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The aim of this paper is to make a comparative analysis of benthic macroinvertebrate composi-
tions in streams and rivers in Croatia with relation to different physical-chemical factors, especially 
nutrients. Samples were collected according to the AQEM method. At all the sites, 20 higher taxo-
nomic categories were recorded of which Turbellaria, Gastropoda, Bivalvia, Oligochaeta, Hirudinea, 
Crustacea, Ephemeroptera, Odonata, Plecoptera, Heteroptera, Trichoptera, Coleoptera and Diptera 
were included in the present study. Water temperature mostly affected the composition of benthic 
macroinvertebrates to which it was inversely proportional. Nutrient enrichment, i.e., higher concen-
trations of ammonium, nitrates, nitrites, total nitrogen, orthophosphates and total phosphorus mostly 
affected Ephemeroptera, Plecoptera, Trichoptera and Diptera, by decreasing their diversity.
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Kladarić, L., Ćuk, R., Dukić, I., Popijač, A. & Marinović Ruždjak, A.: Može li zajednica 
Ephemeroptera, Plecoptera, Trichoptera (EPT) odraziti opterećenje dušikom i fosforom u riječnom 
ekosustavu? Nat. Croat., Vol. 30, No. 1, 217–230, Zagreb, 2021.

Cilj ovog rada bio je izvršiti usporednu analizu sastava bentoskih makrobeskralježnjaka u poto-
cima i rijekama u Hrvatskoj u odnosu na različite fizikalno-kemijske čimbenike, posebno hranjive 
tvari. Uzorci su prikupljeni prema AQEM metodi. Na svim nalazištima zabilježeno je 20 viših takson-
omskih kategorija od kojih su u ovo istraživanje uključeni: Turbellaria, Gastropoda, Bivalvia, Oligo-
chaeta, Hirudinea, Crustacea, Ephemeroptera, Odonata, Plecoptera, Heteroptera, Trichoptera, 
Coleoptera i Diptera. Temperatura vode je najviše utjecala na sastav makrozoobentosa. Što je temper-
atura vode viša, raznolikost svojti makrozoobentosa je niža. Obogaćivanje hranjivim tvarima, 
odnosno više koncentracije amonijaka, nitrata, nitrita, ukupnog dušika, ortofosfata i ukupnog fosfora, 
najviše je utjecalo na Ephemeroptera, Plecoptera, Trichoptera i Diptera, smanjujući njihovu razno-
likost.

Ključne riječi: hranjive tvari, temperatura vode, tekućice, vodeni beskralježnjaci, Hrvatska
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INTRODUCTION

Freshwaters are among the most threatened ecosystems globally (Vörösmarty et 
al., 2010).

A wide range of human-generated stressors that degrade water quality and 
hydro-morphology affect life in European rivers. One of the main stressors on river 
quality is nutrient enrichment, which is the reason for 34.4% deviance in ecological 
status, hydro-morphological degradation causes 39.4% deviance (morphology: 23.2% 
and hydrology: 16.2%), whereas the rest, 26.2% of deterioration, is a result of toxic 
substances (Lemm et al., 2020). The eutrophication and organic pollution of freshwater 
ecosystems is considered a pan-European problem “of major concern” (Dahl & John-
son, 2004; EEA, 2018).

Agriculture contributes most to nitrogen and phosphorus pollution (Fierro et al., 
2017). Thanks to the EU Nitrates Directive and national measures, nitrogen pollution 
from agriculture has been reduced in some regions over the last 15–20 years. The 
reduced pressure is reflected in lower river nitrate concentrations. However, the 
apparent stabilisation of river nitrate concentrations in recent years may call for fur-
ther measures to be taken (EEA, 2021).

The average concentration of phosphates in European rivers decreased twice over 
the period 1992–2012. The decrease in river phosphate concentration can be related to 
the measures introduced by national and European legislation, in particular the 
Urban Waste Water Treatment Directive, which involves the removal of nutrients. 
Also, the change to phosphate-free detergents has contributed to the lower phospho-
rus concentrations (EEA, 2021).

Aquatic macrophyte and algae quantities are good indicators of nutrient enrich-
ment (Conley et al., 2009), as they require several macronutrients for growth (espe-
cially nitrogen and phosphorus), and freshwater macroinvertebrates provide good 
evidence of response to their fluctuations (Rader & Richardson, 1992; Gafner & 
Robinson, 2007; Ouyang et al., 2018; Everall et al., 2019;).

Anthropogenic pressure, especially nutrient enrichment, has many negative 
impacts on freshwater organisms (Allan, 2004; Moore & Palmer, 2005; Riseng et al., 
2011; Cui et al., 2017). It has been noticed that nutrient enrichment influences aquatic 
invertebrates by decreasing their richness (Paul & Meyer, 2001), particularly elimi-
nating the sensitive taxa such as Ephemeroptera, Plecoptera and Trichoptera (EPT) 
(Lenat, 1988).

Although there are increasing numbers of studies on the effects of nutrient enrich-
ment on biota (Alcaraz et al., 1999; Berenzen et al., 2001; Lawrence & Gresens, 2004; 
Matthaei et al., 2010; Prater et al., 2015), comparative studies among different mac-
roinvertebrate taxa are scarce.

The object of this study was to present the response of EPT assemblages (i.e., EPT 
species richness) to nitrate, nitrite, ammonium and orthophosphate concentrations 
within 71 Croatian streams and rivers. The questions addressed in the study were:  
(1) which physical-chemical parameters have a significant effect on the EPT assem-
blage and (2) whether nutrient enrichment has the strongest impact on the EPT 
assemblage.
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MATERIAL AND METHODS

Study Area

The Republic of Croatia lies at the intersection of two ecoregions: Dinaric Western 
Balkan (ER5) and Hungarian Lowlands (ER11) according to Illies (1978). Consider-
ing the geographical location of Croatia and its position within Central Europe and 
the Mediterranean, as well as climatic and geological conditions, is the country can be 
divided into the Pannonian and karst parts. Sava, Drava and Danube rivers flow 
through the lowland Pannonian part. Aquifers of the lowland rivers consist of thick 
layers of deposited gravel. The karst area is determined by special karst hydro-mor-
phological features formed due to the solubility of the carbonate rocks that make up 
the terrain. Karst covers approximately half of the total area of the country (šafarek & 
šolić, 2011).

Sampling and laboratory work

Biological data were obtained as a part of the monitoring and assessment pro-
gramme conducted by the Central Water Management Laboratory of Hrvatske vode. 
The samples of benthic macroinvertebrates were taken over a period of 3 years (2015–
2017).

The sampling was conducted in the period of low and stable water levels, mostly 
in the warm period of the year (spring and summer). In total, 114 samples from  
106 sampling stations in 71 Croatian streams and rivers were collected and analysed 
(Fig. 1).

Fig. 1. Map of Croatia with sampling stations (106 sampling stations in 71 Croatian streams and rivers)
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Samples were collected with a hand net (25 × 25 cm aperture and mesh size 500 
μm) according to the AQEM sampling procedure (AQEM, 2002) in a littoral zone of 
rivers where 20 quantitative replicative samples were collected (0.0625 m2) from all 
microhabitats represented by more than 5%. Endangered or protected species were 
identified in the field and immediately released back into the stream. Macroinverte-
brates and associated organic material were immediately placed in plastic bottles and 
preserved in 80% ethanol.

Isolation and determination of benthic macroinvertebrates were conducted in the 
laboratory with the use of a binocular stereomicroscope (Olympus SZX9 and SZX10). 
The organisms were determined to the lowest possible taxonomic level, usually to 
species or genus level (with the exception of chironomids and oligochaetes) and sepa-
rated into the higher taxonomic categories. The result was a list of taxa comprising 
the number of individuals found in each sample (Official Gazette, 2020; Hrvatske 
vode, 2015). At the end, the abundance of the macroinvertebrates was calculated as 
number of individuals per m2.

In order to perform statistical analysis, higher taxonomic categories represented 
with a single taxon were excluded from further analyses (Coelenterata, Nematoda, 
Polychaeta, Araneae, Megaloptera, Lepidoptera and Hydrachnidia).

Standard determination keys were used (Kerovec & Čičin-Šain, 1986; Campaioli et 
al., 1994; Schwab, 1995; Nilsson, 1996; Waringer & Graf, 1997; Grabow, 2000; Bauern-
feind & Humpesch, 2001; Zwick, 2004; Engelhardt et al., 2008). All specimens have 
been deposited in the macrozoobenthos collection in the Central Water Management 
Laboratory of Hrvatske vode.

Physical and chemical parameters

Sampling, preservation and chemical analyses of the water samples were per-
formed according to standard methods for the examination of surface waters (ISO 
Standards, APHA 1998). Water samples were collected in appropriate containers, 
kept in the dark at 4°C and analysed within 24h. Selected water quality parameters 
included water temperature (WT), pH, electrical conductivity (EC), total suspended 
solids (TSS), m-alkalinity, total water hardness (dH), and concentrations of ammo-
nium, nitrite, nitrate, total nitrogen (TN), orthophosphate (OP) and total phosphorus 
(TP) (Tab. 1).

WT was measured on-site while pH and EC were measured either on-site (porta-
ble pH and conductivity meters, HANNA instruments) or in the laboratory (Mettler 
Toledo SevenMulti dual pH and conductivity meter). Water samples for the analysis 
of ammonium, nitrite, nitrate and OP concentrations were field filtered through 0.45 
μm cellulose nitrate membrane filter.

Inorganic nitrogen was obtained as the sum of the nitrite, nitrate, and ammonium 
concentrations while organic nitrogen was calculated by subtracting inorganic nitro-
gen from the obtained results of TN. TN measurements were performed on a Shi-
madzu TOC-V/TNM-1.

The ammonium molybdate spectrophotometric method (on Perkin Elmer Lambda 
25) was applied for the determination of OP. The TP was determined using acid 
digestion followed by the molybdate method. Since 2016, TP analyses have been per-
formed on an Agilent 8900 ICP-MS.
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Data analysis

The number of taxa of higher taxonomic categories found in samples was calcu-
lated with the software ASTERICS version 1.0. (AQEM/STAR Ecological River Clas-
sification System) for each sampling site. This metric was selected in order to assess 
the effect of nutrients (ammonium, nitrite, nitrate, TN, OP and TP) on macrozooben-
thos diversity.

Box-plots were used to compare the number of taxa among sampling stations, 
streams and rivers. A correlation analysis was performed to examine the relationship 
between the number of taxa and physical-chemical parameters, including nutrients. 
Spearman correlation coefficients were calculated for this purpose. The significance 
of the Spearman rank-order correlation coefficients was assessed using a two-sided 
test. Levels of significance were set at p<0.01 and p<0.05. Finally, principal compo-
nent analysis was used to reduce the dimensionality of the data and to summarise the 
variation in the number of taxa and relate it to the environmental variables.

Statistical analysis of the data was carried out using IBM SPSS Statistics Version 24 
(IBM Corp., Armonk, NY, USA) and Statistica 12 (StatSoft, Inc., Tulsa, OK, USA). All 
ordinations were provided by the program CANOCO 5.0 (ter Braak & Smilauer, 
2012).

A principal component analysis (PCA) was conducted on log (x+1) transformed 
environmental data (except pH). A detrended correspondence analysis (DCA) was 
performed to determine the gradient length. The choice of PCA was justified, since 
response data had a gradient 1.8 SD units long. According to the Canoco Advisor 
expert system, the response variables (number of taxa within the investigated macro-
zoobenthos higher taxonomic categories) were not transformed. However, given the 
fact that different taxa from various watercourses and ecoregions were analysed, 
centralization and standardization were performed.

Tab. 1. Descriptive statistics of physical-chemical parameters and nutrients

Variable n Mean Min Max

Physical-
chemical 

parameters

WT (°C) 114 12.34 7.48 24.42

pH 114 7.99 7.23 8.46

EC (µS/cm) 114 509.46 78.64 6199.17

TSS (mg/L) 114 9.18 0.76 53.42

Alkalinity (mgCaCO3/L) 114 193.89 30.64 387.23

dH (mgCaCO3/L) 114 244.85 31.53 1368.60

Nutrients

Ammonium (mgN/L) 114 0.11 0.00 1.78

Nitrite (mgN/L) 114 0.01 0.00 0.08

Nitrate (mgN/L) 109 0.82 0.05 3.43

TN (mgN/L) 114 1.91 0.28 60.06

OP (mgP/L) 114 0.02 0.00 0.34

TP (mgP/L) 87 0.08 0.00 0.53
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RESULTS

The box-plot diagram suggests that some higher taxonomic categories, like Dip-
tera and Trichoptera are represented by more taxa than other taxonomic categories. 
There are no extreme variables, but outliers are present (Fig. 2).

Tab. 2 shows the Spearman rank-order correlation coefficients between the num-
ber of taxa within individual higher taxonomic categories, and physical-chemical 
parameters including nutrients. Some taxonomic categories are more strongly corre-
lated with the environmental variables than others. The results imply that higher 
nutrient concentrations result in lower Ephemeroptera, Plecoptera, Trichoptera and 
Diptera numbers. Thereby, the highest correlation was obtained with the nitrites and 
OP (Tab. 2). Trichoptera and Diptera are negatively correlated with TP (–0.511 and 
0.407, respectively). Some higher correlations were found for ammonium and Plecop-
tera and Trichoptera (–0.449 and–0.470, respectively) and between EPT and TN 
(–0.403,–0.447 and–0.468, respectively).

Plecoptera richness was significantly negatively correlated to WT (–0.491).  
EPT taxa best react to the increase of EC, by reduction of number of species.  
The results presented in Table 2 also indicate that EPT and Diptera negatively corre-
lated to TSS.

Inorganic nutrients (ammonium, nitrite, nitrate, TN, OP, TP) were positively cor-
related with richness of some taxonomic categories, e.g., Bivalvia, Gastropoda, 
Hirudinea, Odonata and Crustacea.

Fig. 2. Box plots of the number of taxa (species, genus) in certain higher taxonomic categories found 
at 106 sampling stations in 71 streams and rivers
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Tab. 2 Spearman's correlation coefficients between the number of taxa in certain higher taxonomic 
categories and physical-chemical parameters including nutrients
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Turbellaria –0.163 –0.175 –0.242** –0.208* –0.319** –0.281** 0.078 0.024 –0.235* 0.022 0.075 –0.193*

Gastropoda 0.204 0.173 0.249** 0.266** 0.081 0.201* –0.155 –0.122 0.120 –0.132 0.134 0.324**

Bivalvia 0.179 0.232* 0.100 0.154 0.065 0.098 –0.181 –0.201* 0.208* –0.111 0.166 0.270**

Oligochaeta 0.120 –0.016 0.082 0.044 0.028 0.200* 0.035 0.077 0.024 0.043 0.022 0.099

Hirudinea 0.238* 0.232* 0.141 0.018 0.168 0.241** 0.073 0.066 0.070 0.038 –0.203* 0.023

Crustacea –0.065 0.056 0.108 0.090 0.092 0.191* 0.046 0.037 –0.025 0.089 –0.155 0.362**

Ephe- 
meroptera –0.306** –0.415** –0.403** –0.289** –0.568** –0.354** –0.188* –0.146 –0.353** –0.291** 0.122 –0.324**

Odonata 0.127 0.177 0.211* 0.170 0.230* 0.373** 0.184* 0.214* 0.121 0.231* –0.041 0.551**

Plecoptera –0.385** –0.490** –0.447** –0.361** –0.476** –0.449** –0.186* –0.119 –0.443** –0.288** 0.091 –0.491**

Heteroptera 0.183 0.132 0.195* 0.245* 0.151 0.100 –0.039 –0.044 0.197* 0.027 0.063 0.365**

Trichoptera –0.511** –0.547** –0.468** –0.401** –0.545** –0.470** –0.134 –0.134 –0.468** –0.269** 0.045 –0.463**

Coleoptera –0.226* –0.233* –0.133 –0.144 –0.096 0.016 0.204* 0.217* –0.239* 0.109 –0.249** –0.092

Diptera –0.407** –0.412** –0.396** –0.389** –0.362** –0.280** 0.098 0.096 –0.342** –0.039 –0.139 –0.370**

** Correlation is significant at the 0.01 level
** Correlation is significant at the 0.05 level

Principal components analysis

The first four PCA axes explain 62.55% of the variance in the data on the number 
of taxa, with the first component explaining 24.72% and the second component 
18.31% of the total variance (Tab. 3).

According to PCA, Plecoptera was negatively correlated to WT. Ephemeroptera, 
Trichoptera and Diptera are negative with TSS, TP, ammonium and nitrate. pH is at 
least correlated with EPT and Diptera.

The results of the unconstrained ordination (PCA) are presented by a biplot (Fig. 
3). The diagram shows the first two PCA axes. In addition to the response variables 
(number of taxa of higher taxonomic categories (Fig. 2), physical-chemical parame-
ters and nutrients are also presented in the biplot. The first principal component is 
mostly negatively correlated with environmental variables. The orders like Ephemer-
optera, Plecoptera, Trichoptera and Diptera tend to have larger abundance in colder 
waters with reduced concentrations of TSS, TP, nitrate, nitrite, ammonium and OP.
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DISCUSSION

According to PCA, the increase of WT is most reflected in the number of taxa of 
Plecoptera, compared to the other higher taxonomic categories. This is in line with 
many previous studies (e.g., Meštrov et al., 1978; Živić et al., 2006; Chinnayakanahalli 
et al., 2011; Krepski et al., 2014; Strbad et al., 2015). Increased temperature generally 
reduces species richness. Many researchers, who studied water bodies with higher 
temperature (e.g., post-cooling water from power plant) have found negative effect of 
temperature to qualitative structure of benthic invertebrate (Ciemiński & Zdanowski, 
2009).

A large proportion of our sampling sites (ca. 50%) were situated in the Dinaric 
karst system, and karst rivers are vulnerable to nutrients, particularly nitrates, nitrites 
and phosphates (Peterson et al., 2002), due to rapid surface infiltration, anthropo-
genic activity, and the flow of water through sinkholes and groundwater-influenced 
river networks (Caetano Bicalho et al., 2012).

This investigation is in line with numerous previous investigations (Shokri et al., 
2014; Zhang et al., 2018; Kelly-Quinn et al., 2020; Rawat et al., 2020; Leitner et al., 
2021) showing that samples from the least anthropogenic disturbed sites (i.e., nitro-
gen and phosphorus enriched watercourses) are characterized by the presence of 
pollution sensitive EPT species, indicating that these sites are more pristine. Other 
organisms, in turn, represented by Gastropoda, Bivalvia, Oligochaeta are known to 
be present in highly enriched environments (Armendáriz et al., 2012; Wang et al., 2012; 
Chase et al., 2017) as rather insensitive to nitrogen and phosphorus overload, and can 
stand in moderately and high enriched waters, which is also seen in results (Tab. 2).

As indicated by Spearman correlations (Tab. 2) and PCA analysis (Fig. 3), it seems 
that nitrogen in water is equally as important as phosphorus in regulating macroin-

Tab. 3. Loadings, eigenvalues, and cumulative explained variation of the first four extracted components

Higher taxonomic category
Component

1 2 3 4

Turbellaria 0.0164 0.1439 0.7360 –0.3455
Gastropoda –0.5674 0.4166 –0.1236 –0.3465

Bivalvia –0.4757 –0.0656 –0.2306 –0.6191
Oligochaeta –0.3710 0.4946 –0.0841 –0.2127
Hirudinea –0.4050 0.3661 0.5714 –0.0888
Crustacea –0.5452 0.2179 –0.1565 –0.0232

Ephemeroptera 0.4362 0.5078 –0.3825 –0.2400
Odonata –0.4978 0.4032 –0.3109 0.4044

Plecoptera 0.8290 0.2278 –0.1619 –0.1245
Heteroptera –0.4709 0.4388 –0.0787 0.1778
Trichoptera 0.6841 0.5210 –0.1479 –0.2465
Coleoptera 0.0160 0.7081 0.1662 0.4043

Diptera 0.5009 0.5642 0.2612 0.0842
Eigenvalues 0.2472 0.1831 0.1047 0.0905

Explained variation (cumulative) 24.72 43.03 53.50 62.55
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vertebrate distribution. The importance of nitrogen as a variable is not surprising as 
the agriculture in our area uses lot of (1,200,000 t per year) mineral fertilizers (Gugić 
et al., 2014), which causes an amount of nitrogen leaching to the waterbodies. Intensi-
fication of agriculture can lead to soil condition alteration and increase runoff of 
minerals, which can increase nitrogen amounts in waters (Stefanidis et al., 2016). The 
study of Lassaletta et al.(2009) concluded that agricultural cover explained 82% of 
the variation in nitrite concentration in streams in Ebro River Basin.

National plans to build numerous waste water treatment plants (WWTP) (Official 
Gazette, 2020) seems very promising as it will improve water quality by removing 
nitrogen, phosphorus and their compounds. EEA (2018) reported TP discharges 
decreased by circa 70% from 1983 to 2014 in agricultural Germany, mainly due to 
improved WWTP.

The study revealed many significant correlations between the physical-chemical 
variables (including nutrients) and macrozoobenthos, but these correlations were rel-
atively weak. Some positive correlation of inorganic nutrients to macrozoobenthos 
can be explained by functional feeding groups, and their relationship to periphyton 
which is affected by nutrients (Makarewiczet al., 2000; Garg et al., 2009). The collec-
tor-gatherer functional feeding group show positive response to nutrient enrichment 
(Lawrence & Gresens, 2004). Some previous studies (e.g. Lawrence & Gresens, 2004) 
found interesting results in contrast to ours, reporting that Chironomidae (Diptera), 
especially grazing taxa, showed a strong response to nutrient manipulation. Chirono-
midae larvae appeared to follow the patterns of increased primary production at 
phosphorus-enriched sites. In addition, they have a rapid population growth and 
high densities in nutrient-enriched streams. In impacted aquatic ecosystems, chirono-

Fig. 3. Ordination of a PCA based on measurements (n =114) of 12 physical and chemical variables at 
each site during the study. Codes of the variables are given in material and methods. The first two 
axes of the PCA explain 43.08% of the total variation (PCA-1: 24.72%, PCA-2: 18.31%)
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mid assemblages play a key role, particularly in the food web, due to their high den-
sities in impacted ecosystems and rapid population growth (Benke, 1998; Maasri et 
al., 2008).

Benthic invertebrates, especially EPT, respond well to phosphorus enrichment. 
Development of the DJ multimetric index (Dahl & Johnson, 2004), showed that EPT 
was highly correlated to total phosphorus concentration, whether it was the number 
of EPT taxa, representing richness measures or proportion of EPT taxa, representing 
composition measures. Perhaps other factors also influence the composition of ben-
thic invertebrates, but they have not been considered in the present study, for exam-
ple: structure and the composition of the bottom sediments (Kerakova & Varadinova, 
2020), flow velocity (Habdija et al., 2004), oxygen content (Jacob et al., 1984; Galic et 
al., 2019), heavy metal load (Hirst et al., 2002; Stoyanova et al., 2012; Kladarić et al., 
2020), hydro-morphological alterations (Urbanič, 2014; Villeneuve et al., 2018; 
Urbanič et al., 2020; Zelnik & Muc, 2020).

Further investigations are needed in order to see how nutrient enrichment affects 
the benthic macroinvertebrate assemblage in the presence of other stressors such as 
hydromorphological alteration and/or the presence of toxic substances (EEA, 2018; 
Birk 2019; Poikane et al., 2019) to have a better understanding of river status deterio-
ration. It is obvious that individual stressors affect the ecological status of freshwater 
waterbodies (i.e., water quality) more than a single stressor (Grizzetti et al., 2017; 
Reid et al., 2019; Lemm et al., 2020).

CONCLUSIONS

Among the studied parameters, WT is the best predictor for diversity of freshwa-
ter macroinvertebrates.

EPT and Diptera are the most sensitive to nutrient enrichment among all freshwa-
ter invertebrates, according to their number of taxa in the sample. A strong negative 
Spearman correlation coefficient between physical-chemical parameters including 
nutrient enrichment and EPT implies this interdependence. This confirms the EPT 
taxa as useful indicators in monitoring stream health, especially nutrient enrichment.

Overall, nutrient levels are the likely cause of variations in diversity and distribu-
tion of macroinvertebrates in Croatian streams and rivers. However, future compre-
hensive analyses are needed to detect the detailed patterns of this interdependence.

Received May 20, 2021
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