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Abstract. In the past few years, activity of ransomware increased.
As new variants and families of ransomware are developed, security sys-
tems have to keep up. Well designed encryption system is at the heart of
ransomware and even a small mistake in the algorithm can break it. This
paper analyzes 10 ransomware samples from various families. The goal of
the analysis is to describe encryption schemes used in current ransomware.
This includes key generation and storage, symmetric and asymmetric ci-
phers and their chosen implementation.

1. Introduction

This paper focuses on cryptographic primitives used by modern ran-
somware. Ransomware is a special kind of malware that prevents users from
using the computer until the user pays a ransom. This can be done in two
ways. First one, locker ransomware, locks the user out of the device. The user
may continue using the device only after he pays the ransom and the attacker
unlocks his device.

The second type, crypto ransomware, is more dangerous – it encrypts
all valuable user files, including documents, images, videos, etc. Files can
be returned into their original state only if user pays the ransom and if the
attacker provides a decryption tool.

Ransomware requires two conditions for correct operation: firstly, a con-
nection to the Internet in order to communicate with the command server
(this is not required for all ransomware) and secondly, a method of anonymous
payment so that the attacker cannot be easily identifiable. The second con-
dition was fulfilled with the development and expansion of cryptocurrencies
such as Bitcoin [19]. This significantly accelerated the spread of ransomware.
According to 2019 IOCTA report [12], ransomware was rated top threat of
2019.
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Motivation. The actual way the ransomware encrypts and transforms
the files can be very important. Incorrect implementations of cryptographic
algorithms can lead to situations where the files are damaged and no longer
recoverable. In other situations, the implementation can be exploited and files
can be decrypted without a key (or the key can be derived from some known
information).

The main theme of this paper are encryption algorithms used in modern
ransomware. We analyze the samples and describe used encryption schemes.
These schemes are then compared and analyzed for any weaknesses. Samples
were chosen from last two years, so they represent the newest trends used by
malware authors. This allows us to compare our findings to related works
that analyzed older families of ransomware in a similar manner.

Contribution. Our main contribution is the analysis of current (2019–
2020) usage of cryptographic primitives in ransomware. We provide a complex
analysis, including ciphers used, implementations and key generation. Finally,
the analyzed set of 10 ransomware samples1 chosen at random represents
different programming languages (compiled C/C++, Go and runtime C#)
with different encryption algorithms.

Organization. Our paper is organized as follows. Section 2 presents pre-
vious research on malware including current state of the art research outputs.
Section 3 introduces methodology used for the analysis. Section 4 introduces
notation used in Section 5 that presents schemes that were analyzed. Sec-
tion 6 presents results of the analysis and Section 7 discusses those results in
the context of previous analyses mentioned in related works. Finally, Section 8
sums up the findings.

2. Related work

One of the first ransomware analyses was done by Gazet [14] in 2008,
about three years after the ransomware phenomenon emerged. In the anal-
ysis, they focused on quality of code, malware functionalities and usage of
cryptographic primitives. They analyzed four ransomware families. Many
analyzed samples showed various mistakes, such as not using encryption at
all and instead changing the access rights of the files, bugs that can destroy
files of specific sizes, easily breakable custom cryptographic functions and
usage of constant seed for the PRG (pseudo-random generator).

In the last four years, partly intensified by the WannaCry outbreak, in-
terest in ransomware grew rapidly. Scopus analytics [11] shows 12 documents
containing word ransomware in the title in 2015 and 252 documents in year
2017.

1samples are available at https://github.com/UIM-SEC/ransomware-samples



ANALYSIS OF ENCRYPTION SCHEMES IN MODERN RANSOMWARE 3

Palisse et al. [18] showed that either by monitoring Microsoft’s crypto-
graphic API present in Windows operating system or by exploiting weak ci-
pher modes, one can detect or revert actions done by ransomware and get
their files back. The success rate was 50%.

Craciun et al. [9] presents trends in ransomware design, including co-
existence with service providers on black market, ways of distribution and
propagation, types of encryption used including design mistakes. Notable
mistakes found are usage of the rand() function, incorrect usage of encryp-
tion algorithms or bugs that damage the files.

Akbanov et al. [1] presents a detailed analysis of the infamous WannaCry
ransomware that infected hundreds of thousands computers in 2017. The
analysis was conducted in an isolated lab environment. In this environment,
researchers could easily trace API calls of encryption components and identify
functions used to generate keys and encrypt files.

Bajpai and Enbody [4] focused their research on ransomware that uses
.NET framework. This type of ransomware was chosen because the decom-
piled code is much closer to the actual source code of the malware and subse-
quent manual analysis is easier and faster. Main focus of the study was key
generation, but in addition, they analyzed other life stages of ransomware, in-
cluding delivery and preparation, file enumeration and post-encryption. Their
other work [5] is more tightly focused on key generation strategies, where they
found empirical evidence that insecure key generation schemes are still present
in some types of modern ransomware.

Cicala et al. [8] analyzed .NET ransomware using static and dynamic
analysis. They describe four encryption models (symmetric, asymmetric, hy-
brid and full hard disk encryption). Their analysis focused mainly on key
generation and encryption methods with a description of reverse engineer-
ing techniques. In conclusion, they formulate a few defense strategies that
can be used against malware that include exploiting weak encryption pro-
cess or crypto API logging that can revert cryptographic operations done by
ransomware.

3. Methodology

In this section, we introduce the methodology used to analyze the ran-
somware samples.

3.1. Sample Retrieval. Samples were retrieved mostly from websites offering
malware for analysis, specifically Hybrid Analysis [16] and any.run [2]. One
sample was captured live from infected computer. Hashes of the samples were
selected based on their capture date so that the set of samples consisted of
current ransomware.
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3.2. Analysis Process. The main goal of the analysis is to find all encryption
operations. The first important area is the beginning of the program, where
the public key may be loaded or asymmetric key pair may be generated. The
second area of interest is the encryption loop, where each file with suitable ex-
tension on the file system is encrypted. The encryption algorithm, encryption
mode and key generation can be usually analyzed here.

There are multiple strategies that can be used during analysis. The fol-
lowing is a summary of techniques that can be used during malware analysis.
For more in-depth information, we recommend specialized literature such as
Sikorski and Honig [21].

3.3. Dynamic analysis. This strategy requires the ransomware to be executed.
As this is potentially destructive operation, it needs to be performed in a
safe environment. For this purpose, we have used a Windows 10 virtual
machine with Flare2 distribution. Dynamic analysis runs the malware inside
a debugger that allows to step through the ransomware one instruction at a
time.

Main advantage of dynamic analysis compared to static one is the ability
to view information that is available only at runtime. For example, some
ransomware may contain encrypted strings that are decrypted only when the
ransomware uses them. However, there are also some drawbacks. Some mal-
ware may contain anti-debugging measures that prevent the program from
being debugged or change its original behavior making the analysis more
challenging.

3.4. Static analysis. This strategy is safer than the previous one as it does not
involve execution of the ransomware. The sample is imported into disassem-
bler such as IDA Pro [13] or Ghidra [15]. At this point, external library calls
can be analyzed (e.g. CryptoAPI) along with strings present in the binary.
Strings that are most valuable include hard-coded public keys or error mes-
sages which might point to a specific library used or even contain information
about position (line number) in the original source code of the library.

In addition to disassembler, a decompiler may also be used. Code gen-
erated by a decompiler is different from the original source code of the ran-
somware, but flow control constructs such loops, branches and switches are
easier to analyze in C than in assembly.

There are some further tricks that can be done at this stage. Signature
search [17] in IDA Pro allows to search for common compression and encryp-
tion algorithms. Function ID in Ghidra can identify library functions from
prepared function databases [22]. Plugin Karta [7] for IDA Pro has a similar
functionality.

2https://github.com/fireeye/flare-vm
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4. Notation

In this section we provide a description of the notation used throughout
this paper. The notation is summarized as follows:

• The symbols A and V denote attacker and victim respectively. In
our case, attacker represents a cybercriminal group, responsible for
delivering a malicious sample to the victim. Victim, on the other
hand, represents a single machine, infected by ransomware.

• Keys are represented as symbol Kn. The index n describes, who is
the owner of the mentioned key (attacker or victim) and whether the
key is symmetric or asymmetric. For example, KA is an attacker’s
symmetric key and KVpub is a public key for the victim.

• Function Exe(K) represents a special process of embedding a key K
directly into the executable. For example, output from the function
Exe(KVpub) is a malicious sample with embedded victim’s public key.

• The key generation function is used as K = Gen() when generating
a symmetric key and Kpub,Kpriv = Gen() when generating an asym-
metric public/private key pair.

• The encryption function is denoted as Enc(pt,K), where pt is plaintext
and K is the key used for encryption.

• Each file to be encrypted is represented as fi, where i ∈ {1, . . . , N} and
N is the total number of files that ransomware selects for encryption.

5. Encryption Schemes

Cracium et al. [9] identified three encryption schemes used by ransomware
until the year 2018. During the analysis of the latest samples, we also observed
one additional scheme (encryption scheme B). This chapter is devoted to
description of all four major ransomware encryption schemes.

First encryption scheme A is shown in Figure 1 (left). We can see that
attacker firstly generates a key pair (KVpub ,KVpriv ) for a specific victim and
embeds the public key KVpub directly into the malicious executable. When
this sample is transferred and executed by the victim, a custom symmetric
key Ki is generated for each file fi. The key Ki is used for encrypting the file
content. Ki is then encrypted with victim’s public key KVpub and attached to
the end of an encrypted file.

As we can see in Figure 1 on right side, in second encryption scheme B,
malicious sample is distributed with an attacker’s key KA. Compared to the
previous scheme, the victim’s key pair (KVpub ,KVpriv ) is generated directly
on the infected machine. Private key KVpriv is encrypted with the key KA,
sent back to the attacker and removed from memory. File encryption process
is the same as in scheme A.

Encryption scheme C (left side of Figure 2) is very similar to scheme A.
Main difference is that instead of generating a custom key for each file, one



6 R. PLOSZEK, P. ŠVEC AND P. DEBNÁR

global symmetric key K is generated. Then, every file is encrypted with the
same key.

Last scheme is known as a three-tier trust model. As we can see in Figure 2
(right), malicious executable is shipped with the attacker’s public key KApub .
Then, victim’s key pair (KVpub ,KVpriv ) is generated and the private keyKVpriv

is encrypted with attacker’s public key KApub . File encryption process is the
same as in schemes A and B, where custom symmetric key is generated for
each individual file. This scheme was used by the WannaCry ransomware [1]
and can be considered as the most secure one. Main advantage of this scheme
is that victims affected by the same binary cannot share their private keys,
as they are protected by another asymmetric layer.

Figure 1. Encryption schemes A (left) and B (right).

Figure 2. Encryption schemes C (left) and D (right).
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6. Results

In this section we summarize the results we achieved during the analysis
process. As stated in the previous sections, we mainly focused on: iden-
tification of the encryption scheme, symmetric and asymmetric encryption
algorithms and its parameters, key generation functions and implementation
details of the cryptographic primitives. We performed an in-depth analysis of
ten samples intercepted during the years 2019 and 2020. It is important to
note, that we focused on different families rather than individual variants as
malware authors tend to release a new version of their ransomware every few
weeks. Therefore two different variants of ransomware from a single family
can differ significantly in terms of their cryptographic primitives usage.

Identified encryption schemes can be seen in Table 1. We can see that
significant amount of samples use scheme A, where KVpub is generated by
an attacker for a specific victim. These findings directly correspond to the
IOCTA report from 2019 [12], where they stated, that modern ransomware
is targeting private companies instead of a regular citizens. The prevalence
of this scheme indicates, that attackers are no longer interested in affecting
as many victims as possible, but rather focusing on the specific targets. An
interesting fact is that we observed only one sample using the most secure
scheme D. Ransomware Nemty used the scheme D with the modification
from scheme C, where one global key K is used for encryption. We found
global key K usage in three samples (Nemty, Katyusha and Phobos). It has
to be noted that in two cases (Nemty and Phobos), the IV was randomly
generated for each file, while on the other hand, the Katyusha sample used
same key and IV for all files. We also identified one sample using the scheme B
(GandCrab). This scheme can be considered as one of the weakest, as KVpriv

is generated on the victim’s machine and sent back to the attacker, encrypted
with a known key KA. Hence if the victim has network logs at his disposal,
encrypted files are easily recoverable.

In the case of symmetric ciphers (see Table 2), we can see that most
samples utilize AES [10], with key sizes of 128 and 256 bits. In terms of
encryption modes, majority of cases used CBC mode with randomly generated
IV. Ransomware Ryuk is the only one that used zero IV, which can leak
information from ciphertext if the same key is used for different files, however
this is not the case in scheme A. One special case includes Snatch sample,
using the OCFB mode. We observed only two samples that used stream
ciphers for file content encryption. GandCrab used combination of Salsa20
[6], with 256 bit key and RC4 with 2048 bit key. Clop, on the other hand used
only RC4 cipher with 2048 bit key.
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Table 1. Encryption schemes observed in the latest samples.

Ransomware name Encryption scheme
Ryuk A
Dharma A
LockBit A
SamSam A
GandCrab B
Clop A
Katyusha A/C
Snatch A
Phobos A/C
Nemty C/D

Table 2. Symmetric ciphers in modern ransomware and its
parameters.

Ransomware name Algorithm Mode IV
Ryuk AES-256 CBC Zero
Dharma AES-128 CBC Random
LockBit AES-128 CBC Random
SamSam AES-128 CBC Random
GandCrab Salsa20, RC4 — —
Clop RC4 — —
Katyusha AES-256 CBC Random
Snatch AES-128 OCFB1 Random
Phobos AES-256 CBC Random
Nemty AES-128 CBC Random
1 OpenPGP variant of the standard Cipher-Feedback(CFB) mode.

Public-key cryptography is an important part of the encryption schemes
in modern ransomware. As we can see in Table 3, solely the RSA algorithm
is used nowadays. Key size varies from 1024 bits up to 8192 bits. In our
dataset, Nemty was the only sample that implemented encryption scheme D,
hence it uses two public/private key pairs. In this case, the RSA-8192 is used
for (KApub ,KApriv ) and RSA-2048 for (KVpub ,KVpriv ).

During our analysis we also focused on key generation functions, specifi-
cally for symmetric and asymmetric keys. As mentioned earlier, since almost
all samples have pre-embedded public keys, no key generation function for
asymmetric keys is needed. Only two exceptions are GandCrab and Nemty
samples, where both use secure key generation function CryptGenKey(). In
case of a symmetric key generation, various library functions were used. Most
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Table 3. Asymmetric ciphers in modern ransomware.

Ransomware name Algorithm
Ryuk RSA-2048
Dharma RSA-1024
LockBit RSA-2048
SamSam RSA-2048
GandCrab RSA-2048
Clop RSA-1024
Katyusha RSA-2048
Snatch RSA-2048
Phobos RSA-1024
Nemty RSA-8192/RSA-2048

common functions were CryptGenKey()/CryptGenRandom() from Windows
CryptoAPI. Others include key generation functions from various crypto-
graphic libraries such as get_random_NZ() from axTLS library, rand() from
OpenPGP Go package, etc. During the research we observed two samples
(Katyusha and Nemty) using an insecure C rand() function for symmetric
key generation.

Table 4. Key generation functions in modern ransomware.

Ransomware name Symmetric key Asymmetric key
Ryuk CryptGenKey hardcoded
Dharma get_random_NZ hardcoded
LockBit CryptGenRandom hardcoded
SamSam RNGCryptoServiceProvider hardcoded
GandCrab CryptGenRandom CryptGenKey
Clop CryptGenKey hardcoded
Katyusha rand() hardcoded
Snatch rand()1 hardcoded
Phobos CryptGenRandom hardcoded
Nemty rand() CryptGenKey
1 From crypto/rand package, which implements a cryptographically secure random
number generator.

We also analyzed the implementation details of the ciphers used. Results
can be seen in Table 5. As expected, the Windows CryptoAPI is the most
common library. We can also see that adversaries prefer secure implemen-
tations from various libraries, as custom cipher implementations are prone
to mistakes that can potentially lead to file recovery. Ransomware Nemty is
the only sample that used custom AES implementation, while the RSA was
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implemented securely with Windows CryptoAPI. An interesting sample was
LockBit, which used multiple AES implementations. In this case, if the vic-
tim’s machine supported fast AES instruction set, then files were encrypted
using these instructions, otherwise, an optimized Rijndael implementation
was used.

Table 5. Cryptography implementation in modern ran-
somware samples.

Ransomware name Implementation
Ryuk Windows CryptoAPI
Dharma axTLS embedded SSL
LockBit Windows CryptoAPI + AES-NI instruction set +

Optimized Rijndael
SamSam .NET System.Security.Cryptography
GandCrab Windows CryptoAPI
Clop Windows CryptoAPI
Katyusha OpenSSL
Snatch OpenPGP Go package
Phobos Windows CryptoAPI + syslinux RSA implementa-

tion
Nemty Windows CryptoAPI + custom AES implementa-

tion

7. Discussion

In the previous section, we presented our analytical findings. Compared
to the most similar work by Craciun et al. [9], we can notice that trends
have changed in the last few years. In their work, authors identified signif-
icant amount of ransomware samples, that used hardcoded symmetric key
or used insecure C rand() function for key generation (which can be brute-
forced in reasonable time). We observed this weakness only in the minority of
samples and in most cases the key generation method was implemented prop-
erly. Another weakness present in the older samples was using ECB mode
or CBC mode with IV equal to zero. We found no samples using the ECB
mode and only one sample used the CBC mode with zero IV, however, the
scheme should be secure as the symmetric keys are not being reused. Older
ransomware samples also used to manually implement the cryptographic prim-
itives, or even create a custom cipher, potentially resulting in an exploitable
scheme. However, we noticed that only one current sample used a custom
AES implementation. Generally, from these observations, we can state that
malware authors are slowly getting better at cryptography, resulting in a more
secure scheme implementations.
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An interesting aspect to study would be the key management in modern
ransomware, i.e. storage and protection of keys. Bajpai et al. [3] studied this
topic and showed that depending from the scheme and its implementation,
symmetric and asymmetric keys can be potentially extracted directly from
the memory during the encryption process, subsequently enabling the file
recovery.

Since the powerful quantum computers are becoming more and more
closer to reality, it also presents a problem for ransomware authors. It is
a known fact, that with a reasonably powerful quantum computer, all the
current public-key algorithms would be easily breakable. This means that the
schemes presented in this paper become vulnerable, as they heavily rely on
the security of RSA. However, efficient factorization algorithms for quantum
computers [20] currently exist, hence we could extract a private key from a vic-
tim’s public key (which is known). With an observed trend, that ransomware
authors are getting more skilled in cryptography, we can expect adoption of
a new post-quantum algorithms in a near future.

8. Conclusion

This paper presented an analysis of cryptographic functions used in mod-
ern ransomware. Ten selected samples from various families and programming
languages were analyzed using static and dynamic analysis. Analysis identi-
fied four separate encryption schemes. Scheme where the key was generated
by the attacker for each infected computer was most prevalent. Most of the
encryption algorithms used in the samples had better security when compared
with older samples analyzed in related works.

As the area of malware is always evolving, there are many topics that
would benefit from further research. One of them is ransomware detection.
Knowing the libraries and encryption schemes, one can better generalize how
ransomware behaves on the system. Thanks to this, better detection tools
may be developed.

Another topic is the analysis itself. There are some operations in the
analysis that can be automated. Currently, tools can identify which libraries
are used by the malware sample, but sometimes the detection may fail. An
interesting project would be to create a system that could automatically detect
encryption algorithms, modes and schemes. Parts of such system could be also
used for detection of ransomware.
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Analiza shema šifriranja u suvremenom ransomwareu

Roderik Ploszek, Peter Švec i Patrik Debnár

Sažetak. U posljednjih nekoliko godina povećala se ak-
tivnost ransomwarea. Kako se razvijaju nove inačice i famili-
je ransomwarea, sigurnosni sustavi moraju to pratiti. U srcu
ransomwarea je dobro osmišljen sustav šifriranja i čak i mala
pogreška u algoritmu može ga slomiti. Ovaj rad analizira 10 uzo-
raka ransomwarea iz različitih familija. Cilj analize je opisati
sheme šifriranja koje se koriste u trenutnom ransomwareu. To
uključuje stvaranje i pohranu ključeva, simetrične i asimetrične
šifre i njihovu odabranu implementaciju.
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