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Faculty of Economics and Business, University of Zagreb
Trg J. F. Kennedyja 6, 10000 Zagreb, Croatia

E-mail: 〈jarneric@efzg.hr〉

Abstract. The seasonal and trend decomposition of a univariate time-series based on Loess (STL) has
several advantages over traditional methods. It deals with any periodicity length, enables seasonality
change over time, allows missing values, and is robust to outliers. However, it does not handle trading
day variation by default. This study offers how to deal with this drawback. By applying multiple STL
decompositions of 15-minute trading volume observations, three seasonal patterns were discovered:
hourly, daily, and monthly. The research objective was not only to discover if multi-seasonality exists
in trading volume by employing high-frequency data but also to determine which seasonal component
is most time-varying, and which seasonal components are the strongest or weakest when comparing the
variation in the magnitude between them. The results indicate that hourly seasonality is the strongest,
while daily seasonality changes the most. A better understanding of trading volume multiple patterns
can be very helpful in improving the performance of trading algorithms.
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1. Introduction

Advances in electronic trading, along with information technology developments, have enabled
the recording of ultra-high-frequency data, observed tick-by-tick. The accessibility of such data
has created a new niche for financial time-series analysis. In other words, huge data sets are
used, and trading dynamics within a single day can be established. Without high-frequency
data, practitioners and academics are limited to employing daily data alone or observations at
even lower frequencies. Nevertheless, it is challenging to deal with high-frequency data because
they have unique characteristics that lower frequency data do not possess [4, 10]. In most of the
existing studies, high-frequency data have been widely used in the analysis of realized volatility
and related issues considering microstructure noise and price jumps [8, 29]. Stylized regularities
of realized volatility and selection of an appropriate sampling frequency to obtain an unbiased
estimator of integrated variance are comprehensively documented by [2].

The concept of realized volatility relies only on intraday price dynamics, independent of
trading volume dynamics. However, very few studies deal with intraday trading volume anal-
yses [6, 9, 23]. It is well known that high-frequency data exhibit periodic patterns in trading
activity, that is, intraday trading volume seasonality [13, 20]. This means that trading is denser
at the opening and closing hours of the trading day than at midday. In addition to hourly
seasonality, daily or weekly seasonality can be observed within a single time-series, depending
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on the seasonal frequency selection. Although multiple studies regarding seasonality in price
dynamics and volatility have been conducted [1, 7, 21, 22], there is a lack of studies covering
multiple seasonality of trading activity considering intraday volume observations.

Further, great efforts have been made to improve the performance of trading algorithms by
incorporating accurate predictions of intraday trading volumes [9, 23]. However, this study does
not focus on prediction directly, but on the specification and extraction of the trading volume of
multiple seasonal components. A better understanding and detailed insight of multi-seasonality
patterns can be very helpful in capturing the dynamics of trading volume and consequently
improving the performance of trading algorithms. In recent years, trading algorithms have
been developed and used to reduce transaction costs as much as possible [6, 15].

This topic is relevant in the literature, particularly as users employ seasonal adjustments
by default and do not adapt existing methods to capture intraday time-series features. Most of
the seasonal adjustment methods are not flexible enough to deal with certain issues regarding
high-frequency data, such as missing values, non-trading days, calendar variations, seasonality
with different periods per cycle, and outliers. By reviewing the existing literature, it can be
observed that there are two approaches to the decomposition of multiple seasonal patterns.
One approach considers dividing the component with the longest cycle into shorter components
and then fitting a Holt-Winters exponential smoothing or Taylor’s double seasonal exponential
smoothing [5, 17, 24, 25, 26, 30]. Therefore, it is inevitable to point out the study of [12], who
introduced the state space concept into exponential smoothing for forecasting multiple seasonal
time-series. The authors concluded that the newly developed multiple seasonal model provides
more accurate forecasts than the Holt-Winters exponential smoothing and double seasonal
exponential smoothing. However, the multiple seasonal model could only use two sub-cycles
within hourly observations.

Another approach considers estimating the shortest component first and proceeds to esti-
mate the next components from the residuals, that is, the irregular component. The latter uses
the Loess method, which is repeated successively until there is no seasonality left in the resid-
uals [16, 18, 27]. Adjustment of daily time-series within multiple seasonality, based on Loess,
has already been studied [11], but there is no consensus about the choice of seasonal frequencies
as well as dealing with non-trading days. There are many daily time-series with observations
not available during weekends, and the difference in trading and non-trading number of days
for such series should not be neglected. This can be partially solved by changing the seasonal
frequencies at appropriate levels, as suggested in this study. Despite the flexibility of multi-
ple seasonal adjustments at different frequencies, a user does not have to utilize all possible
frequencies, just the ones that are present in the data.

Considering the aforementioned advantages and disadvantages of the commonly used method-
ology in capturing multiple periodicities of high-frequency time-series, this study contributes
to the existing literature in several ways. Foremost, the issue of an unequal number of trading
days within a week, month, or year was solved by replacing non-existing weekday data with
missing values. Two reasons support this solution: (i) having the same number of observations
per sub-cycle, and (ii) employing an STL decomposition that allows missing values. Second,
three seasonal components were found by utilizing appropriate frequencies 4, 34, and 739.19
corresponding to hourly, daily, and monthly seasonality, respectively. Third, when comparing
the variation in magnitude between extracted components, the hourly seasonality was found
to be the strongest with a clear ”U”-shaped diurnal pattern, indicating that trading activity
at the opening hours was more intense as traders began to accommodate the information ac-
cumulated at the closing of the previous day. At the closing hours of the current day, trading
is also intensified, which can be explained in terms of some investors attempting to close their
open positions. In previous studies, the shape of the diurnal pattern was assumed to be con-
stant for every trading day, while in this study, it was allowed to change over time. Lastly,
this study adds a new value to studies dedicated to the investigation of stock market activity
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and intensity, outlying price movements. Discovering trading seasonalities at lower frequencies
that may occur within volumes observed at the higher frequency contributes to more accurate
predictions of how much volume will be traded in a given time, and thus the trading strategy
settings can be improved.

Apart from the introduction, this paper has three additional sections. Section 2 presents
and discusses multiple STL decompositions. The empirical application, considering the DAX
index intraday trading volume, is obtained in Section 3, while Section 4 concludes and provides
further research directions.

2. Multi-seasonality decomposition by locally weighted polynomial

The abbreviation Loess originates from ”locally estimated smoothing”. The Lowess term also
applies in practical applications denoting ”locally weighted scatterplot smoothing”. Although
both terms represent the same method, Lowess is usually employed when plotting smoothed
time-series, while Loess is more common when fitting locally weighted regression for compu-
tational reasons. Loess was embedded in time-series decomposition for the first time by [11],
resulting in the ”Seasonal-Trend decomposition based on Loess” (STL), established for uni-
variate time-series decomposition with a single seasonality. In recent years, data have become
accessible and more frequently recorded within a short time interval; thus, multiple seasonal
patterns may exist within a single time-series.

STL decomposition is an iterative numerical procedure consisting of two recursive loops,
that is, the inner and outer loops. Updating trends and seasonal components are obtained in
the inner loop, while robustness weights are determined in the outer loop utilizing the irregular
component of a time series from the inner loop. Therefore, the inner loop was nested within the
outer loop. Two iterations of the inner loop are most appropriate for achieving convergence,
while one iteration of the outer loop is sufficient to obtain satisfactory robust weights and thus
reduce the influence of outliers [14].

Seasonal-trend decomposition starting with the shortest periodicity

Start with the shortest peridicity of length kshort
Inner loop:
Step 1. Subtracting the trend from the original series (initial trend estimate is zero)
Step 2. Disaggregating detrended series into k sub-series and smoothing each of

them by Loess employing q neighborhood observations
Step 3. Extending a smoothed detrended sub-series for 2k out-of-sample

observations by extrapolation
Step 4. Filtering a preliminary seasonal component by three MA followed

by Loess with l neighborhood observations
Step 5. Differences between preliminary seasonal components and filtered

seasonal components produce final seasonal components
Step 6. Subtracting the final seasonal component from the original series
Step 7. Smoothing seasonaly adjusted series by Loess with t neighborhood

observations produces trend component of the series
Outer loop:
Step 8. Subtracting seasonal and trend components to obtain the irregular component
Step 9. Determine the weights according to outliers from the irregular component
Step 10. Using the weights obtained in Step 1

Proceed with the next periodicity of length kj > kshort by repeating Steps 1-10
End with the longest periodicity klong by repeating Steps 1-10

Table 1: Multiple STL algorithm.



64 Arnerić Josip

The multiple STL algorithm is presented in Table 1 in the context that a single STL starts
with the shortest periodicity, repeats successively for all possible periodicities between kshort
and klong, and ends with the longest periodicity.

The following is a detailed description of each step. Steps 1–10 of a single STL decomposition
are employed for every length of periodicity. If only one seasonal frequency k is determined, a
multiple STL is reduced to a single STL decomposition in the additive form:

yt = Tt + Sk
t + It t = 1, 2, ..., T. (1)

Determination of the seasonal frequency k is straightforward, for example, if monthly data
exhibit yearly periodicity, the seasonal frequency k=12; if daily data exhibit weekly periodicity
the seasonal frequency k=7 or k=5, and so on. After subtracting the trend Tt from the raw
time-series yt in Step 1, the algorithm continues with the detrended series:

ydett = yt − Tt = Sk
t + It t = 1, 2, ..., T. (2)

In Step 2 the detrended series (2) is disaggregated into an unstacked k sub-series of the same
length n = T/k. Subsequently, each sub-series ydeti,tj

is smoothed by fitting a locally weighted

polynomial of degree d=2 using window bandwidth q (number of neighborhood observations)
and the tricube weight function:

wi

(
ydettj

)
=

(
1−

( |ydeti,tj
− ydettj |
dq

)3
)3

i = 1, 2, ..., n j = 1, 2, ..., k, (3)

where dq is the distance of the qth farthest observation from the ydettj . Setting a degree of
polynomial d=2 is a reasonable choice when data show substantial peaks, such as in the case of
intraday trading volume data. The window bandwidth q usually referred to as a Loess window,
is the key parameter that should be carefully selected. According to [11], it should be the
smallest odd integer, equal to or greater than 7, for which all detrended sub-series are well
smoothed but not too smoothed.

Further, in Step 3, each smoothed detrended sub-series is extended for two observations, one
before the first observation and one after the last observation, to avoid losing values in the next
step. Extended smoothed detrended sub-series are stacked together, representing a preliminary
seasonal component. The same component is filtered in Step 4 using a triple moving averages
MA(k)×MA(k)×MA(3), followed by the Loess with l neighborhood observations, which is set
by default as the smallest odd integer greater than k. Step 4 ensures that there is no trending
behavior left, and thus filtered values are subtracted from the preliminary seasonal values in
Step 5 to produce the final seasonal component. In Step 6, the raw series are seasonally adjusted,
and in the last step of the inner loop, the final trend component is estimated by smoothing the
seasonally adjusted series using Loess with t neighborhood observations (Step 7). Parameter t
is set by default as the smallest odd integer greater than the following ratio:

1.5k

1− 1.5

q

. (4)

Estimates of seasonal and trend components are used to obtain the irregular component in Step
8. If robust estimates are required, observations are additionally weighted with respect to the
outlying values using the bisquare function:

wt =

(
1−

(
|It|

6Med|It|

)2
)2

t = 1, 2, ..., T, (5)
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where Med denotes the median. Weights obtained in the outer loop are used to down weight
the effect of outliers when the algorithm starts all over again from the inner loop.

The specificity of STL decomposition is the implementation of Loess three times, that is,
within Steps 2, 4, and 7. The smoothing parameters with respect to Loess windows l and t
in Steps 4 and 7 are determined directly from k and q. Parameter k should be set as a single
value or as multiple values depending on the pattern(s) present in the data. It is more difficult
to determine parameter q when the detrended sub-series are smoothed in Step 2. The entire
decomposition is most sensitive to this parameter, and q should be chosen carefully. Fortunately,
seasonal diagnostic plots can be very helpful in making decisions about q, whether single or
multiple STL decompositions are obtained.

The Loess method is more flexible compared to other smoothing methods as it enables the
smoothing time-series with any seasonal period greater than one and allows missing values as
well [11]. Univariate STL decomposition has several advantages over traditional methods such
as SEATS and X11, that is, it can deal with any type of seasonality, and seasonality is enabled to
change over time, missing values are allowed, and it can be robust to outliers [14, 19]. However,
it does not automatically handle trading day variations. The purpose of this study is to discover
not only which seasonal components exist in trading volume but also which component is most
time-varying, and in which seasonal components are the strongest or weakest when comparing
the variation in magnitude between them.

It should also be noted that the purpose of intraday trading volume decomposition presented
in this paper is beyond seasonally adjusting the time-series. It is more about understanding all
the components of variability in the series, which can help improve trading algorithms. The
decomposition model proposed in this study is as follows:

Yt = Tt + Shd
t + Sdw

t + Smy
t + It t = 1, 2, ..., T. (6)

Equation (6) defines the intraday time-series decomposition using multi-seasonal components.
Three seasonal components are considered with respect to the hour of the day (denoted by
superscript hd), day of the week (denoted by superscript dw), and month of the year (denoted
by superscript my). These components are most likely to appear in a high-frequency data,
which will be presented in the next section considering the DAX index. The DAX index
is selected for application purposes as it is heavily traded and exhibits significant intraday
market activity. Trading volumes for other stock markets were intermittently available or
not available at all, particularly in such short sampling intervals. As per equation (6), three
seasonal frequencies should be appropriately determined, which is comprehensively elaborated
in the next section. This also means that STL decomposition repeats three times starting
with the shortest periodicity and ending with the longest periodicity, that is, hourly seasonality
is first extracted, daily seasonality afterward, and monthly seasonality is the last extracted.
Following [28], for each extracted seasonal component, a measure of strength is computed:

1− V ar(It)

V ar(Sk
t + It)

. (7)

For a strong seasonal component, detrended data concerning that component should have much
variability than the irregular component, that is, V ar(It)/V ar(Sk

t + It) should be relatively
small; and thus the value of (7) should be close to one. The strength of the trend component
is defined similarly but with respect to the seasonally adjusted data,

1− V ar(It)

V ar(Tt + It)
. (8)
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3. Empirical application

This study considers a regular time-series of 15 minutes observations concerning the DAX stock
index over five years (2014–2018). Raw data were provided by Thomson Reuters Tick History.
Prior to the multiple STL decomposition, raw data were examined to check for empty intraday
intervals and observations outside the official trading hours. No empty intervals were found
because a 15 min trading volume was obtained by summing all recorded volumes within that
period. This was expected since the Frankfurt Stock Exchange is highly active, and liquid
markets and stocks are traded very frequently. Observations outside official trading hours
(09:00-17:30) were omitted. Thus, 34 trading volume observations are left per trading day.
More concerning is the unequal number of trading days within a week, month, and year. This
issue is solved by replacing the non-existing weekday data with missing values. This solution
is supported by two conditions: (i) keeping the number of trading days equal within each cycle
and consequently having the same number of observations per sub-cycle, and (ii) employing a
seasonal-trend decomposition procedure that allows for missing values.

Having the same number of observations per sub-cycles, allowing for missing values and
handling a multiple set of any seasonal frequencies greater than one, makes perfect conditions
for applying the STL technique successively, starting from the higher frequency and forwarding
to the lower frequency. In this context, a higher frequency implies shorter periodicity, whereas
a lower frequency implies longer periodicity.

Seasonal frequencies greater than one can be handled in different ways, as suggested by [19].
Namely, high-frequency observations, for example, carried out every minute, may exhibit an
hourly seasonality (frequency=60), daily seasonality (frequency=24x60=1440), weekly seasonal-
ity (frequency=24x60x7=10080), or yearly seasonality (frequency=24x60x365.25=525960). In
this application, seasonal freuencies k are set to 4, 34, and 739.19, corresponding to hourly,
daily, and monthly seasonality of DAX trading volume, respectively. Yearly seasonality is not
included, as it is unlikely to appear in the 15 min trading data, while quarterly seasonality is
already nested within monthly seasonality. The monthly seasonality frequency was set to be
a non-integer by calculating 365.25x(5/7)x34/12=739.19. Altogether, 44350 observations were
used over five years.

As already explained in the previous section, trading activity is expected to depend on the
time of the day, day of the week, and month of the year. Informal evidence for this is found
by graphical inspection of the data, that is, seasonal plots are used to decide which of the
possible seasonal components should be included in a decomposition. Moreover, the selection
of appropriate seasonal frequencies was approved by ACF plots.
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Figure 1: DAX index trading volume at 15 minute frequency from 2014-01-02 09:00 to
2018-12-28 17:30 and autocorrelation function up to 136 lags.
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The left panel of Fiqure 1 presents the intraday trading volume of the DAX index observed
every 15 min. Due to the very large raw time-series scale, intraday trading volume was rescaled
to its maximum. A substantial and frequent peak is noticeable over five years period, while the
autocorrelation function indicates an intraday periodicity of length 34 (right panel of Figure
1). Moreover, ”U”-shaped valleys of autocorrelation function support diurnal pattern, which is
most common in practice. ”U”-shaped diurnal pattern exhibits a much higher volume of trades
at the beginning and the end of a trading day than in the lunchtime around midday hours (see
[3]).

The diurnal pattern also has a repeating character according to [21], but it is not apparent at
lower frequencies. However, by aggregating intraday trading volume daily, a similar periodicity
can be discovered. It is not surprising to detect daily seasonality, i.e. accumulated information
during weekends affect not only price changes but also trading volume on Mondays as the
first weekdays. Additionally, investors are optimistic on Fridays and are prone to sell when
prices increase due to the higher demand, as explained by [4]. Along with these two seasonal
components, there could be even more components. Multiple seasonal components can also
be comprehensively examined using seasonal plots. According to Figure 2, hourly seasonality
within a trading day indicates ”U”-shaped pattern.
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Figure 2: Seasonal plot of hourly trading volume over years and hourly sub-series plot.

Both seasonal plots in Figure 3 confirm daily seasonality within a week, that is, trading activ-
ity on Monday is always lower compared to other weekdays, and it increases while approaching
the end of the week. On Friday, trading volume is the highest. Monthly seasonality within
a year can be analogously found by employing the same seasonal plots (Figure 4). Monthly
seasonality is also apparent, that is, in May, August and December, the trading volume expe-
riences its downturns after increased volume in previous months. Interestingly, trading volume
is the highest in January, while it is lowest in December.
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Figure 3: Seasonal plot of daily trading volume over years and daily sub-series plot.
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Figure 4: Seasonal plot of monthly trading volume over years and monthly sub-series plot.

h2 −0.155∗∗∗ d2 0.009∗∗∗ m2 −0.002
(0.002) (0.001) (0.002)

h3 −0.183∗∗∗ d3 0.014∗∗∗ m3 −0.005∗∗

(0.002) (0.001) (0.002)

h4 −0.219∗∗∗ d4 0.024∗∗∗ m4 −0.024∗∗∗

(0.002) (0.001) (0.002)

h5 −0.131∗∗∗ d5 0.030∗∗∗ m5 −0.036∗∗∗

(0.002) (0.001) (0.002)

h6 −0.107∗∗∗ m6 −0.027∗∗∗

(0.002) (0.002)

h7 −0.087∗∗∗ m7 −0.045∗∗∗

(0.002) (0.002)

h8 −0.061∗∗∗ m8 −0.052∗∗∗

(0.002) (0.002)

h9 0.028∗∗∗ m9 −0.024∗∗∗

(0.002) (0.002)

c 0.259∗∗∗ m10 −0.035∗∗∗

(0.002) (0.002)

m11 −0.041∗∗∗

(0.002)

m12 −0.049∗∗∗

(0.002)

15 min observations 42957
R-squared 0.513
Residual standard error 0.066
F statistic 1963.37∗∗∗

Table 2: OLS estimates of multiple seasonality (***,**,* indicate significance of the estimates
at 1%, 5%, and 10% respectively, while the standard errors are in parentheses).
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Before multiple STL decomposition, OLS estimates are computed to verify whether the
results support graphical inspection of the data and if the assumption of three seasonal compo-
nents is reasonable. Namely, eight seasonal dummy variables were generated to capture hourly
seasonality within 15 min observations over the entire sample (opening hour 09:00-10:00 is
omitted). To capture daily seasonality and monthly seasonality 4+11 dummy variables were
generated while omitting Monday as the first day of the week and January as the first month
of the year. In total 23 seasonal dummy variables are included in the OLS regression and 24
parameters are estimated, including the constant term (Table 2).

Estimates with respect to closing hours indicates significant and higher trading levels against
omitted trading hours (09:00-10:00), while all other intraday negative estimates with respect
to h2, h3,...,h8 indicate significant and lower trading levels against opening hours. However,
these negative estimates increase toward midday and then decrease toward the closing time
of trading. This finding is in line with ”U”-shaped intraday pattern. Considering estimates
of daily effects concerning d2, d3,...,d5, all parameters are significant and show higher trading
levels, which increases almost linearly when approaching the end of the week.

Monthly effect estimates w. r. t. m2, m3,...,m12 are all negative, implying that trading is the
highest in January, while the most negative estimate at 0.049 indicates that trading is the lowest
in December. Downturns of negative estimates are noticeable in May and August. Although
OLS estimates are taken only as auxiliary results, due to the restriction that seasonality does
not change over time, it is surprising to conclude that more than half of the intraday trading
volume variations can be solely explained by multiple seasonal patterns (R2 = 0.513).
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Figure 5: Multiple STL decomposition with 3 seasonal components.
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The results of multiple STL decompositions are presented in Figure 5 using the Loess window
q=39 and seasonal frequencies k=4, 34, and 739.19, respectively. Seas 1 is an hourly seasonal
component, Seas 2 is a daily seasonal component, and Seas 3 is a monthly seasonal component
of the intraday trading volume. The raw time-series, trend component, and irregular component
are also presented in the same figure. From Figure 5 it is clear that all seasonal components are
time-varying, and consequently, the strength of these components also changes.

The results from the first column of Table 3 suggest that hourly seasonality is the strongest
among seasonal effects, that is, the strength of hourly seasonality over a five-year period is
around 0.7, which is very close to 1. When analyzing the variation of the first seasonal com-
ponent toward the reminder component in each year separately, it can be noticed that hourly
seasonality is still the strongest, but it does not vary much (it ranges from 0.654 to 0.742).
The second strongest seasonal component is the daily seasonal component, with a moderate
strength of 0.124. However, daily seasonality changes the most between years, with a range
of 0.06. The weakest component was monthly component with a strength below 0.1. After
the first strongest seasonal component, the smoothed trend component surprisingly takes a
relatively high portion of the variation in magnitude compared to the reminder (0.356 for the
entire observation period).

Period/years
Seasonal effects 2014–2018 2014 2015 2016 2017 2018

Hour of the day 0.697 0.742 0.729 0.654 0.673 0.708
Day of the week 0.124 0.168 0.157 0.119 0.108 0.116
Month of the year 0.085 0.095 0.094 0.081 0.083 0.086

Trend effect 0.356 0.346 0.320 0.312 0.324 0.338

Table 3: Strength of the seasoanl components and the trend component.
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To check the appropriateness of the Loess window q=39, seasonal diagnostic plots were
employed (Figures 6-8). These plots show detrended sub-subseries after subtracting the mean
so that each sub-subseries is zero-centered. The sub-series of each seasonal frequency is well
smoothed, but not too smoothed, indicating suitable Loess window selection. Moreover, q=39
enables moderate changes in the seasonality, whereas a much higher level of q would give a
constant seasonality.
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4. Conclusion

This study does not focus on intraday trading volume forecasting directly but on the discovery
and understanding of multi-seasonal patterns that coexist within a single high-frequency series.
Thus, a multiple STL decomposition was employed for DAX intraday trading volume observed
every 15 min over five years. The empirical results demonstrated the existence of three seasonal
components. Hourly seasonality is the strongest component, indicating a ”U”-shaped pattern,
and persistent, as it does not vary much over time. However, daily seasonality changes the most,
even though it exhibits moderate strength over the years. The daily seasonality indicates an
almost linearly increasing trade pattern when approaching the end of the week. Friday volume
was the highest, as investors did not want to hold open positions over a weekend because
of the increased market risk. For the same reason, trading activity was mostly intensified
during the closing hours of the day. Monthly seasonality is also apparent with downturns in
May, August, and December after increased trading in the previous months, while the highest
trading activity is experienced in January. Multi-seasonality patterns provide better insight into
investors’ behavior, and consequently, the trading volume becomes a predictable phenomenon
that is used in decision making when there is a lack of fundamental information.

What makes this paper distinct from similar existing studies is the suggestion on how to
deal with an unequal number of trading days per week, month, and year as well as appropriate
specification of seasonal frequencies and Loess window. Having the same number of observations
per sub-cycle, allowing for missing values and handling a multiple set of any seasonal frequencies
greater than one, makes perfect conditions for applying the STL technique successively, starting
with the shortest periodicity, and ending with the longest periodicity. When an appropriate q
is selected, along with k, all other parameters are determined automatically, as they strongly
depend on the time-series periodicity and the length of the Loess window. In the application
example, parameter q is set to 39, while k considers three seasonal frequencies: 4, 34, and
739.19. In addition, a non-integer seasonal frequency is employed. The appropriateness of
these parameter settings was confirmed using seasonal diagnostic plots.

Finally, it should be noted that the auxiliary results indicate that trading volume variations
can be explained solely by using more than 50% of multi-seasonal patterns, which is surprisingly
a high portion. A comparison of multiple STL decompositions against competing alternatives
for forecasting intraday trading volume would be a direction for further research, although
the advantage of decomposition by a locally weighted polynomial is well-argued. It can also be
beneficial to explore the performance of parametric versions of multiple seasonal decompositions,
which may be adopted for real data features.
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[3] Arnerić, J. and Matković, M. (2019). Challenges of integrated variance estimation in emerging
stock markets. Proceedings of Rijeka Faculty of Economics: Journal of Economics and Business,
37(2), 713–739. doi: 10.18045/zbefri.2019.2.713

https://doi.org/10.1016/s0927-5398(97)00004-2
https://doi.org/10.1111/1468-0262.00418
https://doi.org/10.18045/zbefri.2019.2.713


Multiple STL decomposition in discovering a multi-seasonality of intraday trading volume. 73
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