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A DISCRETE-TIME SLIDING MODE CONTROLLER FOR THE
FERMENTATION PROCESS

Summary

This paper proposes a discrete-time sliding mode controller for the fermentation
process, which is adequately approximated by the first-order plus dead time model. The
contribution of the paper is an investigation into the suitable approximation of the time delay
for discrete-time sliding mode controller. The dead time is considered in two ways by the
first-order Taylor series approximation and the first-order Pade approximation. In the first
case, the discrete-time sliding mode controller is based on the integral compensation of an
output error, and in the second case, the stable system centre method is used. Numerical
simulation examples of the yeast fermentation process are given to show the effectiveness of
these two methods.

Key words: discrete-time controller, first-order Pade approximation, first-order Taylor
series approximation, fermentation process, sliding mode control

1. Introduction

The fermentation process (FP) has a wide range of applications, from the production
and storage of food [1] to the production of pharmaceutical products and wastewater
treatment. The FP control design is challenging. The main obstacle to precise control is the
presence of microorganisms [2], as well as the dynamics of FP, which is often
incomprehensible, strongly non-linear, and non-stationary [1]. The model parameters vary
over a prolonged period due to metabolic variations and physiological modifications [3]. On
the other hand, problems arise due to the inefficiencies of cheap and unreliable sensors used
for on-line measurement of model parameters [4].

The complexity and indeterminacy of FP usually do not allow conventional controllers
to provide the desired performance control systems and to meet technological conditions [5].
These problems were solved by using modern control methods, such as open-loop control [6,
7], adaptive control [8-10], model predictive control [11, 12], fuzzy control [13], artificial
neural networks [14, 15], probing control [16], statistical process control [17], and others.
However, control algorithms most commonly proposed are not very robust or very complex
and difficult to implement in practice [18].
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On the other hand, in recent years, a lot of attention has been paid to sliding mode
control (SMC) design [1, 3, 5, 19-30]. The main advantage of sliding mode is its invariance to
parameter uncertainty and external disturbances [5, 21, 23, 26, 27, 29, 30]. The smoothness of
the input variable is necessary for FP. Chattering phenomena in sliding mode are undesirable
for the precise control of FP [5, 30]. However, it should be noted that some attempts have
been made to solve the problems of the SMC design of FP [23-26]. Various techniques are
proposed to reduce chattering phenomena, such as the introduction of a boundary layer
around the sliding surface [23], filtering the control signal [24, 25], and realizing the sliding
mode to an auxiliary input variable [26].

All previous papers consider SMC in the continuous domain [1, 3, 5, 19-30]. This paper
proposes SMC in a discrete-time domain. The development of this controller significantly
simplifies the application of the sliding control theory to chemical processes. As a result, the
robustness of the system can be guaranteed from the beginning of the process, and the
reaching phase is eliminated. The obtained SMC has many advantages, such as fast response,
invariance to plant parameter deviations, and ability to compensate for external disturbances.

2. Model of the fermentation process

The first order plus dead time (FOPDT) model is a simple approximation of the
dynamic response of a process for the purpose of control design [31]. Industry reports that
the identification of process parameters is still responsible for high costs [32]. Despite
significant efforts to improve identification methods and to capture the dominant process
parameters in mathematical modelling, the process dynamics, which is not yet modelled,
causes errors in process parameters [32]. Therefore, approximations such as FOPDT are
useful to allow control design methods for non-control expert operators, such as those
widely presented in [33].

An efficient method for the modelling of FP is the use of empirical models, which use
low order linear models with dead time [28]. In most cases, FOPDT models are adequate for
the analysis and design of chemical process control [21, 27, 28]. They can be represented by
the following continuous domain transfer function [21, 27-30].

u(s) ts+1

G(s) (D
where
x(s) — Laplace transform of system state,

u(s) — Laplace transform of control,
K — process gain,

0 >0 — process dead time,

T >0 — process time constant.

By approximating the non-linear dynamics with FOPDT models, the modelling error is
introduced, which contributes to the degradation of the controller performance [34].
Conventional controllers (PID, Lead-Lag or Smith Predictors) are sometimes not sufficient to
compensate for these effects [29]. SMC can be designed to control non-linear systems
assuming that the robustness of the controller will compensate for the modelling errors arising
from the linearization of the non-linear process model [27]. The inevitable problem is the
choice of an adequate SMC method that maximally compensates for system modelling errors.

Control systems with dead time are difficult to analyse and simulate. The main reason is
that the closed-loop control system with a dead time system is an infinite dimension, i.e. the
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closed-loop has an infinite number of poles [35]. It is also difficult to determine all the poles
of the system. Some control analysis methods are designed for process models that do not
contain dead time, i.e., the transfer function models must be the ratios of polynomials in the
numerator and the denominator. For this requirement to be met, the dead time in a transfer
function model must be replaced by an approximation.

The dead time term (e_es ) can be approximated in two different ways. A first-order
Taylor series approximation transforms the dead time term in [21, 28, 30]:

_0s 1
e 2
Os+1 @)

The dead time term can also be written as a first-order Pade approximation [28]:

€_9S _ 1-0.50s

140505 ©)

A comparison among the dead time term, the first-order Taylor series approximation,
and the first-order Pade approximation shows that the first-order Pade approximation works
very well between 0 and 1 but beyond that, the approximation breaks down. On the other
hand, the Taylor series approximation improves as O increases. In [36], it is shown that the
first-order Taylor series approximation or the first-order Pade approximation can be
considered as good approximations for the dead time term.

The expression in the denominator of the relations (2) and (3) introduces a negative pole
in the left half-plane and thus has effects on the characteristic polynomial of a system. The
numerator of the relation (3) introduces a positive zero in the right half-plane, which must be
taken into account in the discrete-time sliding mode controller design phase. The Pade
approximation often gives a better approximation of the function than the Taylor series
approximation even in a situation where the Taylor series does not converge [37].

3. Design of discrete-time sliding mode controller

In the design of the discrete-time sliding mode controller, two approximations are used:
the first-order Taylor series and the first order Pade.

3.1 Discrete-time sliding mode controller based on the first-order Taylor series
approximation

In this section, a discrete-time sliding mode (DTSM) controller is developed based on
the first-order Taylor series approximation. Substituting the relation (2) into the relation (1)
yields:

K K b
G(s) = = 5 == 4)
(ts+1)(O@s+]) 105" +(1+0)s+1 s +ays+a
where
1 T+6 K
76 76 76

For the system (4), the traditional sliding mode is not used, because it has two motion phases:
the reaching phase, in which the system is sensitive to all disturbances, and the sliding mode
phase, in which the control system is robust, and its motion dynamics is described by a
reduced order differential equation related to the controlled process. SMC based on the
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integral compensation of an output error is proposed because it has only the sliding mode
phase, the control system is robust during the complete motion, but its motion dynamics is
described by a full order differential equation [35].

The system (4) using SMC with the integral compensation of an output error can be
described as follows:

Xm(t) = Am Xm (t) +bm u(t)+dr(t) (5)
where
z(t) 0 -1 0 0 1
X, ()= x(1) A,=/0 0 1 b, =0 d=|0
X5 (1) 0 —a; —a, b 0

This modified model of the system can be realized by a computer (discretely). The sampling
period T is selected according to the sampling. An equivalent discrete-time model of the
system (5) is [38]:

5%, (kT) = As x,, (kT) +bs u(kT)+d s r(kT) (6)

where

T T
1 AT Lo a1
Ag="" "2 b5=?je Tp_ dr, dfgz?je Td,, dr, (7)
0 0

The expression for 6x,,(kT) represents the first differential (in the next explanation k stands
for kT):

5x,, (KT) = xm(k+1%—xm(k)

First, to realize the control using the DTSM controller, the design of the switching hyperplane
is performed:

8(k) =5 X, (k)
where the switching matrix cg is determined by the solution P of the discrete-time Riccati

equation as

Cy = ba P (8)
The discrete-time Ricatti equation is given as
AlPA;-P-A]Pb; (b, Pbs+P)' bJPA;+Q=0

where
Q - diagonal matrix with positive elements.

The control of the DTSM controller for the system (6) is [34]

8(k)

u(k) =—(cs bs) ™" (cs Ay X, (k) +c5 ds (k) — K, (cs bs)™
gk

€)
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For the problem of chattering to be avoided, the control u(k) (9) is modified as follows [39]:

- o gk
k) =~ (e5 by) ™ (€ Agxu(B) € dy (0~ Ky ey by) ' 50— (10)
(k)| +ax
where:
Kg>| €5bsdma |, dinax - the maximum estimated value of the disturbance  (11)

a R, a >0, a-arbitrary positive constant for the elimination of chattering (12)

3.2 Discrete-time sliding mode controller based on first-order Pade approximation

In this section, the DTSM controller is developed based on the first-order Pade
approximation. Substituting the relation (3) into the relation (1) yields:

G(s) = K1-0.56s) _ 221(—2K95 _ 2d25+d1 (13)
(ts+D)(1+0.50s) 105" +(21+60)s+2 s +ays+a
where:
alzi a2:2T+9 dlzﬁ dzzﬁ
70 60 70 70

For the system (13), the SMC based on the integral compensation of an output error is not
used because its motion dynamics is described by a differential equation of the same order as
the controlled process. In that case, the robustness of the system can be impaired because it is
a transfer function with zero [39]. In order to ensure complete robustness with reduced order
dynamics, it is proposed to apply the stable system centre method.

The continuous-time state-space model of the transfer function (13) is
x(t)=Ax(t)+bu(t)
y(®) = dx(t)

B xl(t) B 0 1 _ 0 _
X(t)_[xz(’)} A_Lal —02} b_[l} a=li ]

This modified model of the plant can be realized by a computer (discretely). The sampling
period T is selected according to the sampling theorem. An equivalent discrete-time model of
the system (14) is [38]:

5x(kT) = Ay x(kT) + bs u(kT)

(14)

where

15
y(kT)=dsx(kT) (15)
where
AT T T
e -1 1¢ ar ¢ AT
A = b:=—|e"" bdr, ds=—|e"" ddr 16
5 7 5 T£ : ds T£ : (16)

The expression for 0 x(kT) represents the first differential (in the next explanation k stands
for kT):
Sx(kT) = x(k + 1%— x(k)
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z(k)

, the system
q(k)} Y

Applying the transformation matrix P with the condition that x(k) = P{

(15) is transformed into a normal canonical form:
oz(k) = A z(k) + A9 (k)
dq(k) = A1 2(k) + A q(k) +Ap3u(k) 17)
y(k) = q(k)

Using the stable system centre method, the internal state generator z(k) is generated
first. The desired signal g;(k) is a function defined by multiple sub-functions, where each
sub-function applies to a different interval in the domain. It can be presented by a known
linear exo-system. Let the characteristic polynomial for this exo-system be:

P(z)=z+p,
The stable system centre is an internal state, z.(k), which asymptotically converges to the
ideal internal dynamics

0z, (k) = Ay12, (k) + A1aq,4 (k)

The stable system centre for the system (15) can be defined by [40-42]:
6z, (k) = Ayyz, (k) +5,(K) (18)

The desired asymptotic behaviour of the internal state dynamics (18) is of the first order. It
can be defined as

0z, (k)+coz.(k)=0 (19)
Let us define the input to the stable system centre as:

Sc (k)= Az 94(k) (20)
and the equation of the internal state generator (19) as

0z, (k)+cgyz.(k)=—Pys.(k) (21)

The value P, is computed to be
Py=coAil  Z.=PRAp (22)

Internal state is generated as

Z
z(k)= Z+Cp r(k) (23)
0

The stable system centre method transforms the output error problem into a state error
stabilization problem [40-42]. The state errors will be stabilized to zero by SMC. Let state
errors be:

e, (k) =r(k)—y(k), e, (k)=z.(k)—z(k) (24)
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The sliding hyperplane g(k) is defined as

g(k) = e, (k) + Me, (k) (25)
The value M is selected so that the value of (A;;—A;; M) is a modulo <1. The DTSM
control for the system (17) is [40-42]:

k
u(k) = As3 M (Ayye, (k) + Apye, (k) + A min('g (T )

,a+ B|g(k)|) sgn(g(k)) (26)

where

a>0, 0<pT<I (27)

4. Illustrative example

For the DTSM controller synthesis to be verified, computer simulation of the regulation
of the yeast fermentation process based on the first-order Taylor series approximation and the
first-order Pade approximation is done.

4.1 Yeast fermentation process

With the presence of living organisms, the control of the fermentation process is more
complex when a conventional chemical reactor is used. The dynamics of the fermentation
process is highly non-linear and difficult to understand. It should be noted that yeasts have
their own regulatory mechanism, which means that model parameters may not remain

constant for long. The fermenter receives a jet, with unknown temperature, T; | and unknown
glucose concentration (feed substrate), S f- The temperature of the fermenter, T is controlled

by manipulating the jacket flow rate [43, 44]. The input stream is assumed to be equal to the
output stream, i.e. the volume and physical parameters, such as density and heat transfer
coefficients, are constant.

The reactor is modelled as a continuous mixing tank with a constant flow rate. The
process model is described by five non-linear differential equations [43-45]:

dx

= =uX-DX 28
o M (28)
dS Hx Hpx

DX DX ps, -8 29
& R, R, (S =5) 29)
dpP

5 X -DP (30)

T ey Kr 4y

—_—= T-T)+D(I -T 31
&t pC,Yy pCpV( +D(T;=T) (1)
d7;, F; K; A

—L =L (T -T)+—LL—(T-T)) (32)
dr Vm PjiCpiVm
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As we are interested in ethanol for glucose consumption, the evolution of CO; is not
estimated in this model. Table 1 shows the steady state of the continuous yeast fermentation
process. The full non-linear model (28-32) is used to determine the characteristic parameters

(K, 0, 1) of the FOPDT model.

The mass and energy balance equations (28-32) describing the behaviour of a
continuous yeast fermentation process are non-linear, while the most commonly used control
strategies are based on linear system theories. Therefore, for the realization of the control
system, it is important to make these equations linear. The above model is made linear by the
Taylor series approximation [46]. The transfer function is determined using the linear model
and steady-state values of parameters (Table 1). The transfer function thus obtained is then
converted to the FOPDT model. The Reaction Curve method [47] FOPDT and the FIT 3 [48]
are used to obtain the characteristic parameters ( K, 0, 7) of the FOPDT model. The FOPDT

model is given by

P K -0Os
G(s) = (5) _Ke (33)
X(s) 1s+1
Table 1 Steady state values of the process model parameters

V - fermenter volume 1000 1| £ - flow rate of jacket 18 1/h
V,, - jacket volume 251 |R,, - growth coefficients for yeast 0.65
X - yeast concentration 1 g/l R, - growth coefficients for alcohol 0.45
S - glucose concentration 30 g/l|p - density of mixture 1070g/1
S £ - feed substrate concentration 60 ¢/} p; - density of cooling water 1000g/1
P - ethanol concentration 15 g/1| C,, - specific heat capacity of mixture | 4J/kgK
T - fermenter temperature 27°C |y, 'y - heat evolved per gram 1K/gr
T: - inlet temperature 25°C| Ky - heat transfer coefficient 3.6¢’J/h’K
T} - jacket temperature 29 OC AT - area of heat transfer 11]'12

4.2 Discrete-time sliding mode controller based on the first-order Taylor series
approximation

For the relations obtained for the DTSM controller synthesis to be verified, computer
simulation of the regulation of the yeast fermentation process based on the first-order Taylor
series approximation is done. By using the relation (2), the FOPTD model (33) takes the
following form:

0.0048
G(s) = (34)
s°+0.0594s5+0.0327

The system (34) using SMC with the integral compensation of an output error is described as
follows (5):

0 -1 0 0 1
%, (1=[0 0 1 |x, O+ 0 |u@®+]0 ) (35)
0 —0.0327 —0.0594 0.0048 0
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The discrete model of the system (35) for the sampling period T =1ms, according to (7), has
the following form:

0 —0.9996 0.002 0 0.998
5x,,(k)=[0  0.002 0.9998 |x, (k)+| 0.002 |u(k)+|0.001 |r(k)
0 -0.032994 —0.059392 0.004792 0

Let the diagonal matrix be:
1 00

Q=0 1 0

0 0 1

then the switching matrix ¢ (8) 1s

s =[-256.37 4132 5.34]
For the realization of the DTSM control (10), the following values of parameters can be
selected (11, 12):

k=40 a=0.1
Based on the selected parameters of the DTSM controller, the simulation results are presented

in the form of a diagram of the response (Fig. 1), control (Fig. 3), and switching hyperplane
(Fig. 5). The system has good properties of eliminating chattering (Fig. 1).
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Fig. 1 Step response (Taylor series approximation) Fig. 2 Step response (Pade approximation)
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Fig. 3 Control (Taylor series approximation) Fig. 4 Control (Pade approximation)
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Fig. 5 Switching function (Taylor series approximation) Fig. 6 Switching function (Pade approximation)

4.3 Discrete-time sliding mode controller based on the Pade approximation

For the relations obtained for the DTSM controller synthesis to be verified, computer
simulation of the regulation of the yeast fermentation process based on the first-order Pade
approximation is done. By using the relation 3, the FOPTD model (33) takes the following
form:

—0.0048s+0.0095
G(s)=— (36)
s°+1.12735+0.0655

The continuous-time state-space model of the transfer function (36) is:
x(t) :{ 0 : }x(t)J{O}u(t)
—-0.0655 -1.1273 1 (37)
y(t)=[0.0095 —0.0048]x(t)

Using O transform for the sampling period T =1ms, the discrete-time model of (37),
according to (16), is:

5x(k) = [ 0 0.9996 }x - {o,oooz}u(m
—0.065492 —0.004795 0.9996 (38)

y(kT)=[0.0095 —0.0048]x(kT)

Applying the transformation matrix P:
0.992 -0.0002
B {0.0095 - 0.0048}

the system (38) is transformed into a normal canonical form:

0z(k)=0.9996 z(k)+0.065488 q(k)

0q(k)=0.9996 z(k)+0.00499 q(k)+0.999 u(k) (39)

y(k) = q(k)

The model of the desired signal r(k)=const can be defined by the characteristic polynomial
(18), P(z) =z +p, . The stable system centre for the system (39) can be defined as

z.(k)+ ¢y z.(k) =0 with c¢;=0.1965 i.e.z+p, with p, =-0.9997835
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Let us define the input to the stable system centre (20), s.(k)=-0.065488r(k), and the
equation of the internal state generator (21), 6z,(k)+0.1965z.(k) = —P, s, (k). The value P,,
(22), is computed to be P, =0.1965. The internal state (23) is generated as

0.0012969

z.(k)=—"""""
() z+0.1965

(k)

The internal state error dynamics (24) will be substituted by one order selecting sliding
hyperplane as (25), where M =0.8. Based on the relation (27), it is chosen that  =5,8=0.

Then SMC (26) is selected to be

u(k) = 0.80049%, (k) +0.00399%, (k) +1.001min(1000|g (k)

,5) sgn(g(k)) (40)

The simulation results are shown in the form of step response (Fig. 2), control (Fig. 4), and
switching hyperplane (Fig. 6). Based on the results obtained, it can be concluded that the
system is stable. The control (40) is smooth, and the switching function dynamics is without
chattering.

Finally, in the case of the first-order Taylor series approximation and the first-order
Pade approximation, the realized DTMS controller enabled the system stability and the
elimination of chattering. The step response in the case of the first-order Taylor series
approximation has a higher response speed and enters the sliding mode faster. The step
response in the case of the first-order Pade approximation exhibits non-minimum phase
behaviour (undershoots) at the beginning of the process. The control and the switching
function have much higher amplitude in the case of the first-order Pade approximation than in
the case of the first-order Taylor series approximation. In the former case, it should be noted
that the control and the switching function as well as the step response show non-minimum
phase behaviour at the beginning of the process.

5. Conclusions

This paper has presented the synthesis of the DTSM controller based on the FOPDT
model of the fermentation process. The DTSM controller was obtained by the integral
compensation of an output error and the stable system centre method, depending on whether
the first-order Taylor series approximation or the first-order Pade approximation was used.
These methods are applied to the yeast fermentation process. The examples presented indicate
that the DTSM controller performance is stable and quite satisfactory despite nonlinearities
over a wide range of operating conditions. The proposed DTSM controller based on the first-
order Taylor series approximation can yield better dynamic performance than the DTSM
controller based on the first-order Pade approximation.
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