Abstract:
Eponyms are numerous in neurology. It is estimated that there are about 450 „human” eponyms commonly used by neurologists, neuroradiologists and neuroscientists. In this short review we describe 36 „animal” eponyms and 42 „animal” clinical signs often used in neurology. If we take into account the continuous creativity of neurologists and neuroradiologists in finding animal eponyms, it is to be expected that this list will continue in the future.

Keywords: eponyms, animals, neurology, signs and symptoms

Neurological ZOO

Denis Čerimagić¹, Ervina Bilić², Borka Kuliš³

¹ General Hospital Dubrovnik, Department of Neurology
² Zagreb University Hospital Centre, School of Medicine, University of Zagreb, Clinical Department of Neurology, Zagreb, Croatia

Sazetak:
Eponimi su brojni u neurologiji. Procjenjuje se da neurolozi, neuroradiolozi i neuroznanstvenici koriste oko 450 „humanih” eponima. U ovom kratkom preglednom radu opisujemo 36 „životinjskih” eponima i 42 „životinjska” klinička znaka često koriste u neurologiji. Poznavajući maštovitost neurologa i neuroradiologa za očekivati je nove eponime u budućnosti tako da i ovaj popis životinjskih eponima nije konačan.

Ključne riječi: eponimi, životinje, neurologija, znakovi i simptomi

OPEN ACCESS

Correspondence: Denis Čerimagić
deniscerimagic@yahoo.com
orcid.org/0000-0003-0743-2618

This article was submitted to RAD CASA - Medical Sciences as the original article

Conflict of Interest Statement:
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 1 April 2021
Accepted: 21 April 2021
Published: 15 June 2021

Citation: Čerimagić D, Bilić E, Kuliš B. Neurological ZOO. RAD CASA - Medical Sciences. 547-54-55 (2021): 100-108
DOI: https://dx.doi.org/10.21857/y7v64t02jy

Copyright (C) 2021 Čerimagić D, Bilić E, Kuliš B. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Eponyms (Greek eponymon = the name of the god or hero after whom something is named) are numerous in medicine and refer to the names of various significant persons from the history of medicine who have described certain clinical entities, signs, symptoms. Some of the eponyms are well known to the general population (Alzheimer’s, Parkinson’s), while others are known only to experts in certain fields of medicine. Neurology is known for its numerous eponyms. It is estimated that there are about 450 “human” neurological eponyms. The reason for such a large number of eponyms in neurology probably lies in the fact that a detailed neurological examination allows a topical diagnosis, that could, by recording various clinical symptoms and signs, accurately localize the lesion in the nervous system. This is especially characteristic of neurologists of the 19th and first half of the 20th century, when neurological propaedeutics was brought to perfection. Unfortunately, with the development of neuroimaging methods, the technique of neurological examination is becoming increasingly insufficient in everyday clinical practice. In this paper, inspired by the article by Beh et al. on the same topic, we present an overview of “animal” eponyms in neurology.

Table 1. Summary of animal eponyms in neurology

<table>
<thead>
<tr>
<th>ANIMAL</th>
<th>SIGN/SYMPTOM</th>
<th>DISEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LION-MOUSE</td>
<td>LEONINE-MOUSE SY.</td>
<td>CLUSTER HEADACHE</td>
</tr>
<tr>
<td>LION</td>
<td>FACES LEONTINA</td>
<td>LEPROSY</td>
</tr>
<tr>
<td>BUTTERFLY</td>
<td>BUTTERFLY/SCHMETTERLING TUMOR</td>
<td>GBM</td>
</tr>
<tr>
<td>MOTH</td>
<td>„MOTH-EATEN APPERANCE IN BONE”</td>
<td>MULTIPLE MYELOMA</td>
</tr>
<tr>
<td>STORK</td>
<td>STORK LEGS</td>
<td>CMT POLYNEUROPATHY</td>
</tr>
<tr>
<td>RACCOON</td>
<td>RACCOON EYES</td>
<td>BASILAR SKULL FRACTURE</td>
</tr>
<tr>
<td>PANDA</td>
<td>PANDA EYES</td>
<td>BASILAR SKULL FRACTURE</td>
</tr>
<tr>
<td>ANT</td>
<td>FORMICATION</td>
<td>POLYNEUROPATHY</td>
</tr>
<tr>
<td>MEDUSA</td>
<td>CAPUT MEDUSAE SIGN</td>
<td>DVA</td>
</tr>
<tr>
<td>COCK</td>
<td>COCK GAIT</td>
<td>PERONEAL NERVE PALS</td>
</tr>
<tr>
<td>ZEBRA</td>
<td>ZEBRA SIGN</td>
<td>CEREBELLAR HEMORRHAGE</td>
</tr>
<tr>
<td>SEAHORSE</td>
<td>HIPPOCAMPUS</td>
<td>LIMBIC SYSTEM</td>
</tr>
<tr>
<td>CHAMELEON</td>
<td>CHAMELEON/FLY CATCHER TONGUE</td>
<td>HUNTINGTON’S DISEASE</td>
</tr>
<tr>
<td>MONKEY</td>
<td>APE-LIKE HAND</td>
<td>CARPAL TUNNEL SYNDROME</td>
</tr>
<tr>
<td>MONKEY</td>
<td>MONKEY SIGN</td>
<td>CPM</td>
</tr>
<tr>
<td>OWL</td>
<td>OWL’S EYES SIGN</td>
<td>CPM</td>
</tr>
<tr>
<td>PIG</td>
<td>PIGLET SIGN</td>
<td>CPM</td>
</tr>
<tr>
<td>WORM</td>
<td>WORM LIKE MOVEMENT</td>
<td>ATHETOSIS</td>
</tr>
<tr>
<td>TIGER</td>
<td>EYES-OF-THE-TIGER</td>
<td>HALLERVORDEN-SPATZ SY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBD</td>
</tr>
</tbody>
</table>
Table 1. (cont.)

<table>
<thead>
<tr>
<th>Animal</th>
<th>Appearance</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIGER</td>
<td>Tigerstripe Appearance</td>
<td>Lhermitte-Duclos Disease</td>
</tr>
<tr>
<td>LEOPARD</td>
<td>Leopard Skin Sign</td>
<td>MLD</td>
</tr>
<tr>
<td>CROCODILE</td>
<td>Crocodile Tears</td>
<td>Bogorad SY.</td>
</tr>
<tr>
<td>PENGUIN</td>
<td>Penguin Sign</td>
<td>PSP</td>
</tr>
<tr>
<td>HUMMINGBIRD</td>
<td>Hummingbird Sign</td>
<td>PSP</td>
</tr>
<tr>
<td>HORSE</td>
<td>Cauda Equina</td>
<td>Cauda Equina SY.</td>
</tr>
<tr>
<td>HORSE</td>
<td>Horseshoe Sign</td>
<td>MS</td>
</tr>
<tr>
<td>SNAKE</td>
<td>Serpiginous Vessels</td>
<td>AVM</td>
</tr>
<tr>
<td>BULL</td>
<td>Bull’s Eye</td>
<td>Toxoplasmosis</td>
</tr>
<tr>
<td>BULL</td>
<td>Bull’s Eye</td>
<td>Lyme Disease</td>
</tr>
<tr>
<td>BUFFALO</td>
<td>Buffalo Hump</td>
<td>Corticosteroid Side Effects</td>
</tr>
<tr>
<td>COW</td>
<td>Mad Cow Disease</td>
<td>Mad Cow Disease</td>
</tr>
<tr>
<td>OX</td>
<td>Steer Horn Sign</td>
<td>ACC</td>
</tr>
<tr>
<td>RABBIT</td>
<td>Rabbit Tremor</td>
<td>Antipsychotics Side Effects</td>
</tr>
<tr>
<td>ELEPHANT</td>
<td>Elephant Man</td>
<td>NF1</td>
</tr>
<tr>
<td>ELEPHANT</td>
<td>Dural (Elephant) Tail Sign</td>
<td>Meningioma</td>
</tr>
<tr>
<td>DUCK</td>
<td>Duck Gait</td>
<td>Proximal Myopathy</td>
</tr>
<tr>
<td>FLY</td>
<td>Muscae Volantes</td>
<td>DVS</td>
</tr>
<tr>
<td>BIRD OF PREY</td>
<td>Claw Like Hand</td>
<td>Ulnar Nerve Palsy</td>
</tr>
<tr>
<td>BAT</td>
<td>Bat Wing Sign</td>
<td>SY. Joubert</td>
</tr>
<tr>
<td>BIRD</td>
<td>Bird Beak Sign</td>
<td>SY. Arnold-Chiari Type 2</td>
</tr>
<tr>
<td>FISH</td>
<td>Icthyosis („Fish Skin“)</td>
<td>Refsum Disease</td>
</tr>
</tbody>
</table>

Abbreviations: GBM – glioblastoma multiforme; CMT – Charcot-Marie-Tooth; DVA developmental venous anomaly; CPM – central pontine myelinolysis; PSP – progressive supranuclear palsy; CBD – corticobasal degeneration; MLD – metachromatic leukodystrophy; MS – multiple sclerosis; AVM – arteriovenous malformation; ACC – agenesis of corpus callosum; NF1 – neurofibromatosis type 1; DVS – degenerative vitreous syndrome
Lion and Mouse
Cluster headache (Horton’s headache) is characterized by unilateral pain, primarily in the orbital area, but also in the supraorbital and temporal areas, that lasts 150-180 minutes if left untreated and occurs in attacks ranging in frequency from once every other day to eight times daily. The pain is accompanied by ipsilateral injected conjunctiva, epiphora, nasal congestion, rhinorrhea, hyperhidrosis and redness of the forehead and face, feeling of fullness in the ear, miosis, ptosis, eyelid edema and agitation. This type of headache is more frequently present in men. If there is a kind of constitutional predisposition for cluster headache, it probably includes “macho” appearance (athletic build, black complexion, thickened facial skin with pronounced furrows) while mentally such people are structured as ambitious and diligent. This physical-mental structure is also called “leonine-mouse” (lion-mouse) syndrome, which indicates that these are sensitive people with a rougher appearance, or mice in the body of a lion.

Lion
Leprosy (Hansen’s disease) is a chronic infection caused by the acid-resistant bacillus Mycobacterium leprae, which shows a unique tropism for peripheral nerves, skin and mucous membranes. It causes countless symptoms, but from the neurological point of view, the most interesting is painless peripheral neuropathy. It is not just a biblical plague because the disease is still present in endemic hotspots around the world, from Asia, Africa, Mexico, South and Central America. Changes on the skin of the face such as macules, papules, nodules or plaques, usually symmetrical distributions, give these patients a characteristic appearance of the face like a lion (“facies leontina”).

Cock
“Cock gait” is characteristic and easily recognizable. People with weakness of dorsiflexion of the feet when walking first touch the toes, then the middle part of the sole and the heel, producing a characteristic sound of foot tapping from the ground. There are many possible causes of this disorder, from polynuropathy of various genesis to trauma or external compression of the peroneal nerve in the segment of the knee, i.e. the head of the fibula.

Raccoon
Bilateral, periorbital, posttraumatic hematomas are called “raccoon eyes” and this finding most often indicates a skull base fracture. This sign can occur 2-3 days after the trauma and can be associated with a positive Battle sign (mastoid ecchymosis).

Panda
Synonymous with “raccoon eyes” when breaking the base of the skull are “panda eyes”. The “face of the giant panda sign” in neuroimaging refers to the appearance of the midbrain, when the red nucleus and substantia nigra are surrounded by a high T2 signal in the tegmentum. This neuroradiological sign is typical of a disorder of copper metabolism (Wilson’s disease).

Zebra
The “zebra sign” has been termed to describe the finding of layering of blood in amongst the folia of the cerebellum.

Seahorse (lat. Hippocampus)
The hippocampus is part of the limbic system, and plays important roles in the consolidation of information from short-term memory to long-term memory, and in spatial memory that enables navigation. In Alzheimer’s disease, the hippocampus is one of the first regions of the brain to suffer damage. Damage to the hippocampus can also result from hypoxia, encephalitis, or medial temporal lobe epilepsy.

Chameleon
Huntington’s chorea is autosomally dominantly inherited disease and has a very characteristic clinical presentation with chorea and progressive cognitive decline. Diagnosis is established based on genetic testing, and therapy is only symptomatic. This disease is characterized by atrophy of the nucleus caudatus. Huntington’s disease is the result of a genetic mutation (the IT15 gene, which is located at the top of the short arm of chromosome 4 and contains a number of CAG trinucleotides within its coding sequence). This gene encodes the protein huntingtin. The normal range of CAG trinucleotides in this sequence is 6-37, while in patients with Huntington’s chorea it is increased. The number of CAG copies can increase from generation to generation, leading to an increasingly severe phenotype of the disease in the same family – this is a phenomenon of anticipation. Even in the early stages of Huntington’s chorea, the Chameleon tongue sign is common and often goes unnoticed. The patient is not able to maintain the protrusion of the tongue for a while, since this action is constantly disturbed by involuntary movements of the head, torso and extremities.

Monkey
Carpal tunnel syndrome is the most common focal compressive mononeuropathy. Compression of the median nerve in the carpal tunnel leads to hypotrophy/atrophy of the tenar muscles (m.opponens pollicis and m.abductor pollicis brevis) and consequent weakness of opposition and volar abduction of the thumb. The result of this disorder is the so-called “Ape-like hand,” in which the tenar and hypotenar bones are practically in the same plane as in the chimp hand. This sign should not be confused with the simian palmar crease on the hand that can be seen in patients with Down syndrome.

Central pontine myelinolysis is a possible complication of sudden correction of blood hyponatremia. Changes in the pons are visible on MR. The T1-axial-weighted MR image shows the hy-
pointense signal changes involving the transverse pontine fibers, with sparing of the corticospinal tracts, giving the appearance of the face of a monkey (“monkey sign”)12.

OWL
In central pontine myelinolysis, neuroradiologists sometimes describe an “owl’s eyes sign” where T2-axial-weighted MR images show the hyperintense signal changes involving the transverse pontine fibers, with sparing of the tracts12.

PIG
The “piglet sign” is seen in osmotic demyelination syndrome. It refers to the appearance of the upper pons in axial T2 and FLAIR images. The areas of coalescent T2 signal increase are reminiscent of a pig’s snout, with other features on axial MR images resembling the rest of the face of a piglet with the temporal lobes representing ears, the carotid arteries represent the eyes and the fourth ventricle as the mouth15.

WORM
Athetosis is characterized by “worm-shaped”, winding movements, predominantly present in distal parts of the extremities. They are the opposite of hemibalism, explosive movements of the proximal parts of the extremities. Athetosis and chorea often occur together, so we are talking about choreoathetotic movements. Chorea and athetosis are manifestations of dopaminergic hyperactivity in the basal ganglia14.

ANT
The term formication (“tingling”) is often used to describe the clinical problems of patients with polyneuropathy. It is a type of paresthesia, i.e. tactile hallucinations (the patient often has unpleasant sensations without real external stimuli)15.

TIGER
“Eyes-of-the-tiger” is a neuroradiological sign caused by reduced T2 signal on brain MR in the area of the globus pallidus (due to iron accumulation) and a longitudinal striped zone of elevated signal due to gliosis and spongiosi, which can be seen in patients with Hallervorden-Spatz syndrome, progressive supranuclear palsy and corticobasal degeneration16.

“Tigerstripe appearance” is a characteristic alternating hypo and hyperintense bands on MRI in Lhermitte-Duclos disease. This is a rare cerebellar tumor appears like the coat of a tiger17.

LEOPARD
The “Leopard skin sign” results from dark-spots or stripes (spared perivasculary white matter) within bright demyelinated periven-tricular white matter on T2W images. It is characteristically seen in metachromatic leukodystrophy18.

Crocodile
Bogorad syndrome (according to F.A. Bogorad, a Russian neurologist) is also known as the syndrome of “crocodile tears”, and characterized by residual facial paralysis with profuse lacrimation during eating. This phenomenon is also known as paroxysmal lacrimation or the gusto-lacrimal reflex. It is caused by a misdirection of the regenerating autonomic fibers to the lacrimal gland instead of to the salivary gland19.

STORK
Charcot-Marie-Tooth neuropathy is one of the most common inherited neurological diseases and includes a clinically and genetically heterogeneous group of hereditary neuropathies. The clinical picture is manifested by involvement of the distal musculature with the progressive development of hypotrophy, areflexia and deformity of the foot. The most common symptoms are creeping foot, pes cavus, hammer deformity of the big toes, and hypotrophy and atrophy of the muscles of the lower leg and foot, with preserved muscles of the upper leg, which all lead to the characteristic appearance of “stork legs” or “champagne bottle legs”20.

PENGUIN AND HUMMINGBIRD
Progressive supranuclear palsy (Steele – Richardson – Olszewski syndrome) is characterized by paresis of vertical bulb movements, propensity to retropulsion, and frequent falls. Bulbar disorders and emotional incontinence are common. Characteristic is the MR finding showing a positive “hummingbird sign”, also known as the “penguin sign”. The atrophy of the midbrain results in a profile of the brainstem in which the preserved pons forms the body of the bird, and the atrophic midbrain the head, with beak extending anteriorly towards the optic chiasm21.

JELLYFISH (MEDUSA)
The “caput medusae sign” refers to the developmental venous anomalies of the brain, where a number of veins drain centrally towards a single drain vein. The appearance is reminiscent of Medusa, a gorgon of Greek mythology, who was encountered and defeated by Perseus. The sign is seen on both CT and MRI when contrast is administered. Angiographically the caput medusae appearance is seen only in the venous phase22.

HORSE
Horsetail syndrome is a condition that occurs when the bundle of nerves below the end of the spinal cord known as the cauda equina is damaged. The clinical picture includes: severe back pain, saddle anesthesia, bladder and bowel dysfunction, sciatica-type pain on one side or both sides, weakness of the muscles of the lower legs, Achilles reflex absent on both sides, sexual dys-
function, absent anal reflex and gait disturbance. The management of true cauda equina syndrome frequently involves urgent surgical decompression24. The “horseshoe sign” or “open ring sign” is a relatively specific sign for demyelination, most commonly tumefactive multiple sclerosis, and is helpful in distinguishing between the causes of ring-enhancing lesions. The enhancing component is thought to represent the advancing front of demyelination and thus favors the white matter side of the lesion. The open part of the ring will therefore usually point towards the gray matter25.

Snake
Brain arteriovenous malformations are a type of intracranial high-flow vascular malformation that includes enlarged feeding arteries, a nidus of vessels closely associated with the brain parenchyma through which arteriovenous shunting occurs, and draining veins26. The “serpiginous” (snake-like) course of blood vessels is typical of these malformations.

Bull
Erythema migrans is a rash characteristic of Lyme disease (borreliosis). The rash occurs at the site of a tick bite, usually after 7-10 days and spontaneously fades during 3-4 weeks. It is often round or oval in appearance, with a central darker and peripheral lighter zone and resembles a shooting target or “bull’s eye”27. Neuroborreliosis should be ruled out in all patients with demyelinating changes in the CNS. Cerebral toxoplasmosis, an opportunistic infection caused by the parasite Toxoplasma gondii. It typically affects patients with HIV / AIDS and is the most common cause of cerebral abscess in these patients. Brain MRI (T2 sequence) shows a concentric target sign or “bull’s eye” sign27.

Buffalo
Neurologists are among the most common prescribers of corticosteroids and therefore well aware of the side effects of their long-term use. Corticosteroid-induced lipodystrophy (CIL) is a condition of abnormal fat deposition (distribution) caused by corticosteroid medications. Fat accumulates in the facial area (“moon face”), dorsocervical region (“buffalo hump”), and abdominal area with a characteristic centripetal type of fat tissue distribution28.

Cow
Creutzfeldt-Jakob disease is a rare, degenerative disease of the human brain caused by prions. If it occurs in cattle, it is called bovine spongiform encephalopathy or “mad cow disease”. The dominant clinical sign is progressive dementia, ataxia, tremor, epilepsy, etc.29.

Steer
Agenesis of the corpus callosum (ACC) is a rare birth defect in which there is a complete or partial absence of the corpus callosum. The MRI showed a “steer horn” sign made by the frontal horns of the lateral ventricles in the coronal plane30.

Butterfly
Glioblastoma multiforme is the most malignant brain tumor. It is characterized by rapid, infiltrative growth, with zones of necrosis and bleeding and pronounced perifocal vasogenic edema on CT / MR. It often infiltrates the corpus callosum and the contralateral hemisphere of the brain, giving it its characteristic butterfly shape. Hence terms such as “butterfly-shaped tumor”, “butterfly” or “schmetterling tumor”31.

Rabbit
It is a rare extrapyramidal side effect of antipsychotics. It is manifested by perioral tremor of 5 Hz frequency, without tongue affection - “rabbit tremor”. It is caused by long-term antipsychotic therapy, primarily haloperidol, fluphenazine, pimozide, and less frequently thioridazine, clozapine, olanzapine, and risperidone32.

Elephant
Neurofibromatosis is a well-known phacomatosis. The characteristics of type 1 neurofibromatosis are as follows: 6 or more “café au lait spots” on the skin, at least 2 neurofibromas on the skin, at least two on the iris and scoliosis. David Lynch directed in 1980. the movie „Elephant Man” in which he describes the life of Joseph Merrick who suffered from neurofibromatosis type 1, and hence the incorrect name “elephant man” for these patients33. The “Dural (elephant) tail sign” represents thickening and enhancement of the dura mater in continuity with a mass, which on MR images, gives the appearance of a tail arising from the mass. Three criteria need to be met for a “positive” dural tail sign: the tail should be seen on two successive images through the tumor, it should taper away from the tumor, and it must enhance more than the tumor. This sign has traditionally been considered as highly specific for meningioma34.

Duck
Weakness of the pelvic girdle muscles leads to a characteristic limping, “duck gait”. This is characteristic for proximal myopathies with consequent pelvic floor muscle hypotrophy. Advanced coxarthrosis should be ruled out differentially35.

Fly
Floating blurred sight spots may be caused by deposits within the normally transparent vitreous body of the eye. This phenomenon is called myodesopsia. Patients usually describe them as “flying
flies” (Lat. Muscae volantes). Fast eye movements follow and are best seen on a light or white background. The described disorders occur not only in the elderly, but also in the younger population, particularly in the short-sighted and following cataract surgery. On the neurological side, it is important to distinguish them from photopsies in migraine with visual aura or migraine equivalents.

Moths
Neurologists occasionally diagnose polyneuropathy or chronic vertebrogenic syndromes as clinical manifestation or consequence of underlying hematologic disease. One such hematologic disease is multiple myeloma, which is characterized by changes in the bones that appear to be “moth-eaten appearance in bone.” This is particularly well seen in cranial bones. Multiple myeloma is a plasma cell cancer in which a clone of abnormal plasma cells multiplies, creates tumors in the bone marrow, and produces large amounts of abnormal antibodies that accumulate in the blood or urine.

Birds of prey
Compressive ulnar nerve mononeuropathy is the most common consequence of its compression in the area of the cubital tunnel and the Guyon canal. The clinical picture is characteristic and includes hypotrophy of the hypothenar muscles, hypoesthesia in the ulnar nerve zone of innervation in the forearm and hand, positive Froment’s sign and weakness of the abduction of the little finger. Due to atrophy of the interosseous and lumbrical muscles of the hand, it takes on the typical appearance of a claw-like bird of prey, with the 4th and 5th fingers flexed in the interphalangeal joints and the hypotenor hypoatrophic.

Bat
Joubert anomaly, also known as vermian aplasia is an autosomal recessive disorder where there is a variable degree of cerebellar vermal agenesis. The “bat wing” configuration of the 4th ventricle is typical for this anomaly.

Bird
Tectal beaking (“bird beak” sign) refers to the fusion of the midbrain colliculi into a single beak pointing posteriorly and invaginating into the cerebellum. It is seen with a Chiari type II malformation.

Fish
Refsum disease is a rare disease caused by accumulation of phytanic acid in plasma and tissues. It is characterized by anosmia, cataract, retinitis pigmentosa, peripheral neuropathy, cerebellar ataxia, deafness and ichthyosis (“fish skin” disease).

If we take into account the continuous creativity of neurologists and neuroradiologists in finding animal eponyms, it is to be expected that this list will continue in the future.
Hallervorden-Spatz syndrome and MRI: the "tiger's eye".

References:

