preparation procedure used for dataset 1

requires a different approach for different datasets; therefore,
we describe it separately.

We drop all events associated with users for the first dataset,
who had less than five events in the dataset. This means that
they have interacted with less than five objects on the site
during the whole period of five months. Five events can happen
during the first minute of their interaction with the software,
so it is pointless to predict their next events. Even if we have
created some predictions for them, it is unlikely that they
would come back to the site to benefit from the enhanced user
experience. When we dropped 1,243,312 (75.84%) of users
for not meeting the minimum 5 event requirement, we have
reduced the number of total events by 10%. This does not seem
like a huge gain, but it also leads to a 75.84% reduction of
the sparse matrix’s user dimension, which leads to a significant
speed gain. The distribution of event types is plotted as Fig.
3.

For the second dataset, we can easily identify guest users.
We need to remove them because we cannot predict the
behavior of unknown users. (In some cases, we can deduce
the identity of the guest users, but this is beyond the scope
of this paper, and we assume that by not logging in, the user
intent is to remain anonymous and not have a personalized
experience.) After removing them, we reduce our data frame’s
size from 2,633,521 rows to a much more manageable 564,169
rows. Then we remove events with the obviously erroneous
timestamp (as all data is from 2020, any timestamp with
a different year is an error). This leaves us with 562,862
rows. Then we drop events with missing category references,
leading to 433,938 rows. In dataset 2, the event types are the

Dataset: electronics store purchases
Timeframe: 11 months

Drop guest users (no user_id)
Drop wrong event_time
Drop events with no category_code
Keep: category_code, user_id
Sort by: event_time

2,633,521 × 8

433,938 × 2

Calculate the event-type likelihood
matrix (Pr) for the top 20% (24)
most fequent event types (categories)

24 × 24

Select event: computers.notebook
Apply the UX value function

82,534 × 24 (sparse)

Three-way data split 
70%-15%-15%

Prepared data

Fig. 2. Data preparation procedure used for dataset 2

Added to cart
29.61%

5,514,522
18,623,728

events

Removed from cart
21.33%

3,973,202

Viewed the item
42.17%
7,852,925

Purchased
6.89%
1,283,079

Fig. 3. User events in dataset 1 (percentage and number).

categories. We will find 123 unique categories in this cleaned-
up dataset. Our recommendation is to reduce the number of
events to a 20% if there are many event types, discarding
the bottom 80% when ordered by the number of events in
each category. If we omit this step, for the second dataset,
we encounter situations, such as the probability of buying
‘electronics.smartphone’ given ‘apparel.shoes’ being 1. This
results from only two items in the ‘apparel.shoes’ category
being sold in 2020, and they were purchased by the same user
(user id: 1515915625512096000). Because this user bought a
smartphone, the probability is correct, but it is obvious, that
buying a shoe will not automatically mean that one will also
buy a smartphone. Anomalies such as this result from a rare
events being included in the dataset (such as buying shoes from
an electronics store). The final distribution of event types is
plotted as Fig. 3.
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Smartphone
23.63%
102,554 events

Notebook
5.97%
25,918 events

343,479
events

22 other 
event types

70.4%
215,007

Fig. 4. User events in dataset 2 (percentage and number).

TABLE I
RUNTIME EVALUATION OF THE DATA PREPARATION (DATASET 1)

first 2
months

all 5
months Change

raw data (number of rows) 8,738,120 20,692,840 237%
unique users 177,592 396,046 223%
unique objects 44,780 53,619 120%

data loading 4.65s 11.2s 241%
UX value function 165.6s 434.1s 262%
three-way datasplit 60.2s 152.1s 253%

D. Calculating the Event-type Likelihood Matrix

Using equation (1), we compute the event-likelihood matrix.
The runtime evaluation of the UX value function with two
other functions of the same datasets is published here as Table
I and II. This proves that the UX value function does not take
considerably more time than other common tasks on the same
data frame, such as data loading or data split.

E. Exploring the UX Value Function

The user experience value function’s ultimate goal is to
predict if a user even will happen or not, in other words, if it is
above the activation threshold value or not. With this threshold,
we can also treat the problem as a classification problem,
essentially dividing event-user pairs into likely happening and
likely not happening groups. The threshold itself represents
the probability which we treat as the minimum requirement
for us to have confidence in the even’s happening for a given
user.

To solve this problem more transparently, we have intro-
duced a notation for the event chain, an array of events. In
this array, capital letters denote the event. For example, ‘V’
for view event.

This way, we can refer to any event chain with a simple
array notation. For example, if a user views a product, then
adds it to the cart, and finally purchases it, the event chain is
[V,C, P ]. In this example, the UX value of the last event in
the chain returns 0.8464209. This is the value calculated for
the first dataset’s first two months. When not specified, we are
referring to this dataset in the later parts of this experimental
assessment. For events encountered multiple times, an index
notation is implemented to save space, denoting the consecu-
tive occurrence of an event, for example, [V, V, V ]⇒ [V 3].

With this notation, we have provided a few common exam-
ple chains, with the approximate UX value of the last event
in the chain given in Table III. Because limn→∞ UX(V n) ≈
0.51083773, the point above which an event is positive can’t

TABLE II
COMPARISON OF DATASET 1 (FIRST 2 MONTHS) AND DATASET 2 (11

MONTHS)

Dataset 1
(first 2

months)

Dataset 2
(all 11

months)
Change

raw data (number of rows) 8,738,120 2,633,521 30%
unique users 177,592 82,534 46%
unique objects 44,780 24 0.05%

data loading 4.65s 0.13s 2.77%
UX value function 165.6s 9.4s 5.65%
three-way datasplit 60.2s 3.0s 4.92%

TABLE III
UX EVENT CHAINS AND THE APPROXIMATE UX VALUE OF THE LAST

ELEMENT IN THE CHAIN

Event chain UX value of the
last item

[P ] 0.7615942
[C] 0.1929539
[V ] 0.052975323

[V 2] 0.10560506
[V 3] 0.1573127
[V 17] 0.49882156
[V 18] 0.5019028
[V 50] 0.51083726

[V,C, P ] 0.8464209
[V,C,R,C, P ] 0.89389783
[V,C,R, V, C, P ] 0.90029126

[V,C, P, V 2] 0.6463784
[V,C, P, V, C,R] 0.64342976

[P,C2, V, R] 0.6038386

be 0.5, let alone tanh(0.5) ≈ 0.46. No matter how many
times a user views an item, the function will not predict a
purchase. On the other hand, UX(P ) ≈ 0.7615942 cannot
serve as the point above, which we consider the event positive.
For example, if a user has the event chain [V,C, P, V 2] they
purchased the item, because of P ∈ [V,C, P, V 2], but the UX
value of the last element of the chain [V,C, P, V 2] will be
0.6463784, which is smaller than UX(P ) ≈ 0.7615942.

To find the $ value for the dataset, we analyzed the events
in relation to the purchase time, if they happened before or
after. It was found that most events regarding a specific user
and item pair happen before purchase, as summarized in table
IV.

When the event chain has the form of [en, P ], where e
denotes any event, and n ∈ N, the UX value of the chain
will be at least UX(P ), so there is no need to consider pre-
purchase events.

We calculate the mean (µ) and standard deviation (σ) of
the after-purchase event arrays for each event type. Then we
construct a worst-case scenario event chain, taking the events
in the increasing order of value, and applying the three-sigma
rule. The three-sigma rule stipulates that nearly all values lie
within three standard deviations of the mean. When analyzing
human behavior, the three-sigma probability can be treated
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TABLE IV
EVENTS BETWEEN A SPECIFIC USER AND ITEM HAPPENING BEFORE AND

AFTER PURCHASE.

Events Before purchase After purchase

V 3,883,216 (98.60%) 55,080 (1.40%)
C 2,509,881 (98.65%) 34,311 (1.35%)
R 1,668,179 (98.85%) 19,412 (1.15%)

TABLE V
WORST RATIONAL CASE CALCULATOR FOR EACH EVENT TYPE, AFTER

PURCHASE

add to cart events after purchase
Mean (µ) = 0.06040233011349533
Standard deviation (σ) = 0.7254660441273392
W = bµ+ 3× σc = 2

view events after purchase
Mean (µ) = 0.09696483176390437
Standard deviation (σ) = 0.5475150110268789
W = bµ+ 3× σc = 1

remove from cart events after purchase
Mean (µ) = 0.03417358958244211
Standard deviation (σ) = 0.3552707937839338
W = bµ+ 3× σc = 1

as near certainty [43]. The calculations’ results, including W
values are summarized in table V.

As a result of the worst-case calculations, we have reached
the worst rational case event chain: [P,C2, V,R]. This exact
event chain is improbable, but any number above that can
be treated as a positive prediction, in other words, the user
is likely to purchase the given item. In contrast, any number
below this can be treated as a negative prediction, meaning
that the user is unlikely to purchase the item. The $ value for
the dataset was calculated to be 0.6038386. Please note that
this value needs to be recalculated for each implementation.
A different project might have a different $ value.

F. Evaluation Metrics

For testing the machine learning models’ predictions and the
data-reduction itself against the ground truth, twelve evaluation
metrics were used. The goal of those metrics for an event-
based predictor is to evaluate how accurately the engine pre-
dicts the user’s events. The metrics discussed below were im-
plemented as https://github.com/WSzP/uxml-ecommerce/blob/
master/test-uxml.ipynb.

When it comes to metrics, different sources use different
metrics to measure recommender systems. For example, Hu et
al. uses full dataset precision, recall, and F1 [44]. In contrast,
McInerney et al. prefers Normalized discounted cumulative
gain and expected stream rate [45] (expected stream rate is
not relevant for our e-commerce datasets for obvious reasons).
We included all known metrics to improve the research’s
comparability, even those metrics, which are more-or-less
irrelevant for event-based prediction, as long as they can be
calculated with reasonable effort.

It is worth noting that we have used multiple methods to
calculate most metrics to ensure that no calculation method
results in a significantly different result. As all methods

resulted in approximately the same value, there is no need
to list the slightly different values resulting from different
methods in this paper’s following results.

As mentioned in Subsection III-E, mean squared error, being
the loss function for training and validation, was the first
metric considered. For completeness, root mean squared error
is also given for test results in this paper, but that is simply
the square root of the MSE. For testing purposes, the mean
absolute error was calculated using Eq. (8) for q data points.
Please note that for comparing MSE, RMSE, and MAE results,
the smaller value is better.

MAE(Ŷ ) =
1

q

n+q∑
i=n+1

|Yi − Ŷ | (8)

The previously described activation threshold enables us to
use metrics usually applicable to classification problems. The
whole dataset’s confusion matrix is created by counting the
true positive, negative, and false-positive and negative values
between Ŷ and Y .

The full test dataset precision can be calculated by dividing
the number of true positives by the number of all positive
results, as shown in equation (9). The full test dataset recall
can be calculated by dividing the number of true positives
by the total of true positives and false negatives, as shown in
equation (10). Finally, F1 is the harmonic mean of precision
and recall (equation (11)). Precision, recall, and F1 values are
considered better if the results are closer to 1.

Precision(Ŷ , Y ) =

∑n+q
i=n+1 |Ŷi

⋂
Yi|∑n+q

i=n+1 |Ŷi|
(9)

Recall(Ŷ , Y ) =

∑n+q
i=n+1 |Ŷi

⋂
Yi|∑n+q

i=n+1 |Yi|
(10)

F1(Ŷ , Y ) = 2
Precision(Ŷ , Y )×Recall(Ŷ , Y )

Precision(Ŷ , Y ) +Recall(Ŷ , Y )
(11)

G. Testing the Data-reduction Against the Ground-truth

We analyzed the results of the data preparation against the
ground truth to evaluate how accurately the UX event chain
function represented the multitude of user events with a single
value. In other words, how much information is lost due to
reduction.

For the close to zero MAE (0.0036) and RMSE (0.0602)
proves that the result of data reduction can be used as a
basis of training. Our assumption is reinforced by having only
0.3% false positives. Precision is 0.9827, recall 0.9930, while
F1 = 0.987. The radius of the 95% confidence interval for the
squared prediction error is 0.00063.

The results of the tests are detailed in Table VI. Close to
zero mean absolute error and root mean squared error proves
that the result of data reduction can be used as a basis of
training. Our assumption is reinforced by having only 0.3%
false positives. The false negatives are also low (0.7%), but
they are of little concern for this research because a false
negative predictions would not be shown in recommendation.
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TABLE VI
DATA REDUCTION RESULTS TESTED AGAINST GROUND TRUTH.

Metric Result

RMSE 0.060224

CI 95% 0.0595,
0.0608

MAE 0.003626

true positive 99.30%
false negative 0.70%
false positive 0.30%
true negative 99.70%

precision 0.982771
recall 0.993041
F1 0.987879

V. CONCLUSIONS

The solution presented in this paper predicts user events
based on previously recorded user events from all users. One
of this paper’s main contributions is the generalized UX value
function, a method to reduce all events between a user and
any object to a single scalar value in the [0, 1) range while
accounting for the sequentiality of the events. Calculating
this UX value for any event type and dataset runs in linear
time. The machine learning model illustrates this method’s
usefulness by demonstrating that ML will achieve a fast
learning speed and good prediction accuracy when learning
from the UX value sparse matrix.

As future research, we intend to explore further data
reduction possibilities for data-sets containing user events.
Moreover, we hope to improve the machine learning algorithm
used to achieve consistent convergence in fewer iterations.
Moreover, the practical implementation of our behavior pre-
diction solution should be tested with real users. The resulting
surveys could shed light on further research opportunities.
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