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Abstract—The Internet of Things (IoT) framework is moving
the research community to provide smart systems and solu-
tions aimed at revolutionizing medical sciences and healthcare.
Given the extreme diffusion of Alzheimer’s disease (AD) and
Parkinson’s disease (PD), the demand for a solution to early
detect neurological symptoms of such diseases strongly arose.
According to the medical literature, such early detection can be
obtained through the correlation between PD and AD and some
external symptoms: the Essential Tremor (ET) and the number
of Eye Blinks (EBs). In this paper, which can be considered as
an extended version of [1], we present a prototype of wearable
smart glasses able to detect the presence of ET of the head and
to count the number of EBs at the same time, in a transparent
way with respect to the final user. Numerical results demonstrate
the reliability of the proposed approach: the proposed algorithms
are able to i) correctly recognize the ET with an overall accuracy
above 97% and ii) count the number of EBs with an overall error
around 9%.

Index Terms—IoT, eHealth, Wearable Technology, Eye Blink,
Glasses, Neurological diseases, Signal Processing.

I. INTRODUCTION

Alzheimer’s and Parkinson’s diseases (AD and PD) are
some of the most well-known neurological illnesses. Namely,
AD is the first most common neurodegenerative disease im-
mediately followed by PD. According to the World Health
Organization (WHO), in 2019 about 5.8 million people world-
wide have AD, while about 1 million people suffer from PD
[2]. To date, some innovative therapeutic approaches for both
AD and PD are being developed [3] [4]. Consequently, the
necessity for a solution to early detect neurological symptoms
of such diseases strongly arose. According to the medical
literature, such early diagnosis can be achieved by exploit-
ing the correlation between PD and AD and some external
symptoms: the presence of an Essential Tremor (ET) and the
counting of the number of Eye Blinks (EB). Notwithstanding
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the fact that AD and PD have the clearly different clinical
characteristic, in some respects they have similarities. Both
Parkinson’s and Alzheimer’s are age-related and occur later
in life. They are central nervous system diseases and both
of them are progressive neurodegenerative disorders which
affected multiple functions. In both AD and PD, the pro-
gressive damage of visual function and motor abilities can
be observed [5]. Among these, the frequency of automatic
blinking or/and blink reflex, could show abnormalities (either
increase o decrease) in PD and to a lesser degree in AD [6].
In addition, clinical studies support the possible connections
between ET and another neurodegenerative disease like PD
and AD [7]. Therefore, the presence of ET may improve the
risk of developing incident PD o AD during follow-up. In this
paper we present NeuroGlass, a prototype of sensored-glasses
already introduced in [1] and [8], able to detect the presence
of ET of the head and to count the number of EBs at the
same time in a transparent way with respect to the final user.
NeuroGlass are equipped with 2 Inertial Measurement Units
(IMUs), 1 Magnetometer and a 2-channel ElectroOculoGram
(EOG). Our prototype implements some of the main state of
the art aspect which are sketched in Fig. 1.

Fig. 1. Visual representation of the main aspects characterizing state-of-the-
art solutions

ET of the head is inferred through Short-Time-Fourier-
Analysis (STFA) of the inertial signals while the number of
EBs is counted through a processing of the EOG signals.
Even if the ET detection and the EBs counting are not
innovative ideas for AD and/or PD diagnosis, to the best of
authors’ knowledge, these approaches have not been developed
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in a prototype that aims at providing a constant and daily
monitoring of such symptoms at the same time. The main
contributions of this work can be summarized as follows:

• we describe NeuroGlass, a new wearable and non-
invasive device able to monitor neurological symptoms
(ET and number of EBs) for PD and AD early detection.
Our paper describes two aspects: i) the scientific approach
followed and ii) the technological implementation;

• differently from the main works in the field, the proposed
prototype is able to detect ET and to count the number of
EBs at the same time, without the need of any a-priori
training;

• in their final version, our prototype will be completely
transparent with respect to the final user, who can
comfortably wear it as a simple pair of glasses.

Furthermore, concerning former publications on this subject
already reported as references [1] and [9], this paper provides
significant additional contributions listed as follows:

• It delivers a whole brand-new medical-based Section (see
Section II) which deeply discusses the main neurological
motivations behind NeuroGlass idea.

• It includes a more detailed and comprehensive state of
the art analysis with respect to [1], not only limited to
the EB problem as in [9];

• It shows the recent advancements in the prototype evolu-
tion towards an off-the-shelf product (see Fig. 3b).

• The new numerical results reported in Figs 6, 7 and
8, which are not present in [1] and [9], have been
obtained by processing data acquired through the newest
version of the NeuroGlass prototype, so validating the
effectiveness of the proposed final device.

Finally, obtained results prove the reliability of the proposed
approach since NeuroGlass are able to: i) correctly recognize
ET with an overall accuracy above 97% and ii) count the
number of EBs with a Root Mean Square Error (RMSE)
around 0.4. The rest of this paper is organized as follows:
Section III provides an overview of the state of the art. Section
IV describes the NeuroGlass prototype while the algorithms
for the ET detection and EBs counting are detailed in Section
V and Section VI, respectively. Section VII presents the
numerical results and, finally, conclusions are drawn.

II. THE ALZHEIMER’S AND PARKINSON’S DISEASES

AD is the most common type of dementia and it is character-
ized by progressive cognitive impairment [10]. Non-cognitive
symptoms may be also observed like: difficulty performing
motor tasks, extrapyramidal motor signs and parkinsonian
symptoms including bradykinesia, gait and posture distur-
bances, rigidity and resting tremor [11]. It is probable that
non-cognitive manifestations of AD are different on the basis
of the location of AD pathology. The literature suggests that
AD has a preclinical phase, during which time functional
impairment may represent [11] [12]. In AD disease is also
possible to observe increased blink occurrence and impaired
eye-head coordination [13].

PD is characterized by the loss of nigrostriatal dopamin-
ergic neurons. The damage of dopaminergic neurons causes
impaired afferents to the striatum, leads to nerve terminal
degeneration in the striatum and causes PD motor symp-
toms [14]. The three key elements characteristic of motor
impairment in PD are bradykinesia, rigidity, and tremor [15].
Blinking is a spontaneous movement of the palpebrae due to
an automatic, cyclic interplay between the elevator palpebrae
superioris muscle the palpebral portion of the orbicularis oculi
muscle, the reduction of blinking may be an early sign of PD
[16]. Other types of movement disorders, like tremor of the
eyes or of the head, can be observed in patients affected by
PD sometimes early in the disease development [17].

III. STATE OF THE ART

a) Essential Tremor: Many current solutions are based
on a combination of low cost and widely available devices
such as ElectroMyoGraphy (EMG) and Intertial Measurement
Units (IMUs) to monitor ET in neurological patients. The most
common solution exploits the “Feature + Classifier” paradigm
where features range from the peak frequency to root-mean-
square, from entropy to power spectral density, from wavelet
coefficients to higher order statistics [18]. Usually, these fea-
tures feed classifiers such as Neural Networks (NNs), Support
Vector Machines (SVMs) and Decision Trees (DTs) [18]. [19]
proposes a novel method to analyze the ET of the head in
patients suffering from neurological disorders by using clothes.
Authors employed a set of capacitive sensors inside the collar
of a shirt to detect the head position and movements. Even
if the approach is non-invasive and the results are good, it
cannot be extended to EBs detection. Other works monitor
ET in patients through fixed medical equipment. Though such
works do not provide the capability to continuously monitor
the patient in his daily life, they usually produce more accurate
results with respect to the ones that employ wearable devices.
[20] detects the ET of the head through an analysis of EMG
and accelerometric signals with the aim of predicting when
tremor is about to reappear. Other interesting papers are [18],
[21] that aim at differentiating ET from PD through a wearable
glove by employing the “Feature + Classifier” paradigm.

b) Eye-Blink Counting: Several works aim at counting
the number of EBs by observing different physical quantities.
[22] exploits the Doppler signal in the joint time–frequency
domain to detect eye blinking. [23] detects EBs by computing
the cross correlation between the vertical and horizontal am-
plitude of the EOG and a template signal. [24] also exploits
the EOG signal by feeding a K-Nearest Neighbour (KNN)
classifier with temporal features. A very interesting work is
[25], which processes the EOG signal by using the Empirical
Mode Decomposition (EMD) in order to detect EBs. Similarly
to NeuroGlass, [26] proposes a glasses-shaped wearable device
to count the number of EBs but, differently from our proposal,
it employs two cameras pointing towards the eyes. It requires a
significant amount of energy to provide a full day monitoring
which is a crucial aspect when it comes to wearable, and con-
sequently portable, devices. Another very recent publication is
[27] where the authors design and implement a pair of smart
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glasses (called iBlink) devised to be worn by patients suffering
from facial paralysis. The main idea is to detect the EBs of
the normal side of the face with a camera, through a SVM
classifier, and stimulate the paralyzed side so that the blinks
of both eyes becomes symmetric. Finally, in [28] an overall
graphical representation of some of the main works of the state
of the art is sketched in Figure 2.

IV. THE NeuroGlass PROTOTYPE

A. Wearability Specifications

From the mere aesthetic viewpoint NeuroGlass is shaped
like a traditional pair of glasses, equipped with normal lenses,
designed to be comfortably worn by anyone who needs
glasses. However, in designing the NeuroGlass frame, we
had to take into account several aspects that are of primary
importance due to the nature of the device. First, the frame
has been designed with the goal of making the device usable
also for people that needs to wear non conventional lenses (e.g.
prismatic lenses or lenses with a high power). In particular we
relied on a round design flattened on top, in order to support
the wider set of ophtalmic lenses; this choice has the advantage
of making the device wearable to a wide class of patients,
without the need of producing several frame with different
designs. Second, the frame of NeuroGlass is not a simple
spectacle frame used only to support ophthalmic lenses, but it
has also at least other two key functions:

• its structure hosts electrodes and must ensure a reliable
contact between these elements and the face/head of the
patient.

• it must be able to enclose the electronic board and
components for data acquisition and transmission as well
as a storage unit and power source.

In order to address the first point, some frame parts, namely
the nosepads and the tample tips, are conceived to allow the
adjustement of the position of the frame with respect the face
of the patient. Thanks to this solution, it is possible to give
the patient the best comfort experience and at the same is
possible to adjust the contact points of the electrodes placed
on the frame. In addition, such solution allows NeuroGlass to
be worn firmly so avoiding unwanted glasses movements that
could produce to noisy acquisitions leading to false alarms,
missed detection and wrong outcomes.

For how concerning the second point, designing a frame
with spaces for electronic components is not a trivial task,
because the process must take into account the trade off
between the increase of the dimensions of the frame elements
(dictated by the size of the electronic boards to embed) and
usability and comfort needs. The solution we propose adds to
the frame a housing in each temple and an additional housing
in the front part. Housings have been appositely created to
embed the electronic boards and components in the frame,
and are hidden by removable covers, in order to allow an easy
access to the processing logic, for maintenance operations.

Fig. 3 shows the electronic skeleton of the proposed
prototype (left part) and its latest version (right part).

B. Hardware Specifications

The final version of NeuroGlass compared to the prototype
has a more ergonomic and wearable shape, which implies less
available space for the hardware. This has led to the need
to review the spaces for the various components and their
arrangement on the PCB. Compared to the first version, in
which the components were placed on the entire frame of the
glasses, the second one has the circuitry only on one of the
two temples. In the prototype the components on the frame
were arranged as follows: the microchip (ADS1299) and its
circuitry dedicated to the acquisition of the EOG signals were
placed on the right temple, on the left side were placed the
NRF52832 microcontroller, the SD allocation and the IMUs,
eventually other IMUs components were positioned of the
front side of the frame. In the final version of the glasses
all the previous are installed only on the left temple, while
the other one is prepared for the allocation of the battery
source. Due to the lack of space some of the components
were replaced whit a single item, like the IMUs and the
magnetometer (LSM9DS1). Finally, our prototype has a 2-
channel EOG in order to the detect and count the number
of EBs. The device acquires data from the two IMUs, the
magnetometer and the EOG channels with a sampling rate fs
equal to 100 Hz. Data can be transmitted to a desktop PC via
a USB interface using a simple comma-separated format or
they can be stored in a SD card inserted in a slot mounted
on the left temple for later download. Moreover, the final
version has a button to control the acquisition, a LED for the
feedback of the acquisition, some hardware components for
communication via BLE. Eventually the firmware has been
optimized using OS FreeRTOS to increase and synchronize
the sample frequency between IMUs and EOG sensors.

V. ESSENTIAL TREMOR (ET) DETECTION

Head ET can be divided into two categories: Nodding tremor
(similar to a nodding movement) and Negation tremor (similar
to a negation movement). Differently from most of the existing
literature, our approach does not require any training to detect
the presence of the tremor and distinguish its typology. The
employed algorithm is divided into two steps:

1) Decide if ET is present by comparing the overall Instan-
taneous Frequency (IF) ψ with a threshold ζψ;

2) if step 1) detects the ET, discriminate its typology by
computing the energies of different signals.

We define sp, s ∈ Σ = {a,g,m} and p ∈ Ω = {TMP,BRG}
the general three-component vector containing the accelerom-
eter/gyroscope/magnetometer samples acquired by the IMU
placed on the glass temple (TMP) or bridge (BRG). For exam-
ple, aTMP, mTMP represent the three-component accelerometer
and magnetometer vectors, respectively, sensed by the IMU
on the glasses temple (see the superscript TMP). The quantity
spi (n) is the n-th sample of the i-th component, belonging to
the generic s signal sensed by the IMU in p position where
n ∈ [1, N ] and i ∈ {x, y, z}. For example, aTMP

x (4) is the
fourth sample of x-component of the accelerometer vector
sensed by the IMU on the temple.
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Fig. 2. Graphical representation of some of the main works of the state of the art.

(a) Prototype’s electronics (b) Final prototype

Fig. 3. The temporal evolution of the proposed NeuroGlass prototype. Fig. 3a
shows the prototype’s electronics along with an illustration of the employed
sensors and of the main glasses components while Fig. 3b shows the prototype
in its final version.

The first step is carried out by a standard pre-processing
stage composed of a mean removal, Low Pass Filter (LPF)
with cutoff frequency of 5 Hz and a Hamming windowing,
thus obtaining the pre-processed signal s̃pi . Then, s̃pi is divided
into N frames, each of them containing Nf samples. In this
paper Nf = 200 and each frame is overlapped with the next
one by an overlap percentage of 50%.

We define Spi = F
[
s̃pi

]
the discrete spectrogram obtained

from the generic pre-processed signal s̃, related to the i-th
axis and placed in position p, through the Short-Time Fourier
Analysis F . Consequently, Spi (k, n) is the single complex
value of the spectrogram Spi for the frequency index k and
the time index n with n ∈ [1, N ] and k ∈ [0, Nf − 1].

Considering that ET has prominent frequency components,
from the quantity Spi (k, n) the estimation of the Instantaneous
Frequency (IF) is performed. The rationale behind this idea is
simple: if tremor is present, then the spectral analysis will co-
herently provide a high-energy IF estimation. According to the
literature, several methods exist to accomplish such a task. An
effective solution consists in computing the weighted average
of all frequencies occurring in the spectrogram [29]. Another
possibility, which requires some hypothesis on the noise, is
to approximate the IF with the frequency that maximizes the
energy of each time slice of the spectrogram. Finally, another
idea leverages the employment of the Hilbert transform but
it requires a signal in the time-domain and it usually fails
when the signal is not strictly mono-component. In this paper

the IF f̃ps,i(n) related to the signal s, for the i-th axes in the p
position, relative to the n-th time index is estimated as follows:

f̃ps,i(n) =
fs
2Nf

·

Nf−1∑
k=0

k · |Spi (k, n)|
2

Nf−1∑
k=0

|Spi (k, n)|
2

, ∀n ∈ [1, N ] (1)

From the single IFs f̃ps,i (i.e., related to specific signals and
axes) an overall IF ψ can be computed. In order to provide
such computation the percentage of energy with respect to
the total energy related to the estimated IFs f̃ps,i(n) must be
determined. Such values eps,i(n) ∈ [0, 1] can be computed as
follows:

eps,i(n) =

∣∣∣Spi (k̃(n), n)∣∣∣2
max

k∈[0,Nf−1]

∣∣∣Spi (k, n)∣∣∣2 , ∀n ∈ [1, N ] (2)

where

k̃(n) = k̃ps,i(n) =
⌊2Nf
fs

· f̃ps,i(n)
⌉
, ∀n ∈ [1, N ] (3)

is the nearest discrete frequency index associated to the
estimated IFs f̃ps,i(n) and the symbol ⌊·⌉ is the rounding
operator. The overall IF ψ can be obtained by using the
following formula:

ψ =
∑
p∈Ω

∑
s∈Σ

∑
i∈{x,y,z}

f̃ps,i · e
p
s,i (4)

where f̃ps,i = 1
N

N∑
n=1

f̃ps,i(n) is the mean value of the single

IFs for the i-th axis, the s-th signal sensed by the IMU in the
p position.

The ET is detected by comparing the overall IF ψ with
an empirically pre-determined threshold ζψ: if ψ ≥ ζψ then
the presence of ET has been detected. No tremor is found
if ψ < ζψ . In this paper the value ζψ = 2 Hz has been
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set. The rationale behind the approach and the choice of ζψ
relies on the fact that former studies (see [21] and references
therein) have pointed out that the ET presents frequency
components with significant energies that range from 3 to 5
Hz. Conversely, if no tremor is present, the spectral energy
distribution has some peaks around the DC component while
it tends to flatten for all the other frequencies. The overall
IF contains such information: a low value of ψ states that
there is no tremor while a large value indicates the presence
of the tremor. The classification between Nodding tremor and
Negation tremor can be achieved considering the energy along
specific axes of the wearable device. Taking into account the
physical movements of the head during these two types of
tremor (“up&down” for the Nodding tremor and “left&right”
for the Negation one), we can distinguish them by exploiting
the amount of energy of the following signals: gBRG

x , gBRG
y ,

aBRG
x , aBRG

y . If the energy ϕNGT present in gBRG
x and aBRG

x

is greater than the energy ϕNDD present in gBRG
y and aBRG

y

then the tremor will be classified as Negation tremor. In the
opposite case, it will be classified as Nodding tremor. The
overall amount of energy ϕNGT and ϕNDD can be obtained as
follows:

ϕNGT =
∑
s∈Σ∗

∑
i∈ΛNGT

wBRG
s,i · eBRG

s,i

ϕNDD =
∑
s∈Σ∗

∑
i∈ΛNDD

wBRG
s,i · eBRG

s,i

(5)

where Σ∗ ⊂ Σ = {g,a} , ΛNGT = {x} and ΛNDD = {y}1.
The values wBRG

s,i are weights employed to enhance one axis
with respect to another. They have been computed a-priori as:

wps,i =

N∑
n=1

eps,i(n)

∑
s∈Σ

∑
i∈{x,y,z}

N∑
n=1

eps,i(n)

, ∀p ∈ {TMP,BRG} (6)

The whole ET algorithm is summarized in the pseudo-code
reported in the Algorithm box 1.

VI. EYE BLINK (EB) COUNTING

The detection of the number of EBs is performed through
the processing of the EOG signal, which is an inexpensive
and non-invasive way of recording eye ball movements. The
source for the EOG signal is cornea-retinal potential generated
due to the movements of eye balls within the conductive
environment of the skull [30]. In the literature some of the
most employed algorithms for detecting the number of blinks
range from the “features + classifier” paradigm [23], [24] to
wavelet transforms [30], from dynamic time warping [31] to
signal decomposition [25].
In this paper we propose a novel pre-processing stage for the
EOG signal denoising, followed by a matched filter applied to

1The employment of the sets ΛNGT and ΛNDD, both composed of single
element, allow a more general description of the problem since different axes
could be employed to estimate the energies ϕNGT and ϕNDD.

Algorithm 1: Essential Tremor (ET) detection and
recognition
Input : Spi , ζψ , wps,i
Output: Nodding Tremor, Negation Tremor, No

Tremor
1 Compute the frequencies f̃ps,i through Eq. (1);
2 Compute the percentages eps,i through Eq. (2);
3 Compute the overall IF ψ through Eq. (4);
4 if ψ ≤ ζψ then
5 Compute ϕNGT and ϕNDD through Eq. (5);
6 if ϕNDD ≥ ϕNGT then
7 return Nodding tremor
8 else
9 return Negation tremor

10 end
11 else
12 return No Tremor;
13 end

the second-order derivative. The first step consists setting two
thresholds ϵ1 and ηref : this is done by initializing ϵ1 = 1024

and ηref = 0.95. Then, the mean is removed from s(n) , thus
obtaining a new signal s′(n). The threshold ϵ2 = α · σ

[
s′(n)

]
is computed, where σ is the standard deviation and α is a
smoothing factor set to 0.5 that trades the severity of the
threshold operation. s′(n) is then filtered through a non-linear,
soft-threshold block to obtain the signal s′′(n) as follows:

s′′(n) =


1

2T

T∑
t=1

s′(n− t) + s′(n+ t), if |s′(n) ≥ ϵ2|

s′(n)− ϵ2, if |s′(n) < ϵ2|
(7)

where T is the filter span, set to 5 in this paper. Finally, the
ratio η = ϵ2

ϵ1
is computed and compared with its reference

threshold ηref : if η ≤ ηref then ϵ1 is updated with the
values of ϵ2 (i.e., ϵ1 = ϵ2). Vice versa if η > ηref the
pre-process stage concludes by applying a LPF with cutting
frequency set to 3 [Hz], thus obtaining from s′′(n) the pre-
processed signal s̃(n). The EBs detection algorithm employs
a matched filter to the second-order derivative of the signal
s̃(n). The reason for the second-order derivative is two-fold:
i) it allows enhancing the abrupt changes in the signal and
ii) it provides a more identifiable waveform for the matched
filter m(n). To build such matched filter we have recorded
EOG acquisitions of about 30s from 5 people, sampling at
fs = 100 [Hz]. Among these acquisitions we have manu-
ally isolated 5 EBs for each subject so obtaining B = 25
different blinks. From these blinks the vector Θ is built so
that Θ =

[
s̃1(n), s̃2(n), · · · s̃b(n), · · · s̃B(n)

]
, where s̃b(n),

n ∈ [0, Q − 1] is a pre-processed EOG sequence containing
just one blink and b ∈ [1, B] is the blinking index. On each
element of the vector Θ the second-order discrete derivative
is computed and the result is finally averaged, thus obtaining
the sequence s(n) as follows:
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s(n) =
1

B

B∑
b=1

∆2
[
s̃b(n)

]
(8)

where ∆2 denotes the second-order discrete derivative. Finally,
we define the matched filter m(n) = s(Q − 1 − n), ∀n ∈
[0, Q− 1] where Q is the length of the sequence s(n).

To count the number of EBs from a new EOG acquisition
s(n), the pre-processing stage is applied so as to obtain the
filtered signal s̃(n). Then, s̃(n) is divided in frames where each
frame is denoted with s̃l(n), l ∈ [0, Nf − 1]. Each frame is
then convoluted with the matched filter m(n) and its maximum
value is extracted to obtain a new quantity λ(l) defined as
follows:

λ(l) = max
n∈[0,Ξ−1]

[∑
ξ

s̃l(ξ)m(n− ξ)
]
, ∀l ∈ [0, Nf − 1] (9)

where Ξ is the length of the convolution between s̃l and m.
The number of EBs ρ is determined as in Eq.10:

ρ =

Nf−1∑
l=0

Ψ
[
λ(l), β · λ

]
(10)

where λ =
1

Nf

Nf−1∑
l=0

λ(l) is the average value of λ(l) and

Ψ
[
λ(l), β · λ

]
= 1 if λ(l) ≥ β · λ and 0 otherwise. β is a

simple constant set to 1.5.

VII. NUMERICAL RESULTS

This section reports the obtained numerical results, both for
the ET detection and for the counting of the number of EB.
Since this is a preliminary work, we have tested our device
on normal subjects that simulated ET and provided EBs.
Concerning the ET, from 5 people 15 different acquisitions
have been taken: 5 with no tremor, 5 with Nodding tremor
and 5 with Negation tremor. Each acquisition lasts for about
30 seconds.

Fig. 4. Bar plot of the tremor detection accuracy. The overall accuracy is
97.45%.

The obtained results are reported in Fig. 4. The No
Tremor case is almost perfectly recognized with a correct
decision percentage above 99%. Similarly, the Nodding
tremor and the Negation tremor are detected with a correct
decision percentage of 93.75% and 98.75%, respectively.

The 6.25% of the cases wrongly classified as No Tremor
belong to acquisitions where the tremor had lower energy.
Summarizing, the provided algorithm is able to recognize the
ET and to determine its typology with an overall accuracy of
above 97%.
To validate the proposed EBs detection algorithm, we have
sensed through our prototype 5 different EOG acquisitions
from 5 people for an overall dataset of 25 EOG acquisitions.
In each acquisition the number of EBs ranges from 8 to 24
and each acquisition lasts for about 30 seconds.

To obtain the best possible signal quality the electrodes
must be placed in specific positions on the patient’s face.
Unfortunately, this constraint cannot be granted by a wearable
IoT device that trades the electrodes’ position with the comfort
of wearing simple glasses. In other words, the shape of the
glasses forces specific positions for the electrodes which are
different from the optimal ones. This great dissimilarity in
hardware setup leads to the need of a different approach
for EOG signal processing. In order to better understand the
impact of the EOG electrodes positioning, we have considered
two different configurations for the EOG signal acquisition:

• Optimal: it is the same electrodes positioning related to
professional medical desktop equipment. It is the best
electrodes positioning.

• Glasses: the electrodes position follows the physical
contact points of the glasses with the face.

Fig. 5. The two configurations used in experimental tests for the position of
EOG electrodes: optimal configuration (left) and glasses configuration (right).

Figure 5 shows a graphical representation of both the
configurations used in the experimental tests where the red
dots represent the horizontal channel, the green dots refer to
the vertical one and the black dots correspond to ground.
In the optimal configuration, the electrodes are put above and
beneath one eye, and at the external corner of both eyes, while
ground is measured on the forehead. This configuration is
shown in Figure 5 (left part). In the literature, many papers
acquire the EOG signal by using this configuration [25].
Although this configuration achieves minimal perturbation on
the measured signals, it is a very uncomfortable setup for the
patient due to the intrusiveness of the solution. Moreover, the
electrodes position in this approach cannot be granted by using
wearable glasses as EOG sensing device since the electrodes
must be put where the glasses frame has contact with the
patient’s skin. These specific locations are the glasses bridge,
located at the top of the nose, and the temples, where reference
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TABLE I
ROOT MEAN SQUARE ERROR (RMSE) AS A FUNCTION OF THE FRAME

LENGTH (IN SECONDS) AND OF THE OVERLAP PERCENTAGE.

Frame
length [s] Overlap (%) RMSE

0.5

0.4 0.63
0.6 0.66
0.8 0.53
1 0.84

0.7

0.4 1.12
0.6 1.42
0.8 1.39
1 1.47

1

0.4 2.25
0.6 2.19
0.8 2.42
1 2.49

ground is measured. This configuration is shown in Figure 5
(right part). Furthermore, the optimal configuration allows the
patient to wear our prototype firmly so avoiding unwanted
glasses movements that could produce to noisy signals.

Since the optimal configuration provides the best results in
terms of performance, in the present work we run experimental
tests by using the optimal EOG configuration as a benchmark
for the glasses one.

Table I reports the Root Mean Square Error (RMSE) as a
function of the frame length (in seconds) and of the overlap
percentage. The global minimum point is reached with a frame
length of 0.53 seconds with an overlap equal to 75%, where
the RMSE is around 0.44.

For this specific case other plots, reported in the next figures
see Figs. 6, 7 and 8, provide some more details regarding the
actual number of EBs (blue bars) versus the estimated number
of EBs ρ (orange bars) for each acquisition, so highlighting
the accuracy of the proposed algorithm.

Fig. 6. Plot of the actual number of EBs (dashed blue line) versus the
estimated number of EBs ρ (continuous orange line) for each acquisition.
This result is related to the electrodes in the "Glasses" position.

VIII. CONCLUSIONS

This paper presents NeuroGlass, a prototype of sensored
glasses able to detect the presence of Essential Tremor (ET)
of the head and to count the number of Eye Blink (EB)
at the same time without any a-priori training. Numerical
results prove the reliability of the proposed approach: our
algorithms are able to i) correctly recognize the ET with

Fig. 7. Plot of the actual number of EBs (dashed blue line) versus the
estimated number of EBs ρ (continuous orange line) for each acquisition.
This result is related to the electrodes in the "Optimal" position.

Fig. 8. Plot of the actual number of EBs (blue bars) versus the estimated
number of EBs ρ (orange bars) for each acquisition.

an overall accuracy above 97% and ii) count the number of
EBs with a Root Mean Square Error (RMSE) around 0.44.
Finally, considering that our solution both for the cases of ET
and EB detection does not require any a-priori training nor
heavy calculations, its computational cost is low. However,
a study aimed at estimating the computational complexity of
the proposed algorithm is currently ongoing and it will be
published in a future extension of this manuscript.
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