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Summary

Recently, bioactive components of plants and plant parts of most trees and browse 
species have been used as rumen modifiers to reduce methane gas production in ruminants, 
thereby reducing their contribution to the implicated greenhouse effect. This study, therefore, 
evaluated the probable use of Chromolaena odorata (L.) R.M.King & H.Rob. (Siam weed) 
leaves as rumen modifier in West African Dwarf Bucks. Fresh C. odorata leaves were harvested, 
air dried for 3 weeks, milled using a 2 mm sieve size and bagged for both proximate and 
phytochemical analysis. Concentrate diets were formulated with C. odorata leaf meal included 
in the diet at 0, 2, 4 and 6% of the whole diet. Rumen fluids were collected from West African 
Dwarf (WAD) bucks (averaged 25 kg) using suction tube and assigned to the 4 experimental 
diets in a completely randomized design (CRD). The incubation of inocula was performed 
for 96 hours with 12 replicates per treatment in a single run and data obtained were subjected 
to one-way analysis of variance and the mean values were compared with Tukey’s Test. The 
results indicated that C. odorata had 969.0mg/kg dry matter, 17.51 % crude protein, 20.43% 
crude fibre, 52.16% nitrogen free extract, 1.99% saponin, 2.57% tannin, 1.08% flavonoid and 
1.26% alkaloid. Addition of 2 and 4% C. odorata leaves to the diets resulted in increased (P < 
0.05) in vitro gas production while C. odorata at 2% reduced (P < 0.05) the methane gas (%) 
estimate. In vitro organic and dry matter digestibility, total digestible substrates and short 
chain fatty acids were increased (P < 0.05) by the addition of C. odorata leaves to the diets. 
This study concluded that the use of C. odorata as an additive at 2 and 4% inclusion increased 
total gas output. However, 2% inclusion is beneficial as it reduces the net methane production 
while maintaining higher gas production and digestibility.
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Introduction
Global warming and its associated greenhouse effect are major 

issues for agriculturists, politicians, scientists and the society at 
large (FAO, 2009). The emanation of greenhouse gases (GHG) like 
carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) 
from agricultural practices (Weiske, 2005) contributes greatly 
to the greenhouse effect (global warming). Ruminant’s livestock 
production accounts for 80% of the GHG emissions within 
the agricultural sector (FAO, 2008). According to Idris et al. 
(2011), a lot of research has been initiated varying from nutrient 
manipulation, breeding strategy to water treatment in order to 
improve the animal performance (milk production, meat and 
other products). Due to the long dry season leading to lignification 
of available forages, a higher volume of methane per kilogram of 
milk or meat has been recorded in developing countries compared 
to developed countries. It is therefore necessary to reduce the 
contributory ruminant methane production per kilogram of milk 
or meat produced in order to increase the animal’s efficiency 
(Carlsson Kanyama, 1998; Garnet 2009). Feed supplement 
and nutraceutical plants from trees and browse species of high 
nutritive value for ruminants will be beneficial to boost the 
animal productivity as well as reducing fattening time and the 
contributory methane production (Goodland, 1997; Schils et al., 
2007). Rumen fermentation represents a distinctive symbiotic 
relationship between the host and the rumen microflora, which 
lends the ruminant several benefits in digestive and metabolic 
processes over non ruminants (Nagaraja et al., 1997). However, 
products from ruminal fermentation such as ammonia and 
methane represent a loss of energy and nitrogen, respectively. 
Methane produced during rumen fermentation represents a loss 
of 2–15% of gross energy intake and thus decreases the potential 
conversion of digesta to metabolisable energy. The efficiency of 
energy and protein utilization in the rumen may be improved 
through the manipulation of microbial population and their 
activity (Casamiglia et al., 2007). This may be achieved using feed 
supplement and herbs from existing tree species. Emphatically, the 
use of nutriceutical plants (Moringa oleifera Lam., Chromolaena 
odorata (L.) R.M.King & H.Rob., Leucena luecocephala (Lam.) de 
Wit, etc.) in ruminant nutrition has been well documented as they 
are said to be highly nutritious with numerous phytochemicals 
that can improve performance and modify the rumen microbes 
(Yusuf et al., 2018, Kholif et al., 2018). In this case the study 
evaluates the nutritive, in vitro gas and methane gas production 
of C. odorata, which is a perennial flowering evergreen herb as 
alternative nutraceutical plant in ruminants. 

Materials and Methods

Sample Collection

The C. odorata plant was harvested and identified at the 
Forestry Department, College of Environmental Science, Federal 
University of Agriculture, Abeokuta, Nigeria. Fresh C. odorata 
leaves were sourced before inflorescence to harvest more leafs. 
The leaves were air dried for 3 weeks, ground until they passed 
through a 2 mm sieve, bulked and stored for subsequent analysis. 

Animal Donors and Collection of Rumen Fluid

Inoculum donors comprise of four West African dwarf (WAD) 
bucks averaged 25 kg. They previously fed with 500 g kg-1 DM 
of Maize stover and 500 g.kg-1 DM of concentrated diet. The 
concentrate consisted of (as fed basis, g kg-1) 160 corn, 520 wheat 
offal, 240 palm kernel cake, 60 soybean meal, 10 common salt and 
10 bone meal. Equal proportions of rumen fluid were collected 
from the donor bucks into thermo flasks, the rumen fluid was 
further strained through a four-layered cheesecloth with the 
temperature maintained at 39 °C. Handling of the rumen fluid was 
done under a continuous flow of CO2. The rumen liquor and the 
buffer solution were mixed in the ratio 1:2 (v/v), as pronounced by 
Menke and Steingass (1988). 

Chemical Analysis of Test Ingredients and Experimental 
Diets

The nitrogen (N) content was carried out using the Kjeldahl 
method (AOAC, 2000; ID 973.18). The N content was multiplied 
by 6.25 to calculate the CP content of the sample, neutral detergent 
fibre (NDF) and acid detergent fibre (ADF) were determined as 
enunciated by Van Soest et al. (1991). The neutral detergent fibre 
was determined without amylase and sodium sulphite. Lignin was 
determined by solubilization of cellulose with H2SO4 on the ADF 
residue (Van Soest et al. (1991). 

In vitro Procedure

The samples were incubated at 39°C while gas volume was 
measured after 3, 6, 9, 18 24, 48, 72, and 96 h (Menke and Steingass, 
1988). Three blanks were included in the run as the controls. The 
gas volume produced by the blanks was subtracted from the gas 
volume produced per sample. The resultant gas volumes recorded 
at different incubation hours were fitted to the non-linear equation 
model of France et al. (2002):

A = b (1−e−c(t-L)) 
where:
A is the volume of gas produced at time t, b is the potential/
asymptotic gas production (ml g-1 DM) from the fermentable 
fraction of forage, c is the fractional rate of gas production (/h) 
from the slowly fermentable fraction and L is the discrete lag time 
prior to gas production.

In vitro organic matter digestibility (IVOMD) and 
metabolisable energy (ME) of forage were computed as described 
by Menke et al. (1979).
Formula:

OMD % = 14.88 + 0.889GP + 0.45CP + 0.651A
ME (MJ/Kg DM) = 2.20 + 0.136GP + 0.0574CP + 0.029CP2

Short chain fatty acid SCFA (µmole g-1 DM) = 0.0239GPT – 
0.0601 (Getachew et al., 1999)

where GP = 24 hours net gas production (mL 200mg-1 DM)
     CP = crude protein content of substrate
       A = ash content of substrate.
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In vitro Dry Matter Degradation

At 96 h, the in vitro dry matter degradation was determined 
by agitating the incubation residues at 20, 000 x g for 30 min 
after placing iced cubed (-4°C) to end fermentation process. The 
residues obtained were strained and oven-dried to determine 
the dry weight. The blanks were centrifuged and the filtrate was 
weighed and used as correction factor for residues from the rumen 
inoculum. In vitro dry matter degradation was then calculated as:
(Substrate dry matter incubated – (residue dry matter – blank dry 
matter) )/(Substrate dry matter incubated)

Determination of Methane Gas Estimate

Approximately 4 ml of sodium hydroxide (NaOH, 10M) was 
introduced to estimate the methane production at post incubation 
(Fievez et al., 2005). The average of the volume of gas and methane 
produced from the blanks was deducted from the total volume of 
gas and methane produced per sample to determine net gas and 
methane produced, respectively.

Statistical Analysis

Data collected during the experimental period were subjected 
to one-way analysis of variance (ANOVA) in a completely 
randomized design using SAS (1999) significantly differing 
means were separated using Tukey’s Test as contained in the same 
software at 5% level of significance. The model for the study is 
given below:

Yij= µ + Tj + Ƹ ij

where, Yijk is individual observation, µ is population mean, Tj is 
the effect of Chromolaena odorata, Ƹ ij is random residual error.

Results

Proximate composition and fibre fractions of C. odorata, 
experimental concentrate diet and maize stover

The proximate composition and fibre fractions of the 
experimental diets are presented in Table 1. The nutrient 
composition (on dry matter basis) of the plant are dry matter 
(DM) 969.0 g kg-1, crude protein (CP) 175.1 g kg-1, crude fibre 
(CF) 204.3 g kg-1, ether extract (EE) 13.9 g kg-1, ash 85.2g kg-1, 
nitrogen free extract (NFE) 521.6g kg-1, organic matter (OM) 
914.8g kg-1, neutral detergent fibre (NDF) 626.5 g kg-1, acid 
detergent fibre (ADF) 377.7 g kg-1, acid detergent lignin (ADL) 
107.2 g kg-1, hemicellulose 248.8 g kg-1, cellulose 270.5 g kg-1. For 
the phytochemicals investigated, the values are saponin 1.99%, 
tannin 2.57%, flavonoid 1.08% and alkaloid 1.26%. 

The four experimental diets significantly (P < 0.05) differed in 
nutritive value and fibre fractions. Diet containing 0% inclusion of 
C. odorata had the highest (P < 0.05) DM content (93.32%) while 
the lowest (92.05%) was obtained in the diet with 6% C. odorata 
inclusion. The highest (P < 0.05) CP value (14.97%) was observed 
in the diet with 6% C. odorata inclusion while the lowest (13.35%) 
was recorded in the diet with 0% C. odorata inclusion. The highest 
(P < 0.05) values of 5.00% and 9.44% for ash and ether extract (EE) 
were observed in the diets with 4% C. odorata and 6% C. odorata 
inclusion, respectively, while the least values 3.85% and 8.13% for 
EE and ash in diets with 2% and 0% C. odorata inclusion for ash 
and ether extract, respectively. For crude fibre, values ranged from 
6.21%- 6.52% with increase in C. odorata inclusion. The values for 
NFE and OM decreased significantly progressively (P < 0.05) from 
61.00% to 56.73% and 91.87% to 90.56% from 0% to 6% C. odorata 
inclusion respectively.

Table 1. Nutritional composition of experimental concentrate diet and maize stover fed to West African Dwarf Bucks

Parameters (g kg-1) MS C. odorata T1 T2 T3 T4 SEM P-value

Dry matter 929.5 969.0 933.2a 927.2b 926.9b 920.5c 0.10 0.01

Crude protein 42.8 175.1 133.5d 139.4c 141.3b 149.7a 0.13 0.01

Crude fibre 308.0 204.3 62.1b 63.0b 64.5a 65.2a 0.03 0.05

Ether extract 7.0 13.9 46.3b 38.5d 50.0a 43.9c 0.10 0.01

Ash 100.2 85.2 81.3d 91.3c 93.0b 94.4a 0.12 0.01

Nitrogen free extract 542.1 521.6 610.0a 595.0b 578.1c 567.3d 0.33 0.01

Organic matter 899.9 914.8 918.7a 908.7b 907.0b 905.6c 0.12 0.01

Neutral detergent fibre 766.1 626.5 661.4a 624.8b 591.9c 581.4d 0.72 0.01

Acid detergent fibre 199.5 377.7 327.0a 356.3b 388.1c 396.1d 0.62 0.01

Acid detergent lignin 55.3 107.2 43.6a 36.6b 35.8c 43.8a 0.86 0.01

Hemicelluloses 596.6 248.8 333.8a 268.5b 203.8c 185.3d 1.34 0.01

Cellulose 144.2 270.5 284.0c 319.7b 35.23a 352.3a 0.65 0.01

*ME (MJ kg-1 DM) 141.4 ND 14.10a 13.66c 13.91b 13.66c 0.04 0.01

Note: Means on the same row having different superscripts are significantly different according to the Tukey HSD test (P < 0.05); * Calculated using MAFF 1984 equation; M.S; 
Maize stover. T1: 0% C. odorata, T2: 2% C. odorata, T3: 4% C. odorata, T4: 6% C. odorata
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Note: Means on the same row having different superscripts are significantly different according to the Tukey HSD test (P < 0.05); b: potential/ asymptotic gas production (ml g-1 
DM), c: fractional rate of gas production (/h), L: lag time; T1: 0% C. odorata, T2: 2% C. odorata, T3: 4% C. odorata, T4: 6% C. odorata

NDF and hemicellulose values ranged from 58.14% - 66.14% for 
NDF and 18.57% - 33.38% for hemicellulose, the values decreased 
from 0% to 6% C. odorata inclusion. ADF and cellulose increased 
significantly (P>0.05) with increasing inclusion of C. odorata 
with values ranged from 32.23% - 31.69% for ADF and 28.40% 
- 35.23% for cellulose. The highest (P < 0.05) value (4.38%) for 
ADL was recorded in diet with 6% C. odorata inclusion while the 
lowest value (3.58%) was recorded in the diet with 4% C. odorata 
inclusion. The proximate composition of maize stover determined 
in this study was: DM 92.95%, CP 4.38%, CF 30.80%, EE 0.70%, 
ash 10.02%, NFE 54.21%, OM 89.99%, NDF 79.61%, ADF 19.95%, 
ADL 5.53%, hemicellulose 59.66% and cellulose 14.42% (Table 3).

In vitro Gas Production and Fermentation Kinetics of 
West African Dwarf Bucks Rumen Fluid with C. odorata as 
Additive

The result of the effect of the experimental diets on in vitro 
gas production (ml 200 mg-1) is presented in Table 2. The result 
showed a significant difference (P < 0.05) in the volumes of gas 
produced by the various experimental diets at 3, 6, 9, 12, 18, 24, 
30, 42, 48, 60, 72, 84 and 96 hours of incubation. The treatment 
with 4% C. odorata inclusion recorded the highest (P < 0.05) gas 
volumes while treatment with 0% C. odorata inclusion recorded 
the lowest (P < 0.05) values. Generally, gas volumes increased from 
0% C. odorata inclusion and peaked at 4% C. odorata inclusion. 

Potential gas production (b), fractional rate of gas production (c) 
and lag time (L) were significantly (P < 0.05) different.

Post Incubation Parameters of West African Dwarf Bucks 
Rumen Fluid with C. odorata as Additive

Table 3 shows the result of the effect of C. odorata additive 
on post incubation parameters of WAD bucks. Parameters 
investigated such as total gas volume (TGV), net gas volume 
(NGV), net methane proportion (NMP), in vitro organic matter 
digestibility (IVOMD), in vitro dry matter digestibility (IVDMD), 
short chain fatty acid (SCFA) and metabolizable energy (ME) 
were significantly influenced (P < 0.05) by the experimental diets.

The highest value for TGV, NGV, SCFA, and IVOMD were 
observed in the 4% C. odorata inclusion while the lowest were 
obtained in the 0% C. odorata inclusion. The highest values were: 
30.67ml, 30.67ml, 0.15µmol g-1 DM, 31.99% while the lowest 
values were 21.42 ml, 21.12 ml, 0.09 µmol g-1 DM, and 29.30% for 
TGV, NGV, SCFA and IVOMD respectively.

The highest value for IVDMD was 77.08% (2% C. odorata 
inclusion) while the lowest was 66.25% (0% C. odorata inclusion). 
For ME, 6% C. odorata inclusion had the highest value (8.06 MJ 
kg-1 DM) while the lowest was recorded in the 0% C. odorata 
inclusion (7.48 MJ kg-1 DM). The means for methane gas output 
was not significantly different (P>0.05). Net methane proportion 

Table 2. Effect of Chromolaena odorata additive on in vitro gas production (ml 200 mg-1) and fermentation kinetics of West African Dwarf Bucks

Incubation hours T1 T2 T3 T4 SEM P-value 

3 0.75b 1.42a 1.50a 1.17a 0.009 0.12

6 2.08b 3.00a 3.25a 2.25b 0.001 0.12

9 3.17b 3.92ab 4.42a 3.25b 0.001 0.15

12 4.08b 5.00a 5.58a 4.00b 0.001 0.17

18 5.25b 6.83a 7.17a 5.08b 0.001 0.22

24 6.17b 8.25a 8.75a 6.42b 0.001 0.27

30 7.17b 10.50a 10.75a 8.08b 0.001 0.34

36 8.42b 13.25a 14.17a 10.92b 0.001 0.47

42 11.08c 16.33a 17.50a 14.00b 0.001 0.52

48 13.92c 18.83a 20.17a 16.58b 0.001 0.51

60 18.17c 25.42a 27.75a 21.92b 0.001 0.76

72 21.42c 29.17a 30.67ab 26.58b 0.001 0.75

84 21.42c 29.17a 30.67ab 26.58b 0.001 0.75

96 21.42c 29.17a 30.67ab 26.58b 0.001 0.75

B 28.56c 37.51b 43.59a 35.82b 0.001 1.152

C 0.11b 0.13ab 0.16a 0.11b 0.008 0.017

L 1.13a 1.07b 1.05b 1.11a 0.004 0.008
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Table 3. Effect of Chromolaena odorata additive on post incubation parameters of West African Dwarf Bucks

Parameters T1 T2 T3 T4 SEM P-value 

TGV (ml) 21.42c 29.17ab 30.67a 26.58b 0.75 0.01

NGV (ml) 20.42c 28.87ab 30.67a 26.58b 0.75 0.01

Methane (ml 200 mg-1) 4.17 4.00 3.92 4.42 0.22 0.87

NMP 0.20a 0.14b 0.13b 0.16ab 0.01 0.03

NMP % 19.78a 14.20b 16.35ab 16.35ab 0.90 0.03

IVOMD % 29.30b 31.60a 31.99a 30.11b 0.25 0.01

IVDMD % 66.25b 77.08a 76.25a 74.17a 1.51 0.03

TDS (g) 132.50b 154.17a 152.50a 148.33b 2.93 0.03

SCFA (µmol g-1 DM) 0.09b 0.14a 0.15a 0.09b 0.01 0.01

ME (MJ kg-1 DM) 7.48b 7.94a 7.99a 8.06a 0.04 0.01

Note: Means on the same row having different superscripts are significantly different according to the Tukey HSD test (P < 0.05); TGV- Total gas volume, NGV- Net gas volume. 
NMP- Net methane proportion, IVOMD- in vitro organic matter digestibility, IVDMD- in vitro dry matter digestibility, SCFA- Short chain fatty acid, ME- Metabolizable energy, 
TDS: Total digestible substrate, T1: 0% C. odorata, T2: 2% C. odorata, T3: 4% C. odorata, T4: 6% C. odorata

declined significantly progressively (P < 0.05) from 0.20 in 0% C. 
odorata inclusion to 0.13 in 4% C. odorata inclusion.

Discussion
The percentage of dry matter recorded for C. odorata leaf meal 

in this present research was slightly higher than that reported by 
Aro et al. (2009), Ekeyem et al. (2010) and Kawed (2016) who 
recorded values of 87.40%, 91.44% and 90.49%, respectively. This 
disparity in dry matter percentages may be due to the growth stages 
of the leaf and seasonal variations in the study areas. Flowering 
and matured plants tend to have less moisture and more fibre 
compared to emerging plants, and dry matter percentage is always 
higher during the dry season than in the rainy season (Irwin et 
al., 2014). The crude protein values of C. odorata leaf meal in the 
present study competes well with those reported by Igboh et al. 
(2009) which was 16.17%, Aro et al. (2009), 18.67% and Ekeyem 
et al. (2010), 16.67%. This places Siam weed as essential source of 
protein in ruminants’ diets as it is far above those recommended 
by NRC (2001) for maintenance production.

The observed value of saponins and tannins in C. odorata was 
lower than that reported by Agaba and Fawole (2016) which were 
3.48% and 4.10%, respectively. However, the value of tannin was 
higher while saponins were similar to the report of Igboh et al. 
(2009) which were 0.37% and 1.98%, respectively. The percentage 
of flavonoid and alkaloid was higher than that reported by Agaba 
and Fawole (2010) and the values of phytate were also higher than 
that reported by Igboh et al. (2009) which were 0.77%, 1.55% and 
0.54% for flavonoid, alkaloid and phytate, respectively. These slight 
variations can be due to factors such as stage of maturity of leaf, soil 
type and climatic variability. The recorded dry matter percentage 
of maize stover is similar to the reports of Biwi (1986), Tolera 
and Sundstol (1999) and Fabian (2011) who had 93.40%, 92.50% 
and 93.50% DM, respectively. However, Fabian (2011) reported a 
higher crude protein (CP) percentage of 5.60% compared to that 

reported in this study. Tolera and Sundstol (1999) had a similar 
CP percentage of 4.8% to the one reported in this study.

The crude protein content (CP) of the experimental diets was 
above 80 g kg-1 DM reported as adequate for rumen microbes 
digestive process (Orskov, 1982). The relative high CP content 
recorded could be used by rumen microbes to build up their body 
proteins for subsequent digestion in the abomasum. The increase 
in crude protein and ash contents of diets with C. odorata leaf 
additive justifies the possible feeding value of the leaf as protein 
and minerals supplement to feeds with lower level of protein and 
minerals.

A higher gas volume with an increase in C. odorata 
corresponded to a higher CP. Higher crude protein content in the 
diet has been reported to increase in vitro gas production (Ndlovu 
and Nherera, 1997; Gasmi-Boubaker et al., 2005; Aderinboye et al., 
2016). Additionally, a higher crude protein diet encourages more 
microbial fermentation, the higher the CP in the diets, the higher 
the gas produced (Popova et al., 2012; Igbal and Hashim, 2014). A 
similar report has noted that different doses of L. leucocephala and 
Salix babylonica L. extracts (0.60, 1.20, 1.80 mL extract per g of 
DM) increased gas volume (Jiménez-Peralta et al., 2011).

The variation in the nutritive value (i.e., CP and CF) of the 
substrates could be responsible for that. However, the result of this 
work is contrary to the reports of several researchers (Kalita et 
al., 1996; Wang et al., 1997; Liu et al., 2003; Hess et al., 2003a; 
Hess et al., 2003b; Hu et al., 2005a; Hu et al., 2005b; Guo et al., 
2008; Silivong, 2012). They all reported reduction in in vitro gas 
production by adding saponin extract or leaf meals rich in saponin 
such as Yucca schidigera Roezl ex Ortgies, Sapindus saponaria L. 
and Camellia sinensis (L.) Kuntze. The disparity in the results of 
this current research from those of the researchers above could 
be a result of species differences and the corresponding levels of 
saponin in the test leaf meals.
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The non-significantly differed C. odorata on methane gas 
estimate corroborate with the report of Jiménez-Peralta et al. 
(2011) and Sungchhang et al. (2016) who observed similar 
methane output for rumen liquor of goats and growing lambs with 
Flemingia macrophylla (Willd.) Merr., 1910 and L. leucocephala 
leaf meal supplemented diets, respectively. Gunun et al. (2011) 
also observed that methane output was not affected in goats 
supplemented with Mao (Antidesma thwaitesianum Müll. Arg.) 
seed meal. This result is contrary to that of Guo et al. (2008), 
Sliwinski et al. (2010), Hartanto et al. (2017) and Li et al. (2018) 
who observed reduced methane output when tea saponin, plants 
rich in tannins and saponins, monensin, monensin and vegetable 
oils, respectively, were included in the diets of goats. Saponin 
level, type of saponins in C. odorata and level of inclusion could 
be associated to the the non-significant effect of C. odorata on 
methane gas output. However, net methane proportion (NMP) 
reduced significantly with increase in the inclusion of C. odorata 
leaf meal, and this is an indication that C. odorata has methane 
reduction potentials.

A higher rate of gas production as well as an increased rate 
of digestion of experimental diets indicated that rumen microbes 
were able to degrade the diets faster owing to a higher content 
of digestible nutrients. Higher gas production can increase the 
carbohydrate supply through short chain fatty acid production 
(Remesy et al., 1995). This result is in line with the report of 
Olagoke (2015) who observed that variation of fibre fractions 
and fermentation kinetics with cashew nut liquid inclusion in 
the diet of WAD goats. Sirohi et al. (2012) observed a potential 
increased in gas production in high fibre, medium fibre and low 
fibre diets with the inclusion of various oils. For all the treatments 
in this study, values of gas production from soluble fraction (a) 
were positive and significantly different which can be associated 
with the significant increase in gas production rate constant and 
decrease in lag time. 

There is a positive correlation among in vitro organic matter 
digestibility (IVOMD), metabolizable energy (ME), short chain 
fatty acid (SCFA) and gas production. This is a good predictor for 
volatile fatty acid production, which is directly related to microbial 
mass production (Menke and Steingass 1988, Liu et al., 2002). This 
validates the results of this study where IVOMD and SCFA values 
increased with an increase in C. odorata inclusion from 0% to 4% 
inclusion. This correlates with the work of Jiménez-Peralta et al. 
(2011) on growing lambs fed with L. leucocephala supplemented 
diet. Yan et al. (2007) found that garlic oil and juniper berry oil 
increased IVOMD, ME and SCFA of goats. However, this result 
is contrary to that of Olagoke (2015) who observed a decrease 
in IVOMD, ME and SCFA in WAD goats’ diet with cashew nut 
liquid supplementation. A higher CP value of feeds and higher gas 
output could be the reason for the increased values in this study. 

In vitro dry matter digestibility (IVDMD) can give an idea of the 
microbial population and activity during substrate fermentation 
(Kongman et al., 2010). This suggested that incremental level of 
C. odorata leaf meal encourages the growth of beneficial microbes 
through increased CP content. Kawed (2016) also observed 
increase in IVDMD percentage with increase in the inclusion of 
C. odorata leaf meal in the diet of SEA goats. This is contrary to the 
observation of Hartanto et al. (2017) who reported that monensin 
supplementation had no effect on IVDMD of female Boer goats. 

Higher in vitro dry matter digestibility of C. odorata supplemented 
diets was possibly due to higher level of CP of the diets and stage 
of plant maturity. The provision of protein may enhance the 
activity of the rumen microorganisms and improve digestibility of 
feedstuffs (McDonald et al., 2010).

Conclusion
C. odorata can serve as a suitable alternative for protein 

supplement in ruminants’ diets due to a more increased content 
of crude protein than in common grasses. Also, the observed 
increase in in-vitro cumulative gas, in vitro organic matter 
digestibility, in vitro dry matter digestibility, short chain fatty 
acid and metabolisable energy clearly indicate that addition of C. 
odorata encourages the growth of beneficial microbes. The reduced 
net methane gas production from the diets supplemented with C. 
odorata is an indication that C. odorata supplementation in the 
ruminants’ diet may reduce their contribution to the greenhouse 
effect.
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