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Abstract: The present study has been carried out to optimize three machining parameters in the milling process to achieve minimum surface roughness and tool wear along 
with the maximum material removal rate. A specific tool wear factor has been defined to evaluate both tool wear and material removal rate parameters simultaneously and 
the surface roughness was considered as the second output parameter. A set of experiments was designed using a DOE technique and conducted on a milling machine. 
The experimental data then was applied to develop different mathematical models and the best model was chosen based on analysis of variance (ANOVA). Three proposed 
methods of optimization with different natures were used to determine optimal output parameters based on selected models. The comparison between these methods 
showed that Regression-response optimization was superior to Simulated Annealing (SA) algorithm and Goal-attainment method. The Simulated Annealing (SA) algorithm 
also represented less error function compared to goal-attainment methods. The results of optimization revealed that optimum values for cutting speed and feed rate were 
ranged from 312 to 314 m/min and 0.085 to 0.12 mm/rev⸱tooth, respectively, while all optimization methods reached the same value of 1.0 mm for depth of cut parameter. 
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1 INTRODUCTION 
 
During the past few decades, there has been extensive 

research on improvement in the capability of the cutting 
tools. Tool wear leading to tool substitution is one of the 
most important economic aspects of machining. Generally, 
a decrease in tool wear criterion leads to a drop in material 
removal rate, directly aiming at the process productivity. 
On the other hand, surface roughness as a quality 
characteristic of the machined surface need to be 
considered as well. There are different methods of 
optimization to solve such an engineering problem. 

Savkovic et al. [1] presented reliable intelligent models 
for selected output characteristics of the milling process, 
depending on the input parameters of the process: depth of 
cut, cutting speed and feed to the tooth. Khawaja et al. [2] 
applied response surface methodology for the development 
of mathematical models and selected the best combination 
of process parameters to optimized responses, i.e. surface 
roughness, material removal rate, and strength.  

 Yildiz et al. [3] applied a hybrid optimization method 
combining the Nelder-Mead local search algorithm with 
the Harris hawks optimization algorithm for the 
optimization of process parameters in machining 
operations. Then, they showed the efficiency of the method 
with comparison of their outputs with other results 
presented in the literature. In another work, they used 
Harris hawks optimization algorithm, the grasshopper 
optimization algorithm, and the multi-verse optimization 
algorithm to optimize processing parameters for different 
manufacturing processes [4]. 

Previously, many research papers have been reported 
in literature focusing on tool wear and surface roughness 
using modeling techniques; nevertheless, most of them 
have been developed for turning, whereas, there is little for 
the milling processes. Furthermore, they usually have 
applied one specific approach of optimization to achieve 
their goal without any comparison to other optimization 
methods. Kaye et al. [5] used a response surface 
methodology to develop a mathematical model to predict 
tool flank wear in turning by varying the spindle speed. 
Chien and Tsai [6] tried to develop a model for prediction 

of the tool flank wear and then optimize the model using a 
genetic algorithm for determining the optimum cutting 
conditions in turning of 17-4PH stainless steel. Sahoo and 
Pradhan [7] investigated machining characteristics in terms 
of surface roughness and flank wear in turning of Al/SiCp 
metal matrix composite using Taguchi methodology. Their 
analysis of tool wear showed that the most dominated wear 
mechanisms are abrasion and adhesion. Mia et al. [8] 
carried out MQL-assisted hard turning to study the surface 
roughness and tool wear parameters using a coated 
cemented carbide tool. They applied signal-to-noise ratio-
based optimization and Taguchi orthogonal array-based 
design of experiment. It was concluded the surface 
roughness was significantly affected by cutting speed 
while the depth of cut had a predominant effect on the tool 
wear and feed rate significantly impacted the material 
removal rate. Amouzgar et al. [9] simulated a turning 
operation using finite element method and then applied 
evolutionary algorithms to minimize the interface 
temperature and tool wear depth. They found that the 
metamodel-based method reduced the computational time 
by 70%. Mia et al. [10] investigated the optimization of 
hard-turning parameters using two methods: teaching-
learning-based optimization and bacterial foraging 
optimization. They achieved optimum cutting speed, feed 
rate, and depth of cut for the lowest surface roughness 
parameters and cutting temperature. Tsao [11] applied 
Taguchi method to improve parameters of the milling 
process. The proposed method decreased flank wear by 
62%. Their experimental results indicated that the optimal 
process parameters can be determined effectively in 
milling A6061P-T651 aluminum alloy. Tamiloli et al. [12] 
carried out a grey fuzzy approach to obtain the optimal end 
milling process parameters by considering multiple 
performance characteristics. Recently, Savković et al. [13] 
investigated the influence of the cutting parameters on the 
surface roughness and the cutting forces during the face 
milling of aluminum alloy 7075. They showed that a 
minimum level for all input parameters was the optimal 
combination for the cutting force. To achieve the average 
arithmetic roughness, the minimum values for cutting 
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speed and feed per tooth, and a median level for depth of 
cut were the optimal options.  

This study defines a new output parameter named the 
specific tool wear where both tool wear and material 
removal rate have been evaluated. Surface roughness is 
considered as the second target output. Three methods of 
optimization with different natures have been proposed and 
compared to present a theoretical and systematic 
framework based on experimental results to achieve lower 
tool wear, surface roughness, and higher material removal 
rate in milling of steel AISI 1045 alloy. 
 
2 MATERIALS AND METHODS  

 
In this research, blocks of steel AISI 1045 alloy 

(sample size: 150 × 80 × 60 mm) were used as the 
workpiece. This steel is characterized by low strain 
hardenability and medium tensile strength between 570 
and 700 MPa. This normalized and tempered alloy has a 
hardness ranging from 170 to 210 HRC and is widely used 
in the fabrication of axles, belts, pins, pumps, gears, and 
shafts in various industries. Experiments were conducted 
using an FP4MD universal milling machine. This machine 
has a positioning accuracy of ±0.005 mm with spindle 
speed ranging from 50 to 2500 rpm and desk feed rate of 0 
to 900 mm/min. A 4-flute face milling cutter with 80 mm 
diameter was used in the machining process. The cutting 
tool consisted of a cemented carbide insert coated with TiN 
(ISO R245-12 T3 M-PM 4020). PVD coating material and 
thermal shock resistance of the substrate makes this insert 
suitable for both semi-dry and dry machining processes. 
The utilized inserts in the experiments had an inscribed 
circle diameter of 13.4 mm with an effective cutting-edge 
length of 10 mm and a corner radius of 1.5 mm. Fig. 1 
shows a schematic diagram of the experimental setup. The 
surface quality was also measured by a roughness meter 
made by Taylor Habson company. The BX60 optical 
microscope manufactured by OLYMPUS company with 
the magnification of 50 to 1000 was utilized as well. 

 

 
Figure 1 Schematic diagram of the experimental setup 

 
2.1 Design of the Experiment 
 

Design of experiment (DOE) has been one of the best 
tools to design and analyze complicated industrial 
problems. It is a useful method to investigate the level of 

effectiveness of the input variables on the output 
parameters. This approach is widely applied to 
systematically determine the optimal process parameters 
with fewer testing trials. This means lower cost whereas 
there are little errors compared with the full factorial trials. 
A comparison of different methods of DOE reveals that the 
Taguchi method is a powerful approach to optimize 
designs for performance [14, 15]. Three variables: cutting 
speed, feed rate, and depth of cut, each at three levels, were 
considered in the present study. As shown in Tab. 1, levels 
of these machining parameters were selected based on 
recommended cutting range of the insert by handbooks, 
and the limitation of the milling machine. In this research, 
instead of using 27 tests (full factorial), due to the time-
consuming processes and high costs, 9 treatment 
combinations, each with three replications, were carried 
out in a random order thanks to Taguchi method (L9). 

 
Table 1 Independent variables and their levels 

No. Factor Notation Level − Level 0 Level + 

1 
Cutting speed / 

m/min  
v 126 201 314 

2 
Feed rate / 

mm/rev⸱tooth  
f 0.06 0.12 0.18 

3 Depth of cut / mm a 1 1.5 2 

  
Surface roughness R was measured in which the 

average arithmetical deviation of the area was calculated. 
Flank wear as a dependent variable appearing in the form 
of so-called wear land was measured by the width of flank 
wear (mm) (Fig. 2).  
 

 
Figure 2 Measuring the width of the flank wear land 

 
The specific tool wear VBs was then calculated from 

the measured flank wear and material removal rate as 
 

VB
VBs

MRR
                       (1)  

 
MRR is the material removal rate (cm3/s) and 

calculated by the following equations: 
 

3 310 π 2 10
,

60

L w a L r
MRR       t

t f v tooth

       
 

  
         (2)  

 
where L is cutting length (mm), w is cut width (mm), t is 
machining time (min) and r is milling cutter radius. 
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2.2 Mathematical Model Development 
 

The aim of mathematical modeling is establishing an 
inputs-outputs relationship to help understand how the 
typical value of the dependent variable changes when any 
of the independent variables is varied. Moreover, that is the 
first step to facilitate optimization of the process, optimal 
machining parameters to get minimum surface roughness, 
and specific tool wear. Based on Taguchi L9 matrix, the 
results of nine tests are presented in Tab. 2. 

  
Table 2 Experimental results of responses according to Taguchi L9 orthogonal 

array 
Specific tool 

wear / 
cm/(cm3/s)  

Surface 
Finish / 

mm 

Depth of 
Cut / 
mm 

Feed Rate / 
mm/rev⸱tooth 

Cutting 
Speed / 
m/min 

No. 

0.0250 1.67 1 0.06 126 1 
0.0106 2.14 1.5 0.12 126 2 
0.0057 2.22 2 0.18 126 3 
0.0139 1.47 1.5 0.06 201 4 
0.0058 2.04 2 0.12 201 5 
0.0075 1.71 1 0.18 201 6 
0.0088 1.75 2 0.06 314 7 
0.0077 1.5 1 0.12 314 8 
0.0037 1.94 1.5 0.18 314 9 

 
As detailed, the first three columns are the independent 

machining parameters and the fourth and fifth ones are 
dependent output objectives including surface roughness 
and specific tool wear respectively. 

The statistical regression analysis had been applied to 
mathematically model the relationship between input and 
output parameters based on the data collected as per test. 
The coefficients values of developed regression functions 

such as linear, curvilinear, and logarithmic were 
calculated. It should be mentioned that these models were 
modified by an elimination process called stepwise 
technique which removes the inconsiderable terms to 
adjust the fitted model.  

The most fitted function is the best model for the 
experimental data that accurately predict the actual output 
in the machining process. The next is the evaluation of the 
proposed models using ANOVA technique based on three 
factors, correlation factor R2 (Tab. 3), probability value (p-
value), and normality of residuals. 

 
 Table 3 Correlation factor values 

Processed models Output R2 

Linear models 
R 83.5 

VBs 89.3 

Curvilinear models 
R 77.3 

VBs 82.08 

Logarithmic models 
R 80.6 

VBs 99.6 

 
Evaluation of different models reveals that the linear 

model for surface roughness and logarithmic model for 
specific tool wear are superior to others. These proposed 
models are presented below: 
 
R = 1.23 − 0.00138v + 2.7f + 0.38a                            (3) 
 
VBs = 0.05012 ⸱ v−0.656 ⸱ f−0.892 ⸱ a−0.777                       (4) 
 
the probability plots of the above models are shown in Fig. 
3. These plots were constructed for a confidence interval 
(CI) of 95%. 

 

 
Figure 3 Probability plots for specific tool wear log(VBs) and surface roughness (R) 

 
3 OPTIMIZATION PROCEDURE 

 
In many real conditions, it is required to set the process 

parameters in such a way that the desired output is 
achieved. There is a multi-objective optimization problem 
containing two objectives (responses) that should be 
minimized simultaneously. In such problems, objectives 
usually act as opposed to each other; which means that one 
objective decreased while another is increased. So, a trade-
off procedure is required to achieve a reasonable solution 
that relatively minimizes all of the objectives by satisfying 
the applied constraints. In the present paper, three methods 
are used to solve this multi-objective problem, namely the 

Simulated Annealing (SA) algorithm, Goal-attainment 
method, and Regression response optimization. 

 
3.1 Simulated Annealing Algorithm 

 
This is a problem of combination explosion where 

evolutionary algorithms have emerged as a powerful 
optimization procedure. The evolutionary algorithms are 
practical and effective optimization techniques widely 
applied to solve combinatorial engineering problems. 
Simulated Annealing (SA) is one of the novel algorithms, 
first proposed by Kirkpatrick et al. [16]. SA is a stochastic 
search algorithm applicable to a wide range of problems 
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for which little prior knowledge is available. Inspired by 
nature, SA algorithm is adapted from the process of gradual 
cooling of metals. The annealing is a heat treatment where 
a solid is reheated to a high temperature known as the 
annealing point so that the molecules are able to move 
freely and then let it cool slowly until thermal mobility is 
lost. To reach the minimum energy, atoms try to arrange in 
perfect crystal structure which requires a proper cooling 
time. The solid is able to reach a certain thermal 
equilibrium status at temperature T. The Boltzmann 
distribution defines the probability of being at the energy 
level of E: 

 

   
1

exp
B

E
pr E

Z T K T

 
  

 


            (5) 

 
where KB is the Boltzmann constant and Z(T) is a 
normalization factor. The exponential term is named the 
Boltzmann coefficient. As temperature decreases, the 
Boltzmann distribution focuses on a state with the lowest 
energy and this will be the only possible state when the 
temperature comes close to zero. In this work, the 
employed SA code operates based on a neighborhood 
structure so that a small random change is made to one of 
the input variables at each step. The objective function 
value of the new solution (new input variables) is then 
compared with that of the current input variables. If this 
new solution demonstrates a lower objective function, the 
move will be accepted. Otherwise, there is a chance of 
escaping from local minima depending on the satisfaction 
of the following inequality:  

 

 e 0,1
c

T Ran



                (6)   

 
With a gradual decrease in temperature from a 

relatively high value to near zero as the search progresses, 
the probability of non-improving solutions becomes small 
as the difference in the costs (Δc) increases. As a result, at 
the beginning, even most worsening moves are accepted, 
but in the end, only improving ones are more likely to be 
accepted [17, 18]. 

It is required to define a proper function in the form of 
an error function to adopt SA technique for predicting the 
process parameters values. This function, based on a given 
R and VBs, would determine the goodness of any set of 
process variables regarding the resultant R and VBs. The 
multi-objective function in our problem is defined as a 
squared error function given below:  

 

   2 2
R x VB x

F
x x

w R R w VBs VBs
E

R VBs

 
                        (7)    

 
In the above expression, R and VBs are what is gained 

from models and the desired surface roughness and specific 
tool wear values are specified by Rx and VBsx as the target 
values. wR and wVB are weights for R and VBs respectively 
determining the importance of one objective compared to 
another one. Moreover, in some optimization techniques 
changing the value of weights can improve results. It is 
worth noting that changing weights in SA algorithm show 

no improvement in error function due to its nature of 
random, thus they are considered equal in SA algorithm. 
During the search, the algorithm tries to determine process 
parameters in such a way that error function EF is 
minimized letting them approach their desired values. 

 
3.2 Goal-attainment Method 

 
The goal-attainment method is first proposed by 

Gembicki [19] to solve multi-objective problems. In this 
method, it is assumed that the optimization problem is 
constructed from a set of objectives Ji(x) with i = 1, 2, …, 
n. It is also assumed that the approximate values of the final 
solutions are known for the set of objectives. These 
solutions are named as the design goals. Objectives should 
try to converge to these goals. So, a set of parameters are 

defined as design goals *
iJ   for each objective in the 

optimization problem. It should be noted that the objectives 
may not achieve the goals (under-achievement). However, 
there is also possibility of achieving exactly the design 
goal, or even achieving and exceeding the goal to further 
minimize the objectives (over-achievement). The degree in 
which objectives achieve the design goals is controlled by 
the set of weights (factors) wi. In order to find appropriate 
initial values for the design goals, several optimization 
problems must be solved in which different initial values 
of the design goals have been applied [20-22]. Even if the 
initial values for the design goals are not already available 
for a specific problem, the appropriate values can be 
obtained by conducting a parameter study or a simple try 
and error procedure. A general goal-attainment 
optimization problem can be defined as the minimization 
of γ such that Eq. (8) is satisfied for all objectives. 
 

  1 2*
i i iJ x w J   ,   i , , ,n                 (8) 

 
In Eq. (8), wiγ is the amount of deviation that the 𝑖th 

objective Ji may have from the 𝑖th design goal *
iJ . In other 

words, the degree of the under- or over-achievement is 
controlled by this factor. wi magnitude usually is ranged 
from zero to 1 and assigned to the 𝑖th objective to 
emphasize its importance in comparison to the other 
objectives. The algorithm tries to minimize γ so that the 
objectives achieve the design goals. For this purpose, it 
starts from a given initial point in the space searching for a 
special point that minimizes the objectives according to the 
input machining parameters. The minimization process by 
the goal-attainment method can be easily described in a 
two-dimensional space; which is the case in the present 
paper. A simple schematic illustration of such a problem is 
shown in Fig. 4. In this figure, the initial point is defined 

by 0 0
1 2, A J J     in the two-dimensional space and the 

feasible objective region stated by Ω(γ), the algorithm 
starts to move from A towards the feasible region Ω in the 
search direction vector defined by γw with w = [w1, w2]. If 
it is assumed that this vector intersects region Ω in point

1 2, s sB J J    and its corresponding value of γ is zero, a 

feasible solution is exactly achieved the design goal. If a 
negative value was obtained for γ, it indicates that the 
design goals are over-attained and a better solution (than 
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that of design goal) is obtained for the problem. A positive 
value of γ represents the under-achievement condition in 
which the design goals are not attainable for the objectives. 
This procedure is similar to calculating the nearest point 
from the initial point 𝐴 to the feasible objective region Ω(γ) 
in the direction defined by A + γw. An optimization model 
is obtained by applying this method to calculate the 
optimum machining parameters that minimize the 
equations stated in Eq. (3) and Eq. (4) simultaneously. This 
model can be stated as minimizing 𝛾 such that 

 

  *, ,   ,   1 and 2i i iJ a f v w J i                       (9) 

  
where a, f and v are machining parameters as already 
defined in Tab. 1 The configured model is a multi-objective 
optimization problem with inequality constraints. 
Objectives  1 , ,J a f v and  2 , ,J a f v are defined as R and 

VBs according to Eq. (3) and (4) respectively. 
 

 
Figure 4 A schematic diagram of the optimization process using the goal-

attainment method 
 

3.3 Regression-response Optimization Method 
 
Response optimization is a method that identifies the 

combination of variable settings and allows for 
compromise among the various responses [23]. The 
optimization is carried out by obtaining the individual 
desirability for each response (R and VBs) and combining 
those to obtain the composite desirability thereby 
maximizing or minimizing the composite desirability and 
achieving the optimal input variables [24].  

 
4 RESULTS AND DISCUSSION 

 
The proposed SA code was programmed in MATLAB 

9.0® and executed on an AMD Ryzen 3 1300 Quad-Core 
with a 3.50 GHz processor. It is worth noting that 
controlling parameters of the algorithm were modified 
several times during the research to achieve the best SA 
algorithm structure for this case study. These parameters 
are as follows: cooling schedule function ck + 1 = αck (α = 
0.95); initial temperature (c0) 20; neighborhood generation 
pairwise interchange; termination criterion ranging from 
100 to 100000 iterations. Longer execution of the 
algorithm, with more iteration and higher initial 
temperatures, showed no more improvement. The code 
was run several times and its three optimization results are 
summarized in Tab. 4 As shown, the specific tool wear was 
less than 0.009, while the surface roughness was about 1.50 

revealing that the proposed models can estimates the 
process properly. The presented data also can be used to 
calculate material removal rate and flank wear land by Eq. 
(1) and the following equation respectively: 

 

3π

VBs w a f v
VB

r

   



                  (10) 

 
For instance, according to No. 1 run in Tab. 4 flank 

wear land and material removal rate will be 0.0462 mm and 
0.5844 cm3/s respectively. 

To evaluate the performance of the proposed SA 
algorithm, a convergence curve for a sample test run is 
shown in Fig. 5. This curve illustrates that most of the 
improvements achieved within the first 1000 iterations (40s 
of search time) indicate the quick coverage of algorithm 
and the efficiency of proposed SA procedure.  

 
Table 4 Optimization results of the proposed SA algorithm  

No. 
Process Parameters By SA Predicted Value by SA 

v / 
m/min 

f / 
mm/rev⸱tooth 

a / 
mm 

R / mm 
VBs / 

cm/(cm3/s) 
1 306 0.10 1.20 1.532 0.0079 
2 312 0.12 1.00 1.503 0.0077 
3 284 0.11 1.00 1.514 0.0088 

 

 
Figure 5 Convergence rates for SA algorithm 

 
As for the goal-attainment optimization technique, the 

method was developed to solve the problem and obtain the 
optimum machining parameters that minimized the 
specific tool wear (VBs) and surface roughness (R) 
simultaneously. The mentioned model in section 4.2 was 
implemented in MATLAB software and solved using 
fgoalattain function. Design goals were determined by 
running the code several times and conducting a simple try 
and error process. The effect of the factors including 
weights, design goals, and the initial point was also 
investigated on the results. An optimization model 
depicted in Eq. (9) was constructed and solved using a 
developed MATLAB code. The initial point of the 
optimization problem was chosen as the midpoint between 
the upper and lower limits based on the boundaries of the 
machining parameters stated in Tab. 1. It is worth noting 
that different alternatives were utilized for the initial point; 
nevertheless, no sensible change was observed in the 

results. Appropriate selection of the design goal vector *
iJ

can be considered as the main challenge in the goal 
attainment method. According to the results of the SA 

algorithm,  * * *
1 2,  1.5, 0.009J J J     was applied as the 

first guess for the design goal; however, it was observed 
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that a further decrease in the design goal improved the 
process of minimization of the objectives. The weight 
vector was assumed as w = [0.5, 0.5] means assigning the 
same importance level to the objectives J1 and J2. The 
results of several runs for optimization model revealed that 

the value of *
2J   had no significant effect on the output 

results. Therefore, the change of *
1J in the design goal 

vector was taken into consideration and the optimization 
model was solved using the mentioned code. Fig. 6 shows 

changes in objectives (R and VBs) as *
1J decreases from 1.6 

to 1.15. As the variations in either *
1J  or *

2J  leads to the 

definition of a new design goal, the algorithm tries to 
achieve this new goal by changing both objectives 
simultaneously.  

 

 
(a) 

 
(b) 

Figure 6 Results of the optimization conducted using the goal attainment 
method (a) diagram of surface roughness (R) and specific tool wear (VBs) 

regarding the first design goal ሺ𝐽ଵ
∗ሻ; (b) diagram of the normalized magnitude of 

vector R + VBs regarding the first design goal ሺ𝐽ଵ
∗ሻ (assumptions: 𝐽ଶ

∗ = 0.005, w 
= [0.5, 0.5] and A = [220, 0.12, 1.5]) 

 

As *
1J decreases from 1.6 to 1.3, the optimized surface 

roughness (R) decreases from about 1.61 to 1.34 and stays 
constant for further decline in the design goal (Fig. 6a). In 
contrast to R, the value of the specific tool wear first 
fluctuates between 0.017 and 0.008, then starts to increase 
gradually in goal value of 1.5. Once VBs reaches 0.014 it 
stabilizes at this value (Fig. 6a). From these graphs it can 
be seen that there is a threshold value for the design goal 
as crossing that to further minimize the objectives, no 
change can be obtained for the results. Determination of a 
specific result that minimizes simultaneously both of the 
objectives seems to be impossible since objectives act as 
opposed to each other in some intervals of the first design 
goal. For example, in the interval [1.55-1.3], the first 
objective (R) had a totally descending trend while the 
second (VBs) had a descending then ascending behavior. 
To choose an optimal solution that relatively minimizes 
both of the objectives, data illustrated in both diagrams 
were first normalized in the interval [0-1]. The magnitude 
of the normalized resultant vector (R + VBs) was then 
calculated and presented in Fig. 6b. As shown in the graph 

when *
1J is 1.4, a trade-off point can be obtained that 

relatively minimizes both of the objectives. By substituting 
*
1J = 1.4, the optimized values of R and VBs were obtained 

as 1.405 mm and 0.010 cm/(cm3/s) respectively. The 
corresponding machining parameters for these optimized 
values were v = 314 m/min, f = 0.085 mm/rev⸱tooth and a 
= 1 mm. These results were achieved by assigning the same 
weights to the objectives. In some cases, as already 
mentioned, the minimization of an objective is more 
important than the others, hence the designer may sacrifice 
other objectives to achieve an appropriate possible solution 
to the first one by increasing its weight high enough.  

Regarding the regression-response optimization 
technique, as the goal is to minimize R and VBs responses, 
the target and upper boundary values had been set based on 
the minimum and maximum values in experimental data. 
In this technique, the weight of every response determines 
how the desirability is distributed on the interval between 
the lower (or upper) bound and the target shaping the 
desirability function. In order to consider the best weight 
percentage for two responses based on error function 
criterion, the weight for VBs objective was changed from 
almost zero to 1 and accordingly, the weight for the second 
objective was changed. Eq. (7) was applied to evaluate the 
best weight for every response. As shown in Fig. 7, 
generally, decreasing weight factor for VBs has a profound 
effect on decreasing error function. These results indicate 
that the best weights for VBs and R are 0.4 and 0.6 
respectively. 

 

 
Figure 7 Weight value evaluation based on the error function 

 
Fig. 8 details how well a combination of variables 

satisfies the goals defined for the responses where d and D 
are the individuals and composite desirability values 
respectively. Individual desirability evaluates the manner 
in which the settings optimize a single response, while 
composite desirability evaluates how the settings optimize 
a set of responses overall. There is a range of zero to one 
as desirability where one indicates the ideal case and zero 
represents that one or more responses are outside their 
acceptable limits. 

The optimization plot (Fig. 8) shows the effect of each 
variable on the surface roughness and specific tool wear 
(composite desirability). The numbers displayed at the top 
of a column present the level of the current parameter 
settings (in red) corresponded to the red lines on the plot. 
The horizontal lines and numbers in blue show the 
responses for the current input parameters level. As 
highlighted in figure, increasing cutting speed improves 
both surface roughness and specific tool wear; but, by 
contrast, feed rate and depth of cut move in the opposite 
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direction to improve both responses. The results of 
regression-response optimization show that optimum 
values for machining parameters are v = 314 m/min, f = 
0.117 mm/rev⸱tooth and a = 1 mm. Based on these input 
parameter, surface roughness and specific tool wear can 
reach 1.49 mm and 0.0078 cm/(cm3/s) respectively. 

 

 
Figure 8 The variables effects on the predicted responses 

Tab. 5 compares the results for different compositions 
of input parameters obtained from three optimization 
methods. It is worth reminding that unlike SA which 
generates different compositions and results in every run of 
the algorithm, the goal-attainment and regression-response 
optimization methods produce only one specific result. So, 
the compositions presented in this table were the best 
results in several runs of the SA program. Computational 
results show that the regression-response optimization 
method has less error function compared to the proposed 
SA algorithm and goal-attainment method indicating it can 
determine parameters for the minimum surface roughness 
and specific tool wear in the milling process with higher 
efficiency.  

The percentage influence of three machining 
parameters on surface roughness and specific tool wear are 
also evaluated in Fig. 9. Based on the Analysis of Variance 
(ANOVA), it is found that feed rate is the most significant 
variable on specific tool wear. It is nearly twice more 
effective than the depth of cut and cutting speed. In 
comparison, depth of cut is the variable that has the most 
influence on surface roughness followed by feed rate and 
cutting speed. 

 
Table 5 Results comparison of three optimization methods 

Methods 
Process Parameters By SA Predicted Value by SA  

v / m/min f / mm/rev⸱tooth a / mm R / mm VBs / cm/(cm3/s) Error function 
SA Algorithm 312 0.120 1.00 1.503 0.0077 0.0148 

Goal-attainment 314 0.085 1.00 1.405 0.0104 0.0183 
Response 314 0.117 1.00 1.492 0.0078 0.0138 

 

 
Figure 9 The percentage of effect of machining parameters on specific tool wear 

and surface roughness 
 
5 CONCLUSIONS 

 
In this paper, a procedure to formulate and model the 

relationship between three determining factors in the 
milling process was introduced. Three independent 
variables including cutting speed, feed rate, and depth of 
cut and two output parameters including surface roughness 
and specific tool wear had been selected. After developing 
and checking the adequacies of mathematical models with 
regard to ANOVA, it was found that the fittest models for 
R and VBs were linear and logarithmic respectively. These 
models were then used to optimize two target parameters 
using different optimization methods. Three different 
methods of optimization with different natures were 
applied to determine optimal output parameters in the 
process including SA algorithm (an evolutionary 
algorithm), goal-attainment method and regression-
response optimization techniques. Utilizing these 
optimization methods, mathematical models were 
optimized to obtain a group of optimal process parameters, 
which minimizes surface roughness and specific tool wear 

values. The comparison of results obtained through these 
optimization methods based on error function, indicates 
that although all techniques demonstrate acceptable 
outputs, regression-response optimization presents the best 
combination of parameters. The Simulated Annealing (SA) 
algorithm also reveals less error function compared to goal-
attainment methods. The results of optimization revealed 
that optimum values for cutting speed and feed rate were 
ranged from 312 to 314 m/min and 0.085 to 0.12 
mm/rev⸱tooth, respectively, while all optimization 
methods reached the same value of 1.0 mm for the depth 
of cut parameter. Besides, Analysis of Variance (ANOVA) 
showed that feed rate is the most significant variable on 
specific tool wear, and depth of cut is the variable that has 
the most influence on surface roughness followed by feed 
rate and cutting speed. It should be noted that the presented 
results are based on experimental data of the milling 
process and can be a different case by case depending on 
its answer space. Applying these optimization techniques 
to the different manufacturing processes is proposed as 
future work. 
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