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TECHNIQUES FOR MESH INDEPENDENT DISPLACEMENT
RECOVERY IN ELASTIC FINITE ELEMENT SOLUTIONS

Summary

In this study, techniques for mesh dependent and independent displacement recovery for
an a posteriori error estimation are presented. The error recovery of the field variable is made
by fitting a higher order polynomial to the displacement over a mesh independent patch
(support domain) using the moving least square (MLS) interpolation procedure. The mesh
dependent recovery procedure is based on the recovery of the displacement over an element
patch that consists of all elements surrounding the element under consideration using the least
square (LS) interpolation procedure. The two-dimensional benchmark examples are analysed
using linear and quadratic triangular elements to demonstrate the effectiveness and reliability
of error estimations. Global and elemental errors of a finite element solution in the energy and
L, norms are calculated directly from the post-processed displacement. The quality of error
estimation obtained using the mesh independent displacement recovery technique in terms of
convergence properties, effectivity and adaptive meshes under different error norms has been
compared with that of the mesh dependent displacement recovery using the MLS
interpolation and least square (LS) interpolation procedures. The performance of an adaptive
scheme based on a mesh independent error estimator is compared with the adaptive scheme
based on a mesh dependent error estimator. The numerical results show that the finite element
analysis based on mesh independent recovery is very effective in converging to a predefined
accuracy in a solution with a significantly smaller number of degrees of freedom.

Key words: error, effectivity, error norm, recovery techniques, convergence; least
square techniques.

1. Introduction

The finite element method has become an effective tool for numerical analysis in the
engineering field. In recent years, increased attention has been paid to overcome deficiencies
of the finite element method and to improve the performance of the finite element analysis.
Chen et al. [1] presented the development taking place in the area of meshless methods in the
last two decades, which were developed to overcome drawbacks of the finite element method.
A procedure to automatically improve a finite element solution using interpolation covers was
propounded by Kim and Bathe [2] and the cover order was established through an error
indicator. Li et al. [3] proposed an isogeometric meshfree moving least squares method for the
adaptive analysis of static and quasi-static crack propagation in thin-shell structures with a
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higher convergence rate and computational efficiency. The adaptivity of the mesh refinement
was achieved by utilizing a gradient-based error estimator to identify the meshes that need to
be refined by adding linear reproducing points. Cortis et al. [4] developed a boundary
conditions imposition method for dual applicability, i.e. for the standard finite element
method as well as for the material point method (MPM) to model boundaries of any
inclination in which the problem domain boundary does not coincide with background grid
element edges. Liu et al. [5] developed a coupling technique for combining the wavelet-
Galerkin method with the finite element method and established its accuracy and stability for
2D and 3D elasticity problems. Dekker et al. [6] proposed an extended finite element model
(XFEM) in an adaptive environment to capture the fatigue crack propagation and crack
growth retardation under mixed-mode loading and overloading. A stress-displacement mixed
least-squares finite element formulation was proposed by Igelbiischer et al. [7] for elastic-
plastic material behaviour. Lee et al. [8] analysed hyperelastic bodies with compressible and
nearly incompressible neo-Hookean behaviour using the smoothed finite element method (S-
FEM). The smoothed strains and smoothed deformation gradients were evaluated on sub-
domains selected by either edge information (edge-based S-FEM, ES-FEM) or nodal
information (node-based S-FEM, NS-FEM). Jarak et al. [9] presented meshless methods
based on the mixed Meshless Local Petrov Galerkin approach used for solving linear fourth-
order differential equations. The method was successfully adapted for an application in
gradient elasticity obtaining accurate results even with a low order of meshless approximation
functions. The finite element method yielded approximate solutions for the problems and
significant errors may creep in the computed solution due to elemental and discretization
approximations. The state of the art in different error estimation techniques developed to get a
practical finite element solution for linear, non-linear and transient problem analyses was
presented by Gratsch and Bathe [10]. The discretization error i.e. the manner of domain
discretization, manifested as discontinuities or jumps in the components of stress or strain
between elements and such errors were introduced in the problem solution when the
displacement interpolation polynomial did not accurately represent the behaviour of the
continuum. The discretization error may be reduced by changing the location of mesh nodes
or by increasing the mesh/node density. The most popular error estimation techniques, namely
the post-processing type [11], are based on the difference between the values of post-
processed recovered, more accurate displacement gradients (or alternatively displacement)
and those given by the finite element solution as a measure of the local error. The pointwise
definitions are not only difficult to estimate but also become meaningless at singularities.
Therefore, an alternative scale measure in the energy norm, representing the error in the rate
of energy dissipation, is preferable. Finite element solutions are the best approximations in
terms of energy norm [12]. However, the error norms of the displacements, i.e., the basic
finite element solution, such as the L, norm, representing straightforward physical meaning,
show many superconvergence properties of finite elements [13]. The main advantage of using
the post-processed type error estimation is that it gives not only global but also element error
estimates. Further, it can yield information on pointwise error estimation. The post-processing
type estimator, i.e. ZZ error estimator [11], has proved to be economical and effective both in
evaluating error simply and as an estimator preliminary to the adaptive process [14]. The
superconvergent patch recovery scheme was proposed by Zienckiewicz and Zhu [15], in
which recovery of improved stresses was obtained by interpolating from a stress surface fitted
to the superconvergent stress points surrounding the node of interest. A post-processing
procedure based upon the least square fitting of the displacement field over an element patch
was proposed by Ahmed et al. [16]. Chen and Chen [17] proposed a modified patch recovery
method to recover linear finite element solutions and showed superconvergence in
the L, norm in a Delaunay Tessellations mesh for an arbitrary three-dimensional bounded
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domain. Zhang et al. [18] used a patch-based approximation technique to convert the inter-
element discontinuous field into a continuous field and implemented the adaptive remeshing
procedure to distribute the error uniformly over the domain. A simple error indicator for the
element free Galerkin (EFG) method and its effective performance on elasticity problems was
presented by Gavete et al. [19]. Kim and Li [20] proposed an efficient error estimator
considering non-conforming triangular and quadrilateral finite elements for elasticity
problems. Nadal et al. [21] proposed an explicit-type recovery error estimator in the energy
norm for the linear elasticity problem using smooth solution. Abbas and Abdul Rahman [22]
proposed an energy norm based error estimator for a dual hp-adaptive procedure used in the
numerical assessment of fluid—structure interaction. Ulku et al. [23] developed a recovery-
type a posteriori error estimator for gradient elasticity by revisiting basic equations of the
Aifantis gradients elasticity theory. An extended finite element simulation of two-dimensional
(2-D) cracks and material interfaces was presented by Yu and Bui [24] by combining an a
posteriori error estimation algorithm, a local non-conformal mesh connection strategy, and
local enrichment. An hp-adaptive finite element analysis based on the discontinuous Galerkin
error estimator was carried out by Bird et al. [25]. The performance of the hp-adaptive scheme
was compared with a uniform and h-refinement adaptive scheme achieving the exponential
rates of convergence. Various authors proposed procedures for the recovery of post-processed
displacement field or their derivatives. Mirzaei [26] provided a comprehensive analysis of
error estimation considering the moving least square approximation. An adaptive finite
element/meshless coupling procedure based on local maximum entropy shape functions was
proposed by Ullah et al. [27] for linear and non-linear problems. They used the Zienkiewicz
and Zhu error estimation in the FE region and the Chung and Belytschko error estimation
procedure was used in the EFG region. Parret-Fréaud et al. [28] presented a moving least
squares (MLS) recovery-based procedure to obtain a smoothed stress field in which the
continuity of the smoothed field is provided by shape functions of the underlying mesh.

Meshless methods, in which interpolations are free of element mesh requirements, are
being developed due to the imitation of the finite element method (FEM) for situations in
which distortion of elements occur, such as for large domain changes and domain
discontinuities. Numerical errors are introduced in the meshless methods principally because
integration cells do not match the shape function supports, while in the FEM the errors are
introduced basically due to domain discretization [29]. The errors in the solution, quantified in
an appropriate norm, may be controlled by using the nodal adaption in meshless methods or
element adaption in the FEM employing an error estimator. The most popular type of error
estimator for the finite element method is recovery or post-processing type of error estimator.
The recovery procedures are based on the least square fitting of state variable or derivative of
state variable by a higher order polynomial over element or node patches of mesh dependent
or mesh independent local domains. Chung and Belytschko [30] measured local and global
errors in the EFG method. The essence of error quantification is to use the difference between
the recovered values of the stress and directly obtained EFG stress solution. The recovery of
stress is obtained with reduced supports on the same nodal point of the original. Lee and Zhou
[31] compared the effectiveness of different recovery schemes developed for EFG methods.
The recovery schemes they compared are the discrete MLS-stationary least square fitting
scheme, the continuous MLS-stationary least square scheme and the MLS-moving least
square scheme. The authors concluded that the discrete MLS-stationary least square scheme
outperformed the other recovery schemes. A node based error estimator for the EFG method
was presented by He et al. [32] to reduce the spurious oscillation in regions with large stress
gradients. The mesh independent recovery technique for the FEM is of relatively recent
interest. Ahmed et al. [33] developed EFG based recovery techniques for finite element
analysis employing mesh independent node patches.
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The development of mesh independent recovery methods with a flexibility of patch size
motivated the author to use the mesh independent approach to the finite element solution of
the recovery of the displacement and to present a comparison of the mesh independent
recovery of displacement with that of mesh dependent recovery of the displacement. The
existing recovery techniques in the FEM mostly deal with the recovery of stress over mesh
dependent node patches. The present study aimed to use a recovery of the displacement field
utilizing the moving least squares (MLS) procedure, which is robust and provides
completeness and continuity [34] over a patch of mesh independent nodes (EFG approach) as
well as the recovery of the displacement field employing the least square approach over a
mesh dependent element patches for formulating an a posteriori error estimator. The global
and local errors of the finite element solution are computed directly from the post-processed
displacement in terms of the energy and the L, norm. The performance of the displacement
extraction based error estimator is tested on benchmark elastic plate problems. The linear and
quadratic triangular elements are used for the problem domain discretization. Recovered
displacement error in the L, norm using the least square and MLS approach in addition to the
energy norm for assessing the performance of the error estimation is proposed in this study.
The performance of the mesh independent displacement recovery based error estimation, in
both the energy and the L, norm, is compared with that of the mesh dependent displacement
recovery based error estimation in terms of effectivity, rate of convergence and adaptively
refined meshes.

2. Problem formulation

Two-dimensional linear elastic problems with stress field & and unknown displacement
field u, in a domain Q bounded by I' = I't U I',, are found by satisfying the following
equilibrium equation:

L"6 +f=0 inQ, (1)

and boundary conditions:

oon=1only, 2
u=u only, 3)
where fis the force vector, L” is the derivative operator, 7 and  are prescribed tractions and

displacements on I’y and I, respectively, and » is the unit outward normal on boundary I' = I’y
u T,

Strain vector (€) and the constitutive relation are written as
& =Lu, “4)
c=Deg, %)

where D is the elasticity matrix of a linear isotropic material,

By finite element discretization, displacements (#) of any point within an element are
calculated based on the following equation:

u=Nd, (6)

where N is the matrix of the interpolation functions, also known as shape functions, and d is
the nodal displacement matrix. Using Equation 6, the strains can be related to the nodal
displacements by the following formula:

e=LNd=Bd, (7)

where B is the strain interpolation matrix.
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Using the standard Galerkin method yields the following matrix equation:
Kd=F ®)
K and F are found by using the following equations:

ki; = [, B{ DB;dQ 9)
Fj=[. N/ §dl + [ N/ bdn (10)
where b is the body force per unit volume.

3. Error estimation

The error in the computed state variable, i.e. displacement (u), e (or eg*), is defined as
the difference between the exact (or recovered) values of u (or o) and respective computed
values, " (or ah), 1e.

e = u-u" (11)

The errors can be measured in appropriate norms. The integral measure of the error in
the energy norm (E) and the L, norm (L,) may be defined as follows:

1/2

llellz= [fﬂ e:TDeldn ] and (12)
1/2

llell,,= [fg el e.d ] , respectively. (13)

An estimator is asymptotically exact for a particular problem if the problem global and
local (element) effectivity index (8), i.e. the ratio of estimated error to true error, converges to
one when the mesh size approaches zero [11].

_ el

leexll

(14)

where ||le.|| and ||e|| denote the exact error and the evaluated error estimate in the energy or
the L, norm, respectively.

Accuracy 7 of a finite element solution may be defined as follows:

%

e

n= (15)

*

o

The solution is acceptable if 7 < 7,0, Where 77,0, 1S the allowable accuracy. If not, h-
refinement i.e. modification of the element size is needed.

4. Mesh independent displacement recovery

In the mesh independent recovery i.e. the moving least square (MLS) interpolation
technique, three components are used to express a function u(x) with the approximation uh(x),
a weight function w(x) associated to each node, a basis function P(x), usually consisting of a
polynomial, and a set of coefficients a(x), which are functions of the coordinates. Let the
nodes be defined by x; ..x, where x; = (x;, ;) in two dimensions. The MLS uh(x)
approximation can be defined as

W)= YT Hdu = Hu (16)
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where ¢ (x) is the vector of the shape function and m is the total number of terms in the basis
function. The basis function P(x) with m as six is given as

P'x)=[1,x 3 x xp ] (17)

The vector of coefficients a(x) can be obtained by minimizing a weighted residual as
follows:

J=Zwx —x) [PT(x)alx) — uf']? (18)

where 7 is the number of nodes i and w(x—x;) is a weight function in 2D, associated to each
node (domain of influence of that node, Figure 1). The weight function is usually built in such
a way that it takes a unit value near the point where the function and its derivatives are to be
computed and vanishes outside a region Qi surrounding the point x;. The following cubic
spline weight function with a circular domain of influence is considered in the present study,

§—4J2+4&3 ford S%
wlx —xi) =w(d)=(1-4d +4d>-3a° for1<d <; (19)
0 ford>1

where d = ||x — xi||/d,,and d,, is the size of the influence domain of point x;.

Minimization of the weighted residual leads to the well-known form of the shape
function equation:

¢ (x) = PT()A 1 (x)B(x) 4" = NT(x) ¢ (20)

where NT (x) contains the shape functions of nodes and ¢his the vector of nodal parameters of
the field variables.

For a certain shape function ¢ (x) of node i at a point is given as

¢ (x) = PT(x YA (x)P(x)B(x) 21
The matrices A(x) and B(x) are given as

A(x) = Zitowi(x — x) P(x) PT (xy)

B(x) = [wi(x = x)P(x;) , wev ooy e Wy (x — x) P(x)]

The derivatives of the weight function with respect to x; can be found using the chain
rule of differentiation.

The vector a(x) can be written as

a(x) = A" (x)B(x) ¢ (22)

® Field nodes

Support domains

Fig. 1 Node influence (support) domains for the mesh independent (MLS) recovery technique
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5. Mesh dependent displacement recovery

The recovery of the displacement field is obtained by the least square (LS) fitting of the
computed nodal displacement using a higher order polynomial over an element patch in a
mesh around the element under consideration (Figure 2). To perform the least square fitting,
the following functional is minimized:

1
(@) = EZ?fl[ufl (e y) — ulx, y)]? (23)
where u; (x;, yi) = P; (xi, yi) X a
wi=[u v ,a=[a, al" (24)

where u; and v; are nodal parameters of the field variables in the x and y directions and a is the
vector of unknown parameters a, and a,.

i 0
H==% pJ (25)
pi=[1,xi, yi Xt XVi y,-z, ....... ] (26)

where (x; , y; ) are coordinates of the sampling points. The total number of sampling points np
is equal to the total number of nodes in the patch.

The minimization condition of 7 (@) implies that a satisfies the following relation:

Z?fl Pl (x,y:) - Py y) - a= 2?51 Pl (x4, ;) X ulh(xl'ryi) 27)
After having solved a, the following relation is obtained.

a=A"b (28)

where A = %1%, PT (i, ) PiCxi, vi) (29)

b =2 Pl (x, y) ul (i, y) (30)

Element under consideration

Fig. 2 Element patches for mesh dependent recovery techniques

6. Numerical examples

6.1 Square plate problem

The performance of the displacement recovery and error estimation is demonstrated
through the recovery based finite element analysis of an elastic 2D membrane plate taken as
an example. The example was used by Zienkiewicz and Zhu [15] to demonstrate the
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effectiveness of the ZZ error estimation. The benchmark example considers an infinite domain
problem where a 1x1 square domain is extracted and centred at the origin of the coordinates
with body loads (b, b,) over the domain. The corresponding Neumann boundary conditions
are imposed. The known exact displacement solution (#, v) and body loads in the form of 21
order polynomials are given in Equations 31 to 33.

u =0;v =-xy(l-x)(1-y) €1y
by =(a+ p)(1-2x)(1-2y) (32)
by =-2f y(1-y) - (a +2 f)2x(1-x) (33)

The constants a and S are given as
a =Ev/ [(1-2v)(1+v)]; B =E/[2(1+v)]

where £ and v are the modulus of elasticity and Poisson’s ratio, respectively, with a value of
1.0 N/mm? and 0.3.

The benchmark problem domain is discretized as uniform mesh and non-uniform mesh
using linear and quadratic triangular elements. The initial structured and unstructured meshes
are shown in Figure 3. The solution error convergence with order of refinement in the finite
element analysis and the effectivity of error estimation using the mesh based displacement
recovery and meshless displacement recovery for linear elements are given in Tables 1-4. The
results of the analysis of error convergence and effectivity using quadratic elements are shown
in Tables 5-8. The solution errors are presented in two alternative norms, i.e. the energy and
the L, norm. A minimum of five levels of mesh fineness are used in uniform and non-uniform
meshing. The convergence rates of the solution error presented in the L, norm with uniform
refinement of linear and quadratic elements in the original solution, the post-processed
solution using mesh based recovery using LS interpolation, the meshless recovery and the
mesh based recovery using MLS interpolation are found to be 1.93939, 2.15385, 2.06073,
2.07087 and 3.047331, 3.721499 3.83913, 3.84449, respectively. For linear and quadratic
elements, the convergence rates of error in the energy norm are 0.97875, 1.88603, 2.28605,
2.01082 and 1.978481, 2.88449, 3.19899, 3.31935, respectively.

VA)
VAV
A#b

INININININININININININININININININT

AVAVAVAVAV

NINININININININININININININONN

AVAVAVAVAVAVAVAVAVS

ININININININININI

ININININININININININININN,

3(a): Structured mesh 3(b): Unstructured mesh

Fig. 3 Square plate problem domain discretization
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Table 1 Error convergence and global effectivity for plate problem using displacement recovery (structured

linear element mesh, L, norm)

M. Ahmed

Error and effectivity
Mesh size Mesh based Mesh Mesh based
(1/h) FEM LS Effectivity | independent | Effectivity MLS Effectivity
(x107) | recovery 0) MLS recovery 0 recovery 0)
(x107) (x107) (x107)
1/4 5.36521 | 3.78408 0.709497 3.05484 0.793014 3.13677 0.647411
1/8 1.46955 | 0.81181 0.690517 0.68201 0.690152 0.71683 0.663645
1/12 0.66623 | 0.33314 0.682793 0.29994 0.679458 0.30878 0.668820
1/16 0.37753 | 0.18018 0.679482 0.16835 0.676664 0.17148 0.670996
1/24 0.16872 | 0.07739 0.676790 0.07478 0.675119 0.07547 0.672721
1/32 0.09509 | 0.04294 0.675747 0.04207 0.674692 0.04230 0.673370
Rateof |} 53939 | 2.15385 2.06073 2.07087
conv.

Table 2 Error convergence and global effectivity for plate problem using displacement recovery (structured

linear element mesh, energy norm)

Error and effectivity
Mesh Mesh based Mesh Mesh based
size FEM LS Effectivity, | independent |Effectivity,  MLS Effectivity,
(1/h) (x107) | recovery ) MLS recovery ) recovery C)
(x107) (x107) (x107)
1/4 | 93.74913 | 58.47843 | 0.929995 43.86287 | 0.923637 | 44.65509 | 0.877835
1/8 | 48.44923 | 16.79087 | 0.968643 8.37827 | 0.973875| 11.55328 | 0.956266
1112 | 3251236 | 7.77119 | 0.983109 3.32995 0.987285 | 5.06279 | 0.977898
1/16 | 24.44091 | 4.46214 | 0.989587 1.74236 | 0.992567 | 2.80995 | 0.986748
124 | 1632114 | 2.02873 | 0.994934 0.70853 0.996584 | 1.22637 | 0.993723
132 | 12.24803 | 1.15809 | 0.997014 0.37808 | 0.998051 | 0.68221 | 0.996356
Rateof | ) 57675 | 1.88603 228605 2.01082
conv.

Table 3 Error convergence and global effectivity (¢) for plate problem using displacement recovery
(unstructured linear element mesh, L, norm)

Mesh Error in L, norm
Mesh based Mesh Mesh based
No. of FEM LS independent MLS
elem. DOF (x107) recovery 4 MLS recovery 4 recovery 4
(x107) (x107) (x107)
45 66 2.71869 1.85310 [1.039810 1.20814 1.147404| 1.39813 | 0.96551
88 118 1.47472 | 0.81667 [0.993203 0.67965 1.185746| 0.66541 0.95090
223 270 0.55133 | 0.23674 |0.954800 0.23262 1,154244| 0.20895 | 0.93456
925 1014 | 0.10963 | 0.04527 |[1.064255 0.04052 1.123506| 0.04384 1.06037
1978 | 2106 | 0.04908 | 0.01943 |1.095941 0.01758 1.123434| 0.01900 1.09405

TRANSACTIONS OF FAMENA XLV-2 (2021)

49



M. Ahmed

Techniques for Mesh Independent Displacement Recovery in
Elastic Finite Element Solutions

Table 4 Error convergence and global effectivity (6) for plate problem using displacement recovery
(unstructured linear element mesh, energy norm)

Mesh Error in energy norm
Mesh based Mesh Mesh based
o (Do | 05 | recovery | 0 |Mistecovery| ¢ | recovery | °
(x107) (x107) (x107)
45 66 | 67.89001 | 44.07944 | 0.99671 25.32200 0.97832 | 33.50533 0.93269
88 118 | 50.17756 | 21.90273 | 0.97577 15.70293 0.98731 | 17.19762 0.95312
223 | 270 | 30.64371 | 8.43683 | 0.97830 6.53116 0.98927 | 6.80270 0.97306
925 1014 | 13.87145 | 1.89632 | 0.99341 1.23394 0.99402 1.66148 0.99301
1978 2106 | 9.28878 | 0.89337 | 0.99580 0.52999 0.99643 | 0.77846 0.99565

Table 5 Error convergence and global effectivity for plate problem using displacement recovery (structured

quadratic element mesh, L, norm)

Error in L, norm
Mesh size Mesh based Mesh Mesh based
(1/h) FEM LS Effectivity | independent | Effectivity MLS Effectivity
(x107) | recovery () MLS recovery ) recovery 0
(x107) (x107) (x107)
1/4 0.24489 | 1.03015 424214 0.03358 0.95715 0.04318 0.93427
1/8 0.02887 | 0.08912 3.17330 0.00259 0.98523 0.00326 0.97639
1/12 0.00842 | 0.01930 2.44485 0.00054 0.99301 0.00068 0.98850
1/16 | 0.00353 | 0.00638 2.02200 0.00017 0.99599 0.00022 0.99328
1/24 | 0.00104 | 0.00132 1.58496 0.00004 0.99821 0.00004 0.99692
Rate of | 3 14733 | 3721499 3.83913 3.84449
conv.

Table 6 Error convergence and global effectivity (#) for plate problem using displacement recovery (structured

quadratic element mesh, energy norm)

Error in energy norm
Mesh size Mesh based . Mesh Mesh based
(1/h) FEM LS 0 independent 0 MLS recovery 0
(x10"3) recovery MLS recovery 10°
(x107) (x10™) (x107)
1/4 13.16827 | 12.25770 1.25556 0.30250 0.99899 0.53221 1.00035
1/8 3.38825 1.72016 1.08271 0.03751 1.00000 0.05530 1.00067
1/12 1.51492 0.52885 1.04045 0.01003 1.00007 0.01431 1.00042
1/16 0.85400 0.22787 1.02434 0.00384 1.00006 0.00545 1.00027
124 0.38016 0.06980 1.01265 0.00098 1.00004 0.00139 1.00014
Rate of | g7048 | 288449 3.19899 3.31935
conv.
50
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Table 7 Error convergence and global effectivity (6) for plate problem using displacement recovery
(unstructured quadratic element mesh, L, norm)

Mesh Error in L, norm
Mesh based ’ dMﬁ‘Sf(l1 Mesh based
FEM LS independent MLS
I:lzrr?.f DOF (x10'3) recovery g MLS I;ecovery 0 recovery 0
(x107) (x107) (x107)
45 220 0.12936 | 0.41055 | 3.26779 0.01755 0.98343 0.01953 | 0.98842
88 410 0.04435 | 0.15772 | 3.62961 0.00606 0.98580 | 0.00593 | 0.98721
223 984 0.10565 | 0.02186 | 2.19821 0.00104 0.99232 | 0.00102 | 0.99524
925 3876 | 0.00122 | 0.00139 | 1.47747 0.00012 0.99600 | 0.00011 0.99888
1978 | 8166 | 0.00385 | 0.00085 | 1.42296 0.00004 0.99740 | 0.00003 1.00008

Table 8 Error convergence and global effectivity (#) for plate problem using displacement recovery
(unstructured quadratic element mesh, energy norm)

Mesh Error in energy norm
Mesh based Mesh Mesh based
No. of FEM LS independent MLS
elem. DOF (x10"3) recovery o MLS recovery 0 recovery o
(x107) (x107) (x107)
45 220 | 6.95319 | 7.94865 1.42861 0.28504 0.99739 0.33211 0.99859
88 410 | 3.45292 | 2.84782 1.24041 0.14183 0.99890 | 0.12038 | 0.99943
223 984 | 1.32823 | 0.67455 1.09216 0.04689 0.99873 0.04112 | 0.99886
925 3876 | 0.31903 | 0.07747 1.02221 0.00995 0.99959 0.00731 0.99984
1978 | 8166 | 0.14915 | 0.02533 1.01201 0.00584 1.00036 0.00433 1.00055

6.2

Infinite plate with a hole problem

A stress concentration problem in an infinite membrane, i.e., an infinite plate with an
opening of a unit radius (a) at its centre is also taken to evaluate the effectiveness of the
displacement recovery procedures. The plate is analysed under the action of a unit in-plane
traction applied in the x-direction. Due to symmetry, only the upper left square quadrant of
the plate is modelled and discretized with linear and quadratic triangular meshing schemes
(Figure 4). Along the symmetry line, shear stress and the normal displacement component are
zero. Equations 34 to 36 show the analytical solution for stresses and are assumed as exact
solutions for the problem presented by Zienkiewicz and Zhu [15].

where 7* = )* + x> and 6., is the uniaxial traction applied at infinity.

Oyx

O'y—

a? . . a* . 1
Oxy = Oc [0 — r—2(0.5 sin 260 — sin486) — 1.5Fsm 49_

a? a* 1
O [1 - (1.5cos 260 — cos40) — 1.5Fcos 49_

a2 a* 7
O [0 - (0.5cos 26 — cos40) — 1.5 — Cos 49_
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Fig. 4 Plate with hole problem domain discretization

The quality of error estimation in the stress concentration problem obtained with the
techniques for mesh independent based MLS displacement recovery is compared with the
techniques for mesh dependent based MLS and least square displacement recovery in terms of
error convergence and global effectivity. As the problem is a typical example of stress
concentration, the finite element solution error is quantified in the energy norm. The error
convergence and the global effectivity of error estimation with a linear and quadratic
triangular mesh using least square and MLS displacement recovery techniques are presented
in Tables 9 and 10.

Table 9 Error convergence and global effectivity (0) for plate problem with hole using displacement recovery
(linear element mesh, energy norm)

Mesh Error in energy norm
Mesh based Mesh Mesh based
No. of FEM LS independent MLS
elem. DOF (x10'3) recovery 0 MLS recovery o recovery o
(x107) (x107) (x107)

234 274 7.575 4.649 0.956607 3.741 0.908076 3.717 0.921135
439 496 5.787 2.882 0.948194 2.461 0.917531 2.529 0.927395

714 784 4.316 1.837 0.937876 1.665 0.933370 1.711 0.934449
1002 | 1084 4.048 1.742 0.926739 1.656 0.921302 1.638 0.919573
2415 | 2540 2.579 1.394 0.850214 1.382 0.845487 1.385 0.843176

Table 10 Error convergence and global effectivity (0) for plate problem with hole using displacement recovery
(quadratic element mesh, energy norm)

Mesh Error in energy norm
Mesh based Mesh Mesh based
No. of FEM LS independent MLS
elem. DOF (x10'3) recovery o MLS recovery o recovery o
(x107) (x107) (x107)

131 588 1.698 4.559 2.56915 1.469 0.829579 2.183 1.21923
234 | 1014 1.510 3.509 2.18115 1.342 0.729339 1.311 0.692823
439 | 1868 1.429 2.199 1.35794 1.323 0.488721 1.452 0.615069
567 |2392 1.414 1.695 [0.839770 1.321 0.501294 1.440 0.619218
1002 | 4170 1.428 1.495 [0.695226 1.368 0.296206 1.400 0.340926

7. Discussion

The benchmark problems, earlier studied by Zienckiewicz and Zhu [15] as validation
problems of the ZZ error estimation are used to test the effectivity of the displacement
recovery scheme based on error estimations. The error estimation effectivity at global and
elemental levels has been compared with the errors in both the energy and the L, norm. The

52 TRANSACTIONS OF FAMENA XLV-2 (2021)



Techniques for Mesh Independent Displacement Recovery in M. Ahmed
Elastic Finite Element Solutions

solution errors in the energy and L, norms presented in the tables show that the order of error
obtained by employing recovery procedures is much lower than the FEM solution error, and
the error convergence is also higher when compared to the FEM solution error with a
reduction in the mesh size. The effect on the error order is further enhanced when higher order
elements are taken for domain discretization. The effect on error convergence is reduced with
higher order elements, though the rate of error convergence is still higher than the FEM error
convergence with a reduction in the mesh size. While comparing the performance of the
energy and L, normes, it is found that the L, norm used for error representation should be used
with higher order element discretization for optimal performance as the effectivity, calculated
in the L, norm, converged to nearly one with higher order element discretization. The error in
the energy norm is versatile and equally suited to all type of elements with various error
recovery techniques. It is clear from the tables that the performance of the technique for
moving least square (MLS) interpolation based displacement recovery is better than that of
the technique for least square (LS) interpolation based displacement recovery employing
different norm and mesh discretization. The performance of techniques for the mesh
independent and mesh dependent based MLS recovery under different norms and mesh
discretization is the same as the obtained values of effectivity, and the rate of convergence is
the same. However, the order of error in the mesh independent MLS interpolation technique is
smaller in comparison to the mesh dependent MLS interpolation technique.

The application of the displacement recovery based error estimation in guiding the error
controlling strategies of the adaptive analysis is also demonstrated. Results of the adaptive
refinement are obtained for the meshless displacement recovery using the MLS interpolation,
the mesh dependent displacement recovery using the MLS interpolation and the mesh
dependent least square (LS) interpolation procedure. Tables 11 and 12 show global errors
(FEM and projected), the number of element and DOF in refined meshes, obtained from the
linear and quadratic elements of the initial mesh, to bring accuracy to the target accuracy
level. The global error of higher order elements, in both the energy and the L, norm, is much
lower than the global error of lower order elements. The target error of 4% is selected for
adaptive finite element analyses employing linear element discretization and a target error of
1% 1s fixed for adaptive analyses employing quadratic elements based on the recovered global
error in the problem. The computed global error for linear elements is the highest for the least
square interpolation based recovery and it is minimum for the MLS interpolation based
recovery technique and the error represented in the energy norm, while it is maximum for the
mesh independent recovery technique and minimum for the least square interpolation based
recovery technique when the error is represented in the L, norm. For quadratic elements, the
global error is the same for different recovery techniques and under different norms. The
adaptively refined meshes with a target error using the least square and MLS interpolation
based error estimation are given in Figures 5-12. The initial meshes are adaptively refined to
bring the solution error within the target limits and to distribute the error equally among the
elements. The number of elements required to achieve the target error represented in the
energy norm depend on the global error. It can be concluded that the adaptive analysis based
on interpolation recovery techniques may predict high errors zones and control the solution
error effectively.
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Table 11 Global errors (FEM and projected) and number of element (N) with DOF of adaptively refined meshes
(linear elements) using displacement recovery based analysis (4% target error for energy and L, norm)

Initial mesh
Displace-ment | No. Energy norm L, norm
recovery type of DoF
elem. Error | Error N DoF Error | Error N DoF
N) FEM | proj. FEM | proj.
Mesh 45 66 28.3 28.4 | 2609 2770 8.16 9.33 283 332
independent
recovery 88 118 20.9 21.0 | 2890 3066 4.42 5.23 116 148
(MLS)
Mesh based 45 66 28.3 28.9 | 2468 2622 8.16 7.95 158 190
recovery
(MLS) 88 118 20.9 20.8 | 2731 2896 4.42 4.22 97 126
Mesh based 45 66 28.8 32.1 | 4060 4254 8.16 8.60 141 617
re(cg‘s’e)ry 88 | 118 | 209 | 217 | 3249 | 3432 | 442 | 441 | 87 114
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Fig. 5 Adaptively refined mesh in plate problem domain using displacement recovery techniques
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Fig. 6 Adaptively refined mesh in plate problem domain using displacement recovery techniques
[linear initial mesh elements =45, 4% target error in energy norm]
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Fig. 7 Adaptively refined mesh in plate problem domain using displacement recovery techniques
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Fig. 8 Adaptively refined mesh in plate problem domain using displacement recovery techniques
[linear initial mesh elements =88, 4% target error, energy norm]

Table 12 Global errors and number of element (n) with DOF of adaptively refined meshes (quadratic elements)
using displacement recovery based analysis (1% target error for energy norm and 0.1% target error for

L, norm)
Initial mesh
Energy norm L, norm
Displace-ment | No.
of
recovery type DoF | Error | Error Error | Error
elem. . N DoF . N DoF
(N) FEM | proj. FEM | proj.
Mesh 45 220 2.9 2.9 384 1690 0.39 0.38 769 3284
independent
recovery 88 410 1.5 1.5 359 1580 0.13 0.13 218 986
(MLS)
Mesh based 45 220 2.9 2.9 400 1750 0.39 0.38 575 2489
recovery
88 410 1.5 1.5 323 1428 0.13 0.13 1 824
(MLS) 7
Mesh based 45 220 2.9 4.3 1110 4634 0.39 1.28 | 6929 | 28197
re(cﬁge;y 88 | 410 | 14 | 1.8 | 595 | 2532 | 0.3 | 048 | 1398 | 5376
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Fig. 9 Adaptively refined mesh in plate problem domain using displacement recovery techniques
[quadratic initial mesh elements =45, 0.1% target error, L, norm]
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Fig. 10 Adaptively refined mesh in plate problem domain using displacement recovery techniques
[quadratic initial mesh elements =45, 1% target error, energy norm]
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(a) Initial mesh (b) Mesh based (LS) (c) Mesh independent (MLS) (d) Mesh based (MLS)
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Fig. 11 Adaptively refined meshes in plate problem domain using displacement recovery techniques
[quadratic initial mesh elements =88, 0.1% target error, L, norm]
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Fig. 12 Adaptively refined meshes in plate problem domain using displacement recovery techniques
[quadratic initial mesh elements =88, 1% target error, energy norm]

8. Conclusions

In the present study, techniques using mesh independent and mesh dependent moving
least square interpolation for displacement recovery of the finite element solution
discretization error quantified in both the L, and the energy norm are proposed, and the
performance of the recovery techniques is demonstrated on benchmark elastic plate problems.
The mesh independent recovery procedure is based on the recovery of displacement over a
patch of nodes, independent of mesh connectivity, in the form of circular zones of the
discretized domain. The derivatives at any point in the element domain or node domain are
calculated from a better approximated displacement field using the least square fit of the
computed nodal displacement considering a higher order polynomial over a mesh dependent
element patch. The derivatives are also calculated using the moving weighted least square fit
of the computed nodal displacement considering a higher order polynomial over a patch of
mesh independent (or mesh dependent) nodes. The approach is improved with respect to the
existing approaches in which the derivatives are calculated from nodal values of stresses using
the same order polynomial function as that present in the basis function valid over an element
patch surrounding the assembly node considered.

The performance of the error estimator based on the mesh independent displacement
recovery has been compared with that of the error estimator based on the mesh dependent
displacement recovery, using the moving least square and least square interpolation
techniques. It is found that the MLS based recovery scheme results in more accurate
displacement and displacement gradients than the least square displacement recovery scheme.
The error convergence obtained by using the mesh independent and mesh dependent MLS
based recovery schemes is found to be better than the least square displacement recovery
scheme under the energy and the L2 norm for the error measure. In addition, the order of error
in the MLS based recovery scheme is smaller in comparison to the least square displacement
recovery scheme, hence the MLS recovery scheme is more effective than the least square
recovery scheme. The numerical results also show that the L, norm for error representation
should be used with higher order elements for optimal performance. It is concluded that the
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improved quality of error estimation is obtained by using the MLS interpolation technique
instead of the least square interpolation technique. The error computations using the mesh
based/mesh independent displacement recovery can be implemented in an adaptive analysis to
predict high error zones and to control the solution error effectively. The finite element
analysis based on the mesh dependent MLS displacement recovery is very effective in
converging to a predefined accuracy in the solution with a significantly smaller number of
degrees of freedom in comparison to the mesh independent MLS displacement recovery and
the analysis based on the mesh dependent least square displacement recovery.
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