
Tehnički vjesnik 28, 4(2021), 1227-1235 1227

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20200121134626
Original scientific paper

Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

Blerta HAXHIJAHA EMINI*, Jaumin AJDARI, Bujar RAUFI, Besnik SELIMI

Abstract: The demand for carrying out high-performance operations with data is growing in parallel with the vast growth of data itself. The retrieval of data for analysis, the
manipulation of data, as well as its insertion in data stores must all be performed very efficiently, using techniques that ensure speed, reliability and accuracy. This paper
investigates the techniques and practices that improve the performance of data retrieving by the use of SQL and Microsoft SQL Server. Being that SQL is a declarative
language that specifies what should be produced as a result, instead of how to achieve that result, this paper will look at the internals of SQL Server that affect the "how" of
queries and data operations, in order to propose techniques that ensure performance gains. The paper will aim to shed light on the limitations and variance in index usage,
and to answer the question why indexes are sometimes used, and other times not, for the same query. To overcome the index limitations the "index fusion" technique is
proposed.

Key words: database; indexes; index fusion; SQL

1 INTRODUCTION

Database operations are often responsible for a
substantial portion of the delays associated with
completing a computer related action on a computer
program that operates on or with data. In the early days of
relational databases, performance issues were extensive
because of limited hardware resources and immature
optimizers, so performance was a priority consideration.
But even today, despite the huge growth in resources, there
is even more growth in the amount of data available due to
technological advances [1] and the amount and variety of
connected devices [2], so performance continues to be of
critical importance.

Due to the ever-growing need for performance
enhancements in data operations in today's data-driven
world, this paper will look at techniques that improve the
performance of SQL queries executed on Microsoft SQL
Server. Because indexes are recognized and widely
documented to improve performance of queries executed
on Microsoft SQL Server, this paper will also focus on
them. It will aim to propose techniques that ensure usage
predictability and remove variations in index usage that
occur even when working with exactly the same queries.

The paper will look at indexes through the lens of their
storage internals inside SQL Server, in order to provide
explanations why they often go unused, even after being
positively tested during testing stages. This is especially
confusing for DBAs and/or database developers, who add
indexes that are successfully used in testing environments
but fail to be used in production environments for the same
queries. According to this situation we can conclude the
following:
- Due to the storage internals of data and indexes inside
SQL Server, there are cases when the SQL Server engine
decides not to use an index for a given query because the
cost of usage is too high, even though for exactly the same
query the index is used on other cases.
- Covering indexes is a technique that can ensure better
predictability of index usage in queries, but this may lead
to having too many complex indexes on server level that
are costly for maintenance and storage. Therefore this
paper proposes a new technique called index fusion, which
aims to consolidate the indexes used on sever level and

reduces their number, while still ensuring that indexes do
get consistently used.

The following research questions are set in order to
address the conclusions outlined above:
1. For a given query which uses the indexes defined for
the columns in the WHERE clause are those indexes
consistently used or there exist variations in index usage?
2. How can the limitations and variance on index usage
be removed, in order to achieve better index usage
predictability for critical query workloads?

We attempt to suggest techniques for removing these
limitations and variance on index usage by following an
experimental approach in trying to answer the questions
above. Even though the query covering technique by using
the INCLUDE keyword is well known and documented for
performance improvement on query level, this paper goes
further to propose the index fusion technique which
operates on server level. The novelty of this technique is in
providing index usage predictability and removing
variations of index usage on server level. This is done
through consolidation of indexes in an existing critical
workload, instead of focusing just on performance
improvement on query level. Our technique also helps
reduce the total number of indexes present in the server that
occupy storage space and impose the need of maintenance
which is often a costly operation.

The rest of this paper is organized as follows: section
Related Work provides a summary of relevant research in
the area of performance improvement. The section
Experimental Set-up and Implementation describes in
detail the implementation and the outcome of the
experiments used in our research. Finally, conclusions
summarize this paper by outlining the major contributions.

2 RELATED WORK

There is an abundance of research work available
focusing on performance improvement of relational
database management systems, and the Microsoft SQL
Server RDBMs is no exception. Numerous research papers
have attempted to propose techniques and solutions
towards better performance in Microsoft SQL Server,
focusing on different areas for improvement.

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

1228 Technical Gazette 28, 4(2021), 1227-1235

Several papers have approached the performance
improvement goal through proposing techniques for
writing T-SQL queries in ways that maximize execution
speed. In [3], the authors provide several recommendations
for optimizing query execution in Microsoft SQL Server,
including the use of temporary indexes that are created just
before running specific queries and reports, and afterwards
are dropped. Some further recommend the usage of stored
procedures over ad-hoc queries. In order to reuse the
execution plan, the authors advise using the
sys.sp_executes ql system stored procedure for running ad-
hoc queries.

In [4], Habimana lists several recommendations for
writing efficient and faster SQL queries. The author
advises to un-nest sub queries, arguing that rewriting
nested queries as joins often leads towards more efficient
execution. Habimana also postulates that using an 'OR' in
the join condition will slow down the query by at least a
factor of two.

In [5], the authors look at several sample queries
written in T-SQL using different alternatives, in order to
determine which alternative executes in the most efficient
manner. They conclude that the difference in performance
when local variables are used in scripts containing multiple
queries (especially when these variables are transmitted
from one query to another), and when local variables are
not used, is about 50%. The authors also recommend using,
where possible, the BETWEEN clause instead of the IN or
OR conditionals. The reason behind this is that SQL Server
2008, in case of using the IN conditional, will access the
index for several times equal to the number of values in the
search. On the other hand, when using the BETWEEN
clause, the index will be accessed only once, since the
optimizer will turn the BETWEEN clause into a pair of ≥
≤ conditions.

In [6], the authors propose a cost-based range
estimation model that maps a top-k query into a cost-
optimal range query for efficient execution. The top k
query efficiency is also discussed in [7], in the context of
retrieving data from different web services. Here the
authors propose an approach based on two strategies:
pipeline-parallel strategy and necessary invocation
principle. The first one serves as an initial step to speed up
the top-k query execution, whereas the second strategy or
principle minimizes the number of service invocations
during the execution of a composition plan, by determining
if an invocation is truly necessary to provide the final top-
k result.

An ambitious undertaking that focuses on database
performance tuning is the AutoAdmin project by Microsoft
Research, which in a nutshell, aims to make database
systems self-tuning and self-administering. In scope of this
project, numerous research papers have been published,
and [8] makes a summary of the progress from a decade of
research in self-tuning database systems, while [9] reviews
the lessons learned from the AutoAdmin project at
Microsoft Research up to year 2011. Another aspect of
database operations automation is discussed in [10], where
the authors present a tool that automates the formulation of
SQL join queries when retrieving data from multiple
heterogeneous and large databases.

In [11], the authors discuss the importance of
parallelism in achieving high performance and propose an

efficient parallel implementation scheme of relational
tables, by employing an extendible multidimensional
array.

Rahman in [12] proposes the usage of a scorecard tool
that measures SQL query performance in order to make
sure that the resource consumption of SQL queries is
predictable and the database system environment is stable,
in environments where hundreds of queries are run at any
point in time.

Other papers have focused on indexes, recognizing
them as crucial in performance improvement strategies.
Several advanced indexing strategies such as R tree,
Bitmap, Octree have been developed, each with its own
advantages and limitations. In [13], a novel SkipNet and
B+ tree based index structure is presented, which adopts a
two-layer architecture. In the lower layer, it uses the B+
tree to construct an efficient local index, whereas in the
upper one, it adaptively selects among local index nodes to
form a SkipNet based global overlay. The index structure
is claimed to efficiently support a variety of types of
queries and provide high availability. In [14], a dynamic
double layer indexing structure with Skipnet overlay for
global indexing and an Octree index technique for local
indexing has been proposed, and the authors claim it to be
better than the previous double-layer indexing techniques
for complex queries.

Narasayya and Syamala in their paper [15] address the
performance degradation in queries that require scanning
large indexes that are defragmented. They argue that the
DBA task of deciding which indexes to defragment is very
challenging due to the following two limitations: little
support by database engines to estimate the impact of
defragmenting an index on the performance of a query and
the fact that defragmentation can only be performed on an
entire B+ tree, which is very costly. The authors propose
methods to address these limitations and they also
investigate which index is most appropriate to defragment
for a given workload.

Lee et al. in [16] discuss the importance of the ability
to estimate the overall progress of execution of a query.
This feature would be valuable to DBAs in order to decide
if a long-running, resource intensive query should be
terminated or allowed to run to completion. The authors
also discuss the value of having progress estimates for
individual operators in a query execution plan, since this
can help DBAs understand and identify which operators
are requiring significantly more time or resources than
expected and take appropriate measures. Further, they
introduce the new Live Query Statistics (LQS) feature in
Microsoft SQL Server 2016, which includes the display of
overall query progress as well as progress of individual
operators in the query execution plan. Other relevant
papers that focus on progress estimation are [17, 18].

In [19], Dziedzic et al. focus on the importance of
hybrid database physical designs, which consist both of B+
tree indexes and column-store indexes. The authors argue
that this hybrid design can yield better performance in
several orders of magnitude. They also extend the
Microsoft SQL Server Database Engine Tuning Advisor to
recommend an appropriate combination of column-store
and B+ indexes for a given workload.

In [20], the authors similarly discuss the trend of using
specialized systems that are optimized for either fast ACID

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

Tehnički vjesnik 28, 4(2021), 1227-1235 1229

transaction workloads or complex analytical query
workloads, but not both (thus inducing additional storage
and administration overhead by keeping two separate
copies of the database). The paper then introduces a hybrid
DBMS architecture that efficiently supports varied
workloads on the same database, thus obviating the need to
maintain separate copies of the same database in
independent systems.

3 EXPERIMENTAL SET-UP AND IMPLEMENTATION
3.1 Turning Point in Index Usage

Let us consider a table (Clients) (Fig. 1), which is
populated with 80,000 rows and has column ClientID
defined as its primary key. Microsoft SQL Server
automatically adds a clustered index based on the primary
key column(s) of the table.

Figure 1 The (Clients) table

This table also contains a non-clustered index

TaxCodeNC on column TaxCode. To examine the
clustered and non-clustered indexes on table Clients in
terms of their depth and number of rows and pages in each
level, the dm_db_index_physical_stats dynamic
management view (DMV) is used, yielding the results
given in Tab. 1 below:

Table 1 Indexes on table Clients

Index Depth Level Rows Pages

Clustered Index ClientPK 3
0 80000 4000

1 4000 14

2 14 1

Non-clustered Index
TaxCodeNC

2
0 80000 212

1 212 1

Now let us consider the following range query (Fig. 2)

against table Clients:

Figure 2 A range query searching by TaxCode

This query performs a SELECT * against the Clients

table for the particular client with the specified TaxCode.
However, the non-clustered index contains only the non-
clustered key TaxCode and the base table row lookup id (in
our case, the ClientID) in its leaf pages. This means that the
rest of the columns requested in the SELECT need to be
retrieved from the base table-in our case the clustered
index.

Indeed, the query execution plan demonstrates this
(Fig. 3).The non-clustered index TaxCodeNC defined on
columnTaxCode is used in an index seek, but there is also

a key lookup operation performed in the clustered index to
retrieve the rest of the columns.

Figure 3 Execution plan of the range query searching by TaxCode

The following message is displayed for the IO

statistics for this query:
Table 'Clients'. Scan count 1, logical reads 62, physical
reads 34, read-ahead reads 0, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

There are 62 logical reads performed:
 two logical reads from the non-clustered index (the
root page plus the leaf page containing the 20 records. At
most, these 20 records can be scattered across two adjacent
leaf pages, in which case there would be a total of three
logical reads instead of two)
 20 × 3 = 60 logical reads from the clustered index (for
each of the 20 client IDs, the clustered index must be
traversed (from root to the corresponding intermediate
page, and then to the corresponding leaf page, so a total of
3 reads) in order to retrieve the rest of the columns of that
client record

This sequence of operations is shown figuratively in
Fig. 4 below.

Figure 4 An index seeks followed by a key lookup

This number of logical reads is still more efficient than

performing a table (clustered index) scan, which in our case
would produce 4,016 logical reads (the total number of
pages in the clustered index). The usage of the non-
clustered index in an index seek, followed by a key lookup
in the clustered index is efficient enough for the SQL
Server engine to use this execution plan instead of a table
scan, at least for our example query.

However, the question arises: Does this execution plan
remain effective when the number of records in the result
set increases even more? Does an index seek followed by
a key lookup operation ever become too expensive? This
will be examined next.

Let us consider a more generalized form of our range
query (Fig. 5), with unknown (min) and (max) range
boundaries (let us call them x and y):

Leaf Level (TaxCode,
ClientID) Leaf Level (Complete

Client row)Non-clustered index
on TaxCode Clustered index on

ClientID

root page

intermediate
page

leaf page

root page

leaf
page

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

1230 Technical Gazette 28, 4(2021), 1227-1235

Figure 5 Generalized range query searching by TaxCode

The number of pages reads that need to be performed

by the non-clustered index seek, followed by the clustered
index key lookup, changes depending on the number of
rows that fall into the (x, y) range requested by the query.
As this number of resulting rows increases, the number of
page reads made by the two operations described above
also increases. The question arises: When this number of
reads approaches the number of page reads that would be
necessary if a clustered index scan was to be performed
instead, does the SQL Server engine still decide to go
through the two separate operations (non-clustered index
seek and key lookup in the clustered index) and join their
results to get all the necessary columns for the resulting
records? One element that affects this decision is also the
nature of these operations. In a clustered index scan, the
logical reads are sequential, whereas the key lookup in the
clustered index might be very random although the
resulting records have sequential TaxCode values, their
corresponding ClientID are probably not sequential at all
and reside on different pages.

Let us next examine this by looking at the execution
plan and IO statistics of the same query as before, but this
time within a range for the TaxCode column which returns
1,000 rows (Fig. 6):

Figure 6 Range query searching by TaxCode with 1.000 resulting rows

The execution plan (Fig. 7) and the IO statistics

message are given below:

Figure 7 Execution plan of the range query searching by TaxCode with 1.000

resulting rows (1000 rows affected)

Table 'Clients'. Scan count 1, logical reads 4016, physical
reads 0, read-ahead reads 3994, lob logical reads 0, lob
physical reads 0, lob read-ahead reads 0.

In this case, SQL Server chose to perform a clustered
index scan. Although the same T-SQL query as in the
previous case was used, this time the execution plan is
different. Albeit this last query returned only 1,000 out of
the 80,000 rows in the table (1.25% of the data in the table),
still SQL Server estimated that the non-clustered index is
more expensive to be used. For our sample range query
searching by TaxCode, table 2 summarizes the type of
operation(s) used when a different number of resulting
records are returned.

SQL Server makes use of the clustered index only
when the query is highly selective. It looks at the table size

(in our case the clustered index size) to compare the cost of
key lookups (which are random) to the cost of a table scan
(which can be performed sequentially). Consequently,
non-clustered indexes are only useful when a very selective
set of data needs to be retrieved.

This explains why some queries sometimes have one
plan, and at other times a completely different plan a
situation that often puts at unease many DBAs. It also
makes clear why some of the non-clustered indexes simply
are not as useful as they were expected to be, and the
habitual recommendation of just adding indexes for the
columns referenced in the WHERE clause does not give
the expected results. In fact, the addition of indexes might
work well during testing, but in a production environment
where the same queries provide different result sets, the
indexes might just not be used. This implies that in terms
of query tuning and performance optimization, other
strategies should be considered than just adding an index
on a column that is in the WHERE clause of queries that
are most critical to performance and for which more
consistent plans are needed.

Table 2 Operation used according to number of records in the result set

Query
No. of records in the

result set
Operation used

S
E

L
E

C
T

 c
.*

F

R
O

M
 C

li
en

ts
 c

W
H

E
R

E
 c

.T
ax

C
od

e
B

E
T

W
E

E
N

 x
 A

N
D

 y
 1

Non-clustered Index Seek and
Clustered Index Key Lookup

20
Non-clustered Index Seek and
Clustered Index Key Lookup

350
Non-clustered Index Seek and
Clustered Index Key Lookup

800
Non-clustered Index Seek and
Clustered Index Key Lookup

1000 Clustered Index Scan

1500 Clustered Index Scan

10000 Clustered Index Scan

80000 Clustered Index Scan

3.2 Index Fusion

Following our objective of proposing techniques that
increase query performance in Microsoft SQL Server, we
will next examine ways how to remove the limitations and
variance on index usage presented in the previous section.
First, we will look at the concept of covering queries and
examine if and how it can impact index usage in queries.

In order to understand covering, a short re-statement of
our non-clustered index structure should be made. The
non-clustered index on TaxCode was made of two levels
the root and leaf levels. The leaf level records contained the
non clustered index key TaxCode as well as the key of the
clustered index ClientId. The latter was then used in key
lookup operations into the clustered index when it was
necessary to retrieve the rest of the columns of the record.
But what if going to the clustered index to perform the
expensive random lookups was to become unnecessary?
Then it would suffice for the non-clustered index to be
traversed in a seek operation, and potentially SQL Server
would not switch to the clustered index scan that reads the
complete table.

Our existing non-clustering index covers queries that

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

Tehnički vjesnik 28, 4(2021), 1227-1235 1231

require only TaxCode and ClientId to be returned as these
fields are stored in the non-clustered index itself. But SQL
Server offers a technique to include other columns of the
record in the page leaves of the non-clustered index as well.
This is done via the keyword INCLUDE, after which the
columns that we wish to be included in the index are
specified. With this, we can ensure that for critical queries
that require a specific collection of record columns to be
returned in the SELECT part, those columns are included
in the index itself. When they are included in the non-
clustered index, there is no need to go to the base table and
do a key lookup operation to retrieve those necessary
columns (hence the term "covering index" or "covered
query").

Covering indexes is an excellent technique made
available by SQL Server for ensuring better index usability
and performance improvements. However, even though
this technique might seem very attractive and simple to
implement, it is not a good approach to use it for every
single query in the workload. The reason is obvious: too
many indexes become costly during data modifications as
well as during index maintenance. They also waste
memory and disk space (including back-up space).

So, what techniques should be followed then, in order
to achieve better, more predictable usage of indexes in
queries and thus improve performance?

Figure 8 Most critical queries identified

We already discussed what is NOT the best technique

attempting to add indexes for every column in the WHERE
clause. Depending on the result set, they might not even get
used, even though the query is written in the same way as
in the testing stages, when those indexes were shown to be
used. We then presented the concept of covering indexes,
which although powerful and relatively simple to
implement, is not a good solution if for every single query
a new covering index is introduced. If this practice is
followed, there will soon be too many indexes which are
costly to maintain during inserts, updates, deletes, as well

as during index maintenance. Those indexes also cost in
terms of disk space, in caching, and in backups.

So, let us try to answer our question by turning to the
analysis of the following queries, which we assume were
defined asmost critical during the workload analysis on the
database (Fig. 8):

If all the database tables used in these critical queries
are clustered structures without any non-clustered indexes
defined, then the queries would all perform clustered index
scans against the relevant tables. To avoid this, we could
simply add an index for each of the different column
combinations used in these critical queries. When these
indexes are added, we can check from the execution plan
of the critical queries that they are indeed utilized (Fig. 9).
Tab. 3 summarizes the details of the four new indexes
added, including the index depth and the total page
numbers occupied by them, as returned by the
dm_db_index_physical_stats DMV.

The total number of pages used by the four indexes is
9,365 pages, each at 8 KB. In megabytes, this is 74.92 MB
of storage. This number might not look too problematic in
today's systems with a lot of memory available, but this
number becomes much higher when dealing with tables
that have millions or hundreds of millions of records stored
in them.

Table 3 Columns, depth, and page numbers of the newly created indexes

Index Name Index Columns Depth Pages

SurnameNC Surname 3 1320

FullNameStatusNC
Surname, Name,
IsActive

4 2597

FullNameInclude
PhoneNC

Surname, Name
(INCLUDE Phone)

4 2768

FullNameInclude
TaxCodeNC

Surname, Name
(INCLUDE TaxCode)

4 2680

Even though we managed to tune the individual

queries in terms of index usage, this was not an adequate
tuning at server level. As already discussed, adding indexes
for all WHERE clause columns in queries costs in terms of
maintenance, storage space, cache, backups, etc.
Additionally, it can be observed that the redundancy of
certain columns has increased: now there exist four copies
of the Surname column and three copies of the Name
column in these indexes. So, is there a better technique?

This paper argues that there indeed is, and this
technique revolves around "consolidating" indexes, i.e.
fusing them together so that one or a few indexes do the
work of many. These consolidated indexes might be
slightly larger in structure, but as we will show in the next
section, eventually they will take less space than the
combined space used by the indexes they substitute.

Index consolidation as a process should take place
after the process of tuning on query level. In our paper so
far, we have performed performance tuning on query level.
We did this by focusing on how to improve the execution
of the individual queries, assuming that those queries were
identified as critical in our workload. We created indexes
that benefited these individual queries, whereby we also
hinted that this might potentially create redundancy, in
terms of certain index columns appearing on several
indexes. Now we are ready to move on to the next level-

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

1232 Technical Gazette 28, 4(2021), 1227-1235

performance tuning at server level, or as we call it the index
fusion process. We will aim to show how this process can
also address the redundancy in repeating columns and the

high cost of maintenance when numerous indexes are
created in the server.

Figure 9 Execution plan of the critical queries after the creation of the four new indexes

In order to describe the index fusion process, we will

continue to use our existing example, where the indexes for
the individual critical queries were identified as displayed
in Tab. 3. We will try to define a new, "super" index that
will substitute the existing ones. Looking at the four
indexes from Tab. 3, we can observe that column Surname
is a left based subset of all the index keys. This suggests
that Surname should be the first (i.e. left-most) column of
our new index. The key columns that remain to be included
are the Name and IsActive columns, because they are used
in index FullNameStatusNC.

Therefore, up to this point, we have identified the key
column of our new index to be (Surname, Name, IsActive).
Looking at the list of included columns of the separate
indexes, we observe that in our new index, we must include
columns Phone and TaxCode because they are used in
indexes FullNameIncludePhoneNC and FullNameInclude-
TaxCodeNC. Unlike the key columns which must retain
the left-based order, the order of the included columns in
the new index is not important. Finally, our new
consolidated index can be created as follows (Fig. 10):

Figure 10 Consolidated index creation

In order to test our new consolidated index, we disable

the four existing indexes from Tab. 3. Disabling is
recommended over deletion during the testing stage. Then,
if after thorough testing we conclude that the new index is
utilized as expected, the "old" indexes it substitutes can be
deleted from the server.

We execute the same set of critical queries given in
Fig. 8 and observe their execution plan, which is given in
Fig. 11 below and shows that indeed, the new index
ConsolidatedIndexNC is used in all four critical queries. So
now the server uses a single non-clustered index instead of
the four different non-clustered indexes it was utilizing
previously. Although those non-clustered indexes were all
suitable, having only one index to maintain is highly
preferred because of all the different costs associated with
indexes even though this new index is bigger and may
require a few more IOs. Furthermore, we also resolved the
issue of redundancy: we do not have several copies of the

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

Tehnički vjesnik 28, 4(2021), 1227-1235 1233

same columns present in different indexes any more.

Figure 11 Execution plan of critical queries after creation of the consolidated index

The dm_db_index_physical_stats DMV for the

ConsolidatedIndexNC reveals that this index contains a
total of 2,863 pages, which at 8K each, calculate to 22.9
MB of storage. The storage space occupied by the four
previous indexes was 74.92 MB, so the storage space was
reduced to less than a third of the initial space (Fig. 12).
The numbers in this example might not seem to make a big
difference, but they do if we consider larger environments,
with tables that are in the hundreds of gigabytes or even
terabytes in size. Reducing indexes in such environments
by a third of their size, could mean great savings in terms
of disk space, memory, logging, fragmentation, and index
maintenance in general. On the other hand, the IO statistics
for our test queries reveal that the usage of our single
consolidated index continues to ensure as low logical page
reads of table Clients as in the case of the dedicated
indexes, and certainly much lower than when no index is
present (Tab. 4).

Figure 12 Total size of indexes in MB

A generalized approach for applying the index fusion

technique can be summarized as follows:
1. The critical workload is identified (i.e., the set of
SELECT queries that are most often executed on the
server, and/or the performance of which is most crucial to
be improved).
2. The critical workload is identified (i.e., the set of
SELECT queries that are most often executed on the
server, and/or the performance of which is most crucial to
be improved).

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

1234 Technical Gazette 28, 4(2021), 1227-1235

3. The critical workload is identified (i.e., the set of
SELECT queries that are most often executed on the
server, and/or the performance of which is most crucial to
be improved).
4. Optimal indexes for each query in the critical workload
are identified (i.e. one index is identified as most suitable
for each query).
5. The identified optimal indexes are then "fused" into
one or more indexes (depending on the number of tables),
by using the left-based subset approach for the key, and
adding the columns which appear in the SELECT
statement via the INCLUDE keyword.
6. The newly fused index(es) are tested to check if they
are consistently used regardless of the number of rows in
the resulting set of the SELECT queries.
7. If testing for usage consistency is satisfactory, the
individual indexes with keys already present in the fused
index(es) can be removed from the server.

Table 4 Number of logical page reads of table Clients per query-index
combination

 No Index
Respective
Dedicated

Index
Consolidated Index

Query 1 4016 7 7

Query 2 4016 16 16

Query 3 4406 1050 1086

Query 4 4406 1017 1086

4 CONCLUSIONS

As the reliance on digitally stored data is becoming
ever more pervasive in today's technology-driven world,
and the amount of data available is also increasing at a fast
pace, the task of efficiently retrieving and manipulating
data is becoming ever more important and challenging.

This paper focused on indexes, which although being
one of the most common measures used for performance
improvement in data retrieval operations, still pose
challenges to DBAs because of their not always predictable
use on production environments.

This paper looked at that variance in index usage for
several test queries, which, depending on the result set,
were either using the available indexes or were opting for
a table scan. The variance in index usage was observed
even when nothing was changed in the way the
investigated T-SQL query was written. The reason behind
this variance lies in the increased cost of the usage of non-
clustered index seek operations, when they need to be
followed by a key lookup on the clustered table as well.
These two operations together are sometimes higher in cost
than performing a table scan in the first place, depending
on the number of rows returned by the query. The results
of these experiments can shed some light in understanding
why indexes, while tested successfully in testing
environments, often fail to be utilized in production.

Next, the paper proposed the index fusion technique in
order to overcome the unpredictability and variance in
index usage during query executions. The index fusion
technique ensures better index usage consistency on server
level. The experiments also demonstrated that using the
index fusion technique, the overall number of indexes on a
server can be reduced, thus also saving on disk space,

memory, logging, fragmentation issues; making the overall
index maintenance easier. In order to perform index fusion
and have these gains at server level, the process to follow
must be based on a thorough analysis of the current indexes
and of the critical workload on that server. Analysing the
two in conjunction with the knowledge on the index
internals ensures successful index consolidation at server
level.

5 REFERENCES

[1] Spolaôr, N., Lee, H. D., Takaki, W. S., & Wu, F. C. (2015).

Feature Selection for Multi-label Learning: A Systematic
Literature Review and Some Experimental Evaluations.
International Journal of Computational Intelligence
Systems, 8(2), 3-15.
https://doi.org/10.1080/18756891.2015.1129587

[2] Pereira, D. A., Morais, W. O., & Freitas, E. P. (2017).
NoSQL real-time database performance comparison.
International Journal of Parallel, Emergent and Distributed
Systems, 33(2), 144-156.
https://doi.org/10.1080/17445760.2017.1307367

[3] Corlăţan, C. G., Lazar, M., Luca, V. D., & Petricică, O. T.
(2014). Query Optimization Techniques in Microsoft SQL
Server. Database Systems Journal, 5, 33-48.

[4] Habimana, J. D. (2015). Query Optimization Techniques -
Tips for Writing Efficient and Faster SQL Queries.
International Journal of Scientific & Technology Research,
4, 22-26.

[5] Lungu, I. C., Mercioiu, N., & Vlăducu, V. (2010).
Optimizing Queries InSql Server 2008. Scientific Bulletin
Economic Sciences, 9, 103-108.

[6] Ayanso, A., Goes, P. B., & Mehta, K. (2009). A Cost-Based
Range Estimation for Mapping Top-k Selection Queries over
Relational Databases. Journal of Database Management,
20(4), 1-25.

[7] Malki, A., Benslimane, S., Malki, M., Barhamgi, M., &
Benslimane, D. (2020). Top-k query optimization over data
services. Future Generation Computer Systems, 113, 1-12.

 https://doi.org/10.1016/j.future.2020.06.052
[8] Chaudhuri, S. & Narasayya, V. (2007). Self-Tuning

Database Systems: A Decade of Progress. Proceedings of the
33rd International Conference on Very Large Data Bases, 3-
14. VLDB Endowment.

[9] Bruno, N., Chaudhuri, S., König, A., Narasayya, V.,
Ramamurthy, R., & Syamala, M. (2011). AutoAdmin Project
at Microsoft Research: Lessons Learned. IEEE Data Eng.
Bull., 34, 12-19.

[10] Bagui, S. & Loggins, A. (2009). Generating Join Queries for
Large Databases and Web Services. International Journal of
Information Technology and Web Engineering (IJITWE),
4(2), 45-60. https://doi.org/10.4018/jitwe.2009092203

[11] Azharul, H. K. M., Tsuji, T., & Higuchi, K. (2006). A
Parallel Implementation Scheme of Relational Tables Based
on Multidimensional Extendible Array. International
Journal of Data Warehousing and Mining (IJDWM), 2(4),
66-85. https://doi.org/10.4018/jdwm.2006100104

[12] Rahman, N. (2016). SQL Scorecard for Improved Stability
and Performance of Data Warehouses. International Journal
of Software Innovation (IJSI), 4(3), 22-37.
https://doi.org/10.4018/IJSI.2016070102

[13] Zhou, W., Lu, J., Luan, Z., Wang, S., Xue, G., & Yao, S.
(2013). SNB-index: A SkipNet and B tree based auxiliary
Cloud index. Cluster Computing, 17(2), 453-462.
https://doi.org/10.1007/s10586-013-0246-y

[14] He, J., Wu, Y., Dong, Y., Zhang, Y., & Zhou, W. (2016).
Dynamic multidimensional index for large-scale cloud data.
Journal of Cloud Computing, 5(1).
https://doi.org/10.1186/s13677-016-0060-1

Blerta HAXHIJAHA EMINI et al.: Techniques for Ensuring Index Usage Predictability in Microsoft SQL Server

Tehnički vjesnik 28, 4(2021), 1227-1235 1235

[15] Narasayya, V. & Syamala, M. (2010). Workload driven
index defragmentation. 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010), 497-508.

 https://doi.org/10.1109/ICDE.2010.5447889
[16] Lee, K., König, A., Narasayya, C. V., Ding, B., Chaudhuri,

S., Ellwein, B., Eksarevskiy, A., Kohli, M., Wyant, J.,
Prakash, P. et al. (2016). Operator and query progress
estimation in Microsoft sql server live query statistics,
Proceedings of the 2016 International Conference on
Management of Data, 1753-1764.
https://doi.org/10.1145/2882903.2903728

[17] Chaudhuri, S., Kaushik, R., & Ramamurthy, R. (2005).
When Can We Trust Progress Estimators for SQL Queries?
SIGMOD '05: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data. New
York, NY, USA: ACM Press, 575-586.
https://doi.org/10.1145/1066157.1066223

[18] Mishra, C. & Koudas, N. (2007). A lightweight online
framework for query progress indicators. Proceedings of the
23rd ICDE Conference.
https://doi.org/10.1109/ICDE.2007.368996

[19] Dziedzic, A., Wang, J., Das, S., Ding, B., Narasayya, V., &
Syamala, M. (2018). Columnstore and B+ tree - Are Hybrid
Physical Designs Important? Proceedings of the 2018
International Conference on Management of Data.
https://doi.org/10.1145/3183713.3190660

[20] Arulraj, J., Pavlo, A., & Menon, P. (2016). Bridging the
Archipelago between Row-Stores and Column-Stores for
Hybrid Workloads. Proceedings of the 2016 International
Conference on Management of Data.
https://doi.org/10.1145/2882903.2915231

Contact information:

Blerta HAXHIJAHA EMINI, MSc in Software and Application Development
(Corresponding author)
South East European University,
Ilindenska 335, Tetovo, 1220, Republic of North Macedonia
E-mail: bh27486@seeu.edu.mk

Jaumin AJDARI, Assoc. Prof. Dr. in Computer Sciences
South East European University,
Ilindenska 335, Tetovo, 1220, Republic of North Macedonia,
E-mail: j.ajdari@seeu.edu.mk

Bujar RAUFI, Assoc. Prof. Dr. in Computer Sciences
South East European University,
Ilindenska 335, Tetovo, 1220, Republic of North Macedonia
E-mail: b.raufi@seeu.edu.mk

Besnik SELIMI, Assoc. Prof. Dr. in Computer Sciences
South East European University,
Ilindenska 335, Tetovo, 1220, Republic of North Macedonia
E-mail: b.selimi@seeu.edu.mk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

