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A SIMPLE AND EFFICIENT THREE-NODE CURVED BEAM
ELEMENT FOR THE OUT-OF-PLANE SHEAR, BENDING AND
TORSION BASED ON THE LINKED INTERPOLATION CONCEPT

Summary

The paper presents a new three-node curved beam finite element for out-of-plane
actions constructed on the expanded linked interpolations used before on a straight beam. The
shear strain constraints are immanent in displacement interpolations and the geometry is
interpolated compatibly with the used kinematics, so that the element stiffness forming
procedure is very simple and can easily be implemented in any programming code.

Different than the standard, an equivalent curved beam kinematics is introduced, which
enables the use of global displacement variables instead of mostly used displacement parameters
in local coordinates, avoiding the coordinate transformation for nodal degrees of freedom.

Timoshenko beam theory assumptions are taken into account and the element was
tested on a set of benchmark problems to demonstrate that the element shows no shear or
membrane locking.

Key words: curved beam element, out-of-plane actions, Timoshenko beam theory,
problem-independent linked interpolation

1. Introduction

The problem of modelling curved linear structures with the finite element method has
already been widely analysed, and many curved beam elements have been presented in the
literature for that purpose. Among them, plane curved elements with out-of-plane actions
attracted minor interest, but there are still quite a number of good elements in the curved form
capable of capturing bending, torsion and shear strains in curved element formulations. The
literature overview points to two different approaches covering the subject.

Typically, a curved beam element is modelled with a constant geometry curvature
(constant radius) in the beam plane with three unknown parameters per node (degrees of
freedom), defined in the local coordinates, w;, 8z; and Or;, representing the out-of-plane
displacement, the bending section rotation and the twist section rotation around the normal
and tangential axes of the curved beam section, respectively. Knowing the geometric
curvature radius of the beam, the exact solution of the differential equations gives
displacements and stress resultants as trigonometric functions. If the curved element is
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modelled with only two nodes and the unknown displacements are simply linearly
interpolated along the beam’s axis, these interpolations actually underestimate the geometry
of the beam, which it is not linear. Obviously, some locking problems must occur [1]. The
solution to that problem lies in increasing the polynomial order for the displacement
interpolations, e.g. by introducing more nodes in the element model [2] or by enhancing
interpolations with higher order penalty terms depending on the type of locking [3].
Generally, it was concluded in [2] and [3] that the use of the same polynomial order for all
displacement field interpolations introduces inconsistency in the strains. On the other hand,
the problem of inherent locking can be overcome by introducing a mixed field approach,
where, besides the deformations, the strains are also interpolated separately [4], [S]. However,
whenever the curvature radius is held constant in the finite element description, a problem of
approximating a straight beam exists with the radius becoming infinite and the trigonometric
solution getting an indeterminate expression. That situation results in another kind of locking
caused by the simple straight geometry of the beam.

Another approach is to approximate the beam geometry as well as beam displacements
in the same or similar way, e.g. by the polynomials of the quadratic or higher order. Since the
curved form of the beam can be modelled at least by three nodes, the Lagrangean quadratic
polynomial is appropriate for all interpolations and the element is isoparameric [1]. The three
nodes can easily be formed in the straight line and no locking should be expected out of the
beam geometry. Again, some other kind of locking cannot be avoided, such as the “thin limit”
locking, where the derived shear strains produce too stiff element models, unless higher order
polynomials are chosen for the deflection field rather than for the rotations. Geometry of the
curved element [6] is modelled with five nodes as is the deflection field, but the rotations are
interpolated with four node parameters (the element middle node is left out). Furthermore, in
[7] the locking problem is overcome by a mixed formulation: the shear field is interpolated
linearly, the twist rotation is interpolated quadratically and the deflection is cubic, while the
bending rotation is not interpolated at all. Both methods avoid locking of any kind and can
reproduce the straight beam problem with constant shear exactly in every point.

The standard procedure in the most commercial finite element programs uses the
Lagrangean interpolations for all fields (displacement and rotations) on two or three-node
beam elements and the reduced integration technique in the stiffness matrix formulation,
actually resulting in constant strains for the two-node beam element or linear strains for the
three-node beam element.

The linked interpolation technique uses the Lagrangean interpolation for the rotations
and one-order higher polynomials for the displacement, with the higher order terms related to
the nodal rotations. The linking expression for the displacement is chosen to produce constant
strain fields for the two-node element and linear strains for the three-node element. The same
result is obtained by applying the reduced integration technique. It would be demonstrated
here that the linked interpolation could efficiently be used even for the curved beam forms in
the out-of-plane problems, with even better performances than the standard procedure.

2. Basic equations

In defining the problem of a curved beam with its geometry described in the x-y plane
while subjected to out-of-plane forces, among all three space displacements and three space
rotations of the beam cross-section, only the transverse displacement w and two rotations
around the local in-plane axes 0, and 0; are significant. Related to them, only cross-sectional
bending moment M3, torsional moment —torque My and transverse shear force V. are active
stress resultants, see Fig. 1.

The problem of the curved beam is usually defined in the literature by three sets of
equations [1], [4], [7-12]. According to the orientations of the assumed global and local
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coordinates as well as to the assumed orientation of the beam geometry radius, the equations
in the cited literature can have different signs. According to the positive orientations from
Fig. 1, the following equilibrium equations for the differential segment of the beam, placed in
the x-y plane and subjected to the out-of-plane actions, are set:

dr
Z=0: —=—¢q_, 1
2 - (1)
ZM”:(); %Jr&_rf:o, 2)
ds R
> M, =0: My _Mp (3)
ds R

Fig. 1 Curved beam — involved displacements and stress resultants for out-of-plane actions. Positive orientations
are depicted.

Then, the kinematic and constitutive equations for the linear analysis are also obtained:

7Z=%+9n, @
KBZKUZ%-F%, ®)]
72=G—24, (7)
0= ®)
,(T_G&[;, ©)

Among these nine equations, the most important are kinematic equations (4)-(6), as the
equilibrium in the finite element modelling will be imposed by the total energy minimization
procedure, while constitutive relations (7)-(9) are simple transformations of the strains to the
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stress resultants in the linear elasticity material conditions. In kinematic equations, only (5)
and (6) are affected by the curved beam geometry. Equation (4) is actually identical to that of
the straight beam.

3(x, 1)

L(x,y)

Fig. 2 Possible distortions of three-node beam configuration: a) general quadratic curved beam,
b) straight but quadratic beam, ¢) straight linear beam

Then, the position on the beam axis is determined with the Lagrangean interpolation,
defined on the bi-unit domain [-1,1] by a position parameter ¢:

R N

X

2 2
y:(_é:)(%)yl +4(%j(%j'yz +§(%J'y3 =), +%§+%6€25 (11)

with (x;,y7), (x2,)2), (x33) as co-ordinates of the three arbitrary chosen nodes of which the
first and the third node are taken to be at the beginning and at the end of the beam and the
second one is an arbitrary axis position. The abbreviations Axand Ay stand for the total

segment projection differences (Ax=x; —x,,Ay=y,—»,), and the quadratic geometric
differences are expressed as A’x = x, —2x, +x, and A’y =y, =2y, + y;.

The beam axis curvature present in (2)-(3) and (5)-(6) is a directional quantity, which
can be expressed in terms of position parameter £ as

1 _d’yde dixdy _de?dé de?de (12)
R dsz ds d52 ds ds 3
&)

and can be formulated for the parabolic beam geometry as
2, A e o A [ A A2y
1:Ay(2+AX§j AX(z+Ay§)=A2y_Ax_A2x.Ay=2A123 , (13)
R ds )’ S(ds) ds )’
& i) (&)

2 2
with %:J(%sz-gj +(%+A2y-§j =J. (14)
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J being the Jacobian of the local to global coordinate mapping, and where A,,,,1s the area of

the triangle formed by the three beam element nodes. The curvature of the beam is a rational
function of variable ¢, with a constant numerator and a variable part in denominator L.

<

s

Fig. 3 Geometry of the curved beam problem and positive orientations of involved variables

3. Curved beam distortions

With an infinite geometry curvature radius, the beam is just a standard straight beam
with two nodes connected in the shortest way. Further, if intermediate nodal point “2” is
selected to be at the middle point M of the straight line connecting end node points “1” with
“3” then:

B L N e (15)
2 2

and the quadratic differences will vanish (A°’x =0 and A’y =0), meaning that the straight
beam element is linear in geometry (example c) in Fig. 2). The beam can still be straight even
when (15) is not satisfied (example b) in Fig. 2), but this beam should be considered as
quadratic since A°x#0 and A’y #0, like any other curved form beam of example a) in
Fig. 2.

The geometry curvature (12) and its beam geometry radius are signed values. Nodes 1,

2, and 3 define a parabolic curved beam geometry in (10), (11) and (13), while the pertaining
curvature is positive if the nodes in a “triangle 1-2-3” are positively oriented (Fig. 2).

4. Alternative Kinematics

Since the chosen kinematic equations are the most sensitive issue in modelling curved
beams subjected to out-of-plane actions, let us examine how they can be justified. Firstly, we
shall consider the standard kinematics (‘“kinematics 1) on the beam segment of differential
length ds. There are two independent rotations around the local main axis 6 and 6, of the
initial cross-section and the increased values of these rotations at the other segment end. Due
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to the curved form of the differential segment, the total change of these rotations around the

local axis of the end cross-section is equal to the total curvature changes in the & and n

directions (Fig. 4), and they are torsional deformation curvature x=ds and bending
deformation curvature x,,-ds.

Fig. 4 Kinematics 1

In direction 7 it is: k,-ds=0,+d0, -0, cosdp+0;sindp,
and in direction it is: x; -ds = 0; +d0; — 0z cosdp - 6, sindg .

From cosdp =1 and sindp =dep = % , (5) and (6) are obtained.

_ds :
do=p ) A
° 0,+db, .
R 0, +d0,
/ E/d\
7
==
_ - A |
0, \/ 7‘
y dx
0, ¥

Fig. 5 Kinematics 2

Based on Fig. 5 the same deformation curvatures can be expressed (“kinematics 2”)
for direction n: K, ds=d0,cosa~df,sina,

and for direction &: kg ds=dO,cosa+db,sina.
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From cosa = % and sina = Q it follows:
ds ds

o 230, dx do, dy (40, dxr do, dy (5a)
77 ds ds ds ds dé dé d§d§J2
do do,
K§=%%+_yd_y do, dx 49, dy (6a)
ds ds ds ds d§d§ dgdgﬂ

Here, (<) 1s the angle between the x-global axis and the tangent at the curved beam point and is
determined by local variable position ¢. Now, curvatures ksds and x,ds can be expressed only
by the differential changes of the global rotations and by differential beam geometry changes
(52) and (6a). The same result can be achieved directly from (5) and (6) after substituting the
local section rotation with the global rotations and after introducing (13) and (17):

Ax 2
—+A x-&
cosa(&) = ((115 f’ (17a)
dé
Ax
—+A x-&
cos (&) = ‘jif e (17b)
¢

Kinematics 2, formulated by (5a) and (6a), brings some obvious advantages over
kinematics 1. It gives a possibility to interpolate the global rotations instead of the local
rotations, thus eliminating the need for coordinate transformations of the element stiffness
matrix from the local to the global coordinates, speeding up the calculation procedure. The
resulting items of the stiffness matrix would have global orientations. Secondly, the
interpolations for both rotations are treated equally as derivatives in (5a) and (6a) and would
retain the same polynomial order, which is not the case with (5) and (6). The beam geometry
interpolation is treated in the same way leaving a possibility of interpolating standard
polynomials for the geometry of the curved beam and they can be defined just by nodal
coordinates. There is no need to introduce any beam geometry curvatures or the curvature
radius from (13) in further formulations.

5. Linked interpolation for a three-node curved beam element

Now, the linked interpolation procedure can be formulated as in [13] and [14] for a
three-node beam element since only the elements with more than two nodes can model a
curved form geometry. The transverse displacement is interpolated with a higher order
polynomial than both rotations, since the cross-section bending rotation should equal the
derivative of the displacement expression in the thin limit conditions (shear strain should
vanish in (4)). Since the curved beam geometry is also involved, this interpolation should be
cubic multiplied by the linear part (4™ order polynomial in local position variable &), as the
Jacobian (14) coordinate transformation is also formulated with the linear components (as it
was done in [15]).

W=_§1_7W1 +(1_§2)W2 +§1-;§W3+§;§3 Wy +&-wyy) =

:W2+%§+A22W§2+§_4§3 Wy +&-wy,)> (18)
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where linear and quadratic differences of displacements are Aw=w,-w,,
2
Aw=w —2w, +w,.

At the beginning, higher order terms (the cubic and the quartic in (18)) are related to
some unknown internal parameters (degrees of freedom), signed with wy; and wy,. The
accompanying interpolations for global rotation components will be the standard Lagrangean
functions passing through the three-node values. Nevertheless, opposite to other research
approaches and with the benefit given by expressions (5a) and (6a), the interpolations will be
set for global projections of the cross-sectional rotations as follows:

9 A A2
0,=) NO,=0,+ 0x§+ 2 £, (19)
R ) ’ 2 2

9 A, N0,
0, =2 N0, =0, + ==&+ —¢% 20)

i=1

where N; are the standard Lagrangean quadratic interpolation functions associated with nodal
rotation parameters and on the right there is its polynomial counterpart form and

2 2

AHX = 0)63 — Uy, A Hx = gxl _29)62 +9x3 and Aey = 0)’3 —0y15 A Hy :Hyl _29)/2 +0y3 .

For a three-node curved beam element under out-of-plane actions the interpolations
involve complete forth-order expansion in the beam transverse displacement w and quadratic
in the rotations, using nodal parameters w;, ws, w3, 0y, 02, O3, 0,1, 0,2, 6,3 and two extra
internal parameters w;,; and wp;, in total 11 independent degrees of freedom.

Shear strain can now be expressed from kinematic equation (4) and the global rotations
are introduced instead of the local 6, as

7Z=d_WE_9xd_yd_§+gyE£= d_W_gxd_ywy% 1. (21a)
déds “déds  YdEds \dE Tdé P dE)J

Introducing (18), (19) and (20) into (21a) a rational quartic polynomial expressing shear
can be derived as follows:
Aw w Ax A
}/z 2{24-4}-)1_ y27+0x27y+

A6
+ §(A2w+% +—=

2
+f{-3w“+“’y“ A0, oy KO by 80, Azy}

Ax Ay || 1
+ & - +AO0 — —AO — |t —. 21b
f{ Wy, » N 2}}J (21b)

In order to eliminate the higher order terms associated with &2 and &%, which prevents the
shear strain to take the linear form as it was done in [15], our free parameters w;; and wy, are
now set to

W, =Z(A20y %meyﬁx—ﬁex %—Aﬁxﬁy} (22)
2 2
Wy, :AZH},%—AZ x%- (23)
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The beam shear strain gets now its final form:

2 2
’ Z{A_zij 1(«9y1+40y2+«9y3 X3-x 0 +40,+05 13- 0 +Aﬁyﬂ—A9xﬂj+

3 2 2 2 2

03/3 _eyl X3 — X _‘9x3 -0, Vs =y "

+§'(Wl —2w, +w, +

2 2 2 2
. 0,+20,+0, Ax 0,+20,+0, Ay 1 (24)
2 2 2 2 )1 J

The bending cross-section curvatures are easily derived from (5a) and (6a) as:

_ Hy3 _'gyl AD X3~ X Ax
Kq_ T-‘r y.é‘ (74_ /:]_

(O = O AR EER 25
( . + A0, gj[ Sy .§ﬂ]2, (25)
K{::wagy.g}(%wy.g}

0.-0 X, — X 1

Zx3 Tl . .23 1 . . 26
+( 5 + A0, 5)[ 5 + Ax 5)}J2 (26)

Now the element stiffness matrix can be simply formed by the standard integration rule
over the element domain with the B-type bar matrices from (24), (25) and (26):

K, =Bgu,, (27)
K. =Bu,, (28)
7.=Bu,, (29)

with vector u, as a vector of the unknown nodal degrees of freedom:

u :{wl,ﬁ w,,0,,,0,,,w3,0,5, y3}T' (30

n

0

x1>%yl»

The element stiffness matrix is then formed with three independent contributions, the
bending energy part, the torsional energy part and the shear energy part:

K=Kz +Kr+K, = [BLEI;Bpds+ [B{GI;Brds+ [B]GkAB ,ds - (31
Le Le Le

The solution to some curved beam finite element model can now be reached by the
standard minimization process of the total potential energy of the FEM model. Nevertheless,
any plane beam problem can be structured with a chain of curved beam elements that can vary
for a given curved geometry, determined only by its three nodal positions.

6. Examples

Hereinafter, the presented element will be named CBLI-3 after a curved beam element
with linked interpolations generated for three nodes and will be further tested on some
benchmark out-of-plane beam problems and compared whenever it is possible to the results of
other curved beam elements from the literature.
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6.1  Quarter curved cantilever beam subjected to out-of-plane moment

Firstly, the present parabolic element CBLI-3 is tested on a simple numerical problem of
a quarter of the circle clamped beam, subjected to tip loads on the beam free end. If moment
load My, around the y-axis is applied with a bending effect on the cross-section in 4 (Fig. 6),
there is no shear strain involved in this problem, leaving bending and torsional strains to
couple along the circular geometry of the beam.

Fig. 6 A curved cantilever beam subjected to out-of-plane tip moment

The numerical data for this problem employed by MacNeal and Harder [16] are as
follows: the inner radius is R;=4.12, the outer radius is R,=4.32, the thickness of the beam is
t=0.1, the material data are E=10e7, and v=0.25. A unit moment is applied at the free end. In
this example, the cross-section of the beam is rectangular and its width can be evaluated by
the radius difference, 5=0.20.

The results of the finite element modelling involving one to up to eight proposed curved
beam elements with a constant problem curvature are compared to the exact values for the tip
node displacement and the two rotations about the global coordinate axes (correspond to the
section bending and torsional rotations in A) that can be evaluated analytically from (32) to
(34) and are given in Table 1 with the problem numerical data.

2
w =Ml (1 L, (32)
2 \EI, G,
o MuRrf L 1] (33)
” 4 \EI, GI,
g MR L 1) (34)
2 |\ EL, Gl
Since G=2(1E)=0.4-E and 7, =0.2289-br’ =0.45776-10", the torsional section
+v

stiffness is GI, =183.104 . At the same time the bending section stiffness is £/, =166.667 , S0
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that actual stiffness ratio is gIB
4

T

equally contributing to the control values for w, and 0,4.

Table 1a

moment M, 4=1.

D. Ribari¢

=0.91, giving both bending and torsional strains, almost

Tip displacement and rotations for a quarter of the circle curved beam model with constant R and tip

Number of CBLI-3 FRAME from FEAP [17]
nodes Wy O, 4 64 Wy Os4 Oy.4
3 0.1014088 | 0.0012355 | 0.0374932 | 0.095046 | 0.0012301 | 0.037019
5 0.1020014 | 0.0011422 | 0.0379529 |0.10028 | 0.0011588 |0.037744
9 0.1020509 | 0.0011368 | 0.0379852 |0.10161 | 0.0011420 | 0.037926
17 0.1020542 | 0.0011365 | 0.0379872 |0.10194 | 0.0011379 | 0.037972
I({;‘;’rg’:)e 0.1020544 | 0.0011365 | 0.0379874 |0.1020544 | 0.0011365 | 0.0379874

Although the geometry of the quarter of the circle is modelled by parabolic element
segments with CBLI-3, the convergence of the control data is rather fast even with the coarse
element meshes, especially when compared with the typical two node constant strain beam
element, as the one used in FEAP program [17] (see Table 1a) .

It has been reported in [8] that the curved elements can react with locking behavior if
the section stiffness ratio reaches both extremes. Here we want to test this influence with the
present curved beam element. This has been done by appropriate numerical choice of /z and
I7. The results of various flexure-to-torsion stiffness ratios are given in Table 1b. wy, is a
finite element result for the model with 8 curved elements, and w, is the analytical solution
from (32).

Table 1b  Effect of the flexure-to-torsion stiffness ratio (EI/GJ) on the normalized transverse tip deflection of a
curved cantilever beam subjected to out-of-plane unit tip moment, M, ,=1.

E/Grr 107 107 10 107! 1 10! 10?
wa/ws | 0.9969 | 0.9977 | 0.9993 | 0.9999 | 1.0000 | 1.0001 | 1.0006

10*
1.0031

10°
1.0023

These extreme ratios cannot be reached for an ordinary thick or thin beam section. For
example, if the thickness of the section of the initial problem is taken 7=0.01, so that
I, =0333-bt =0.6666-10"" and GI, =0.2667, the corresponding bending section stiffness is

EI, = 0.1667 and the resulting stiffness ratio is just f;IB =0.625 . Extreme ratios, for example
7l

T

Ely =0.001 or less, are unnatural as they are in the opposite ratio. Nevertheless, the

T
presented element is obviously insensitive to the curvature-related locking on the flexure-to-
torsion stiffness ratios.

6.2  Quarter curved cantilever beam subjected to out-of-plane tip shear load

The next test problem will involve a shear strain part of the stiffness matrix. The same
geometry is used for the curved beam model of the quarter of the circle beam as in the
previous example, but this time loaded with the tip out-of-plane force at the free end of the
beam (Fig. 7).
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Z,

ﬂ %4 X
B

Fig. 7 A curved cantilever beam subjected to out-of-plane tip shear load

The force is of the unit magnitude and the analytical results are expressed as in [12].
This time shear strains are included in the analysis together with the bending and torsional
parts, and the displacement and rotations at the beam free end are expressed as follows:

w, =

7 F.R 7 F.R’ FZR3[ 37r]
_ _ + 2_7

2GkA 4 El, GI, 4 (35)
1F.R* 1FR
TR, 26l (36)
B T
2 2
xA:ZFZR _F.R (1_;;]. (37)
44 El, GI,\ 4

Moreover, the finite element model involves one to up to eight proposed curved beam
elements and the results are shown in Table 2a.

Furthermore, the convergence of the results is very fast despite the parabolic geometry
interpolation of the circular beam. Additionally, the influence of the number of the Gauss
integration points on the result convergences is analysed. The stiffness matrix is calculated
from strain expressions (24) to (26) and the rational functions have to be integrated in (31).
The nominators of the integrands are quartic functions in the bending and torsional parts, and
are quadratic for the shear contribution. It can be concluded from Table 2a that three
integration points suffice for the best integration calculus. Even with the two-integration point
procedure, surprisingly good results are obtained. Actually, the results with two integration
points are identical to the results of the 3-node curved beam element from the commercial
FEM program (e.g. ANSYS).
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Table 2a  Tip displacement and rotations for a quarter of the circle curved beam model with constant R and tip
moment M, 4=1.
Number of
integration Number of CBLI- Wy Oy 4 O, 4
i 3 elements ‘ y‘
points

1 0.4845123 0.0626041 0.1021005

5 2 0.4993775 0.0630208 0.1020576
4 0.5003683 0.0630466 0.1020546
8 0.5004313 0.0630482 0.1020544
1 0.4890836 0.0620261 0.1014088
2 0.4997155 0.0629798 0.1020014

3 4 0.5003904 0.0630439 0.1020509
8 0.5004327 0.0630480 0.1020542
1 0.4886466 0.0620956 0.1014542
2 0.4997071 0.0629812 0.1020027

4 4 0.5003902 0.0630440 0.1020509
8 0.5004327 0.0630480 0.1020542
1 0.4886897 0.0620872 0.1014523

5 2 0.4997073 0.0629811 0.1020027
4 0.5003902 0.0630440 0.1020509
8 0.5004327 0.0630480 0.1020542

Reference (35)-(37) 0.5004353 0.0630483 0.1020544

Next, on this test example, the existence of shear locking phenomena can be tested as in
[8] and [3]. For this purpose, shear section stiffness GkA is numerically changed from very
large to very small, compared to bending section stiffness E/z. Again, the influence of their
ratio is tested for the normalized tip deflection at the beam free end and the results are
presented in Table 2b. wyj, is again a tip deflection of a finite element model with eight curved
elements implied, and w; is the analytical solution from (35).

Table 2b  Effect of flexure-to-shear stiffness ratio (Elz/GkA) on the normalized transverse tip displacement of
a curved cantilever beam subjected to out-of-plane unit tip force, F,=1 (8 elements used).

Els/GkA 107 107 107 107! 1 10! 10? 10° 10*

Wan/'W4 1.0001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

Obviously, no shear locking is observed, not even for the extreme and unnatural ratios
Ely/GkA.

6.3 Semi-circular beam fixed at its ends

A nonhomogeneous solution for the statically indeterminate curved beam model is
tested next. A semicircular arch with both ends fixed (at 4 and B in Fig. 8) is subjected to a
uniform load along the arch axis and perpendicular to its plane. The radius of the beam
geometry is R=10.0 m. The intensity of the uniform loading is ¢,= 1.0 kN/m and the cross-
section rigidities are £/;=0.98 GNm’, GI;=0.82 GNm’, and GkA= 6.0 GN. The convergence
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of the deflection, bending moments, torque and shear are studied at the discrete sections of the
curved beam and compared to the analytical solutions.

The reference deflection of the arch midpoint at C has the following analytical
expression:

2 R2 R4 2 R4
o =4 +(l_£]qz_+ L2 oz 7R (39)
8 Gkd x) EI, r 2 8 )GI,

The midpoint bending moment and the reactions at the beam fixed end at B are also
checked for numerical consistency and are calculated from the general analytic expressions
for shear force, bending moment and torque along the beam’s axis:

y z
Z
6, :
C
R
¢ X
222y ‘ g
Fig. 8 A semi-circle cantilever beam subjected to out-of-plane uniform load

V4

V.p)= qZR(E - (/)) ; (40)
2 4 .
My(p)=—q.R"|1-—sing |, (41)
T

N4 4

M (9)=q.R| 5 —p-—cosp |. (42)

The stress resultants are defined by polar coordinate ¢, measured from the clamped end
as the origin. For the cross-sections at B and C, the forces are calculated from the given
geometric and material data. In Table 3a, the finite element model results are tested for the
presented element CBLI-3 and for other curved elements from literature dealing with the
identical arch beam problem.

Then, the same problem is analysed in extremely flexible conditions, achieved for the
model radii R=100.0 m. All other problem constants remain unchanged, and the behaviour of
the present element is tested for the so-called thin limit condition.

Since R,=10xR, (see expressions (39)-(42)), the results in Table 3b have 10* times
greater magnitude for we, 10” times greater for moments and 10 times greater for shear force.
As the shear part of the displacement in (39) is only 10” times greater, the result for wc is
approaching the thin limit value for the Timoshenko beam theory, which is actually a
Bernoulli’s solution: wc=402.850 m. At the same time, the results for stress resultants in
Table 3b are unaltered in precision for the same number of elements used. It must be also
noticed that resultants in (40)-(42) are totally independent of beam material properties Elp GIr
and GkA.
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The CBLI-3 element shows no shear locking in the thin limit conditions, and is more
precise in approximating beam displacement, while at the same time retaining a similar
accuracy for controlled values of forces as the element of Sengupta-Dasgupta [1] or the
element of Sheikh [7] or the element of Akoz-Kadioglu [5] for the problem with the

nonhomogeneous solution with distributed load on the undetermined curved beam model.

Table 3a  Convergence test of a semicircle beam fixed at its ends of R=10.0 m and subjected to out-of-plane
uniform load ¢.=1.0 kN/m

Element Number of we Mg c Mg p Mrp V.5

elements cm kNm kNm kNm kN

Present 1 3.83112 329.67 -667.34 211.12 134.71

CBLI-3 2 4.03407 300.20 -890.64 298.14 149.97

(with 3GP) 4 4.04811 280.89 -970.17 302.57 155.15

6 4.04888 276.72 -986.52 300.63 156.21

8 4.04901 275.21 -992.37 299.54 156.58

16 4.04906 273.74 -998.08 298.15 156.95

20 4.04906 273.56 -998.77 297.95 157.00

Dasgupta and 6 4.04 301.34 -993.07 265.63 157.07

Sengupta [1] 20 4.04 275.85 -999.81 294.89 157.07
Akoz and

Kadioglu [5] 20 4.09 223.73 -1000.99 | 297.57 157.08

Sheikh [7] 6 4.040 278.39 -988.25 281.04 157.14

20 4.048 273.72 -999.04 296.09 157.08

Analytical  (39)-(42) | 4.04906 | 27324 | -1000.00 | 297.56 157.08

Table 3b  Convergence test of a semicircle beam fixed at its ends of R=100.0 m and subjected to out-of-plane
uniform load ¢,=1.0 kN/m

Element Number of we Mpc Mp p Mrp V.
elements m kNm kNm kNm kN
Present 1 381.113 32967. -66734. 21112. 1347.1
CBLI-3 2 401.374 30020. -89064. 29814. 1499.7
(with 3GP) 4 402.776 28089. -97017. 30257. 1551.5
6 402.852 27672. -98652. 30063. 1562.1
8 402.865 27521. -99237. 29954, 1565.8
16 402.871 27374. -99808. 29815. 1569.5
20 402.871 27356. -99877. 29795. 1570.0
Analytical  (39)-(42) | 402.871 | 27324. | -100000. | 29756. | 15708

7. Conclusion

A new three-node curved beam element CBLI-3 is presented for the analysis of non-
straight and straight linear plane structures under out-of-plane actions. The element is very
simple and efficient in the FEM analysis, while at the same time very versatile in defining
model geometry. It does not show any kind of extreme locking recognized in the literature,
neither shear locking in the thin limit state, nor dominant bending or dominant torsion
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locking. The versatility of the geometry modelling is evident when, among other curved
forms, the element can easily model a straight beam segment with the same stiffness matrix
forming procedure. When modelling beam segments with a constant curvature radius (parts of
the circle), the element with its parabolic geometry is not compatible with some other
elements from the literature on coarse model meshes (one element mesh), but dense model
meshes with two or four elements suffices for good results. On the other hand, higher order
elements from the literature with a constant curvature are helpless when applied on the
problems with variable geometry curvatures such as parabolic or upside catenary arches,
which can alternatively easily be modelled with the presented element.

Alternative kinematic expressions are introduced relating the beam section strains to the
global coordinate section rotations, which simplified all procedures in the element stiffness
matrix formation.

The element model can easily be implemented in any programming code by the use of
expressions (24)-(26) without reference to basic displacement interpolations and without
intervention of reduced integration used by commercial programs, with no loss in accuracy in
the strain and stress results.
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