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Abstract. Algebraic cryptanalysis can be used to break (small ver-
sions of) block ciphers with small data complexity. If we have access to a
large number of P-C pairs, algebraic cryptanalysis can be combined with
differential techniques. Differential characteristic produces extra linear
equations, which can be used to augment the original algebraic system.
In our experiments with algebraic differential cryptanalysis, we have de-
veloped a different technique to represent the system. In our new method,
we model a single P-C pair based encryption, but we use the differential
to restrict the equations that model active S-boxes.

An algebraic system created with our new model is smaller, and can
theoretically be solved faster. Our experiments show that the advantage
depends on the overall number of P-C pairs available and whether the cho-
sen differential characteristic is correctly estimated. One of the advantages
of the new method is that it can use partial information from the differ-
ential and still determine a correct solution faster than both the standard
algebraic attack and the standard algebraic-differential attack.

1. Introduction

Algebraic cryptanalysis can be used to break (small versions of) block
ciphers with small data complexity [3, 4]. The main principle of algebraic
cryptanalysis is simple: Encryption is described by a set of equations between
bits of plaintexts, ciphertexts, the unknown key, and inner states of the en-
cryption algorithm. This set of equations is then solved by a suitable fast
solver. SAT solvers can be combined with key bit guessing and massively
parallel computing [7] to solve even relatively large systems.

In a recent article [2], Andrzejczak and Dudzic attack smaller versions
of block ciphers SIMON and SPECK. Instead of modeling the whole cipher,
they do not model the key expansion algorithm, and instead, try to find
independent subkeys. This requires more plaintext-ciphertext (P-C) pairs
than the standard algebraic cryptanalysis. Unfortunately, with a growing
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number of P-C pairs, the size of the system quickly increases, which increases
the solving time.

If we have access to a large number of P-C pairs, algebraic cryptanalysis
can be combined with differential techniques [1,5,10]. The attack is based on
a selected differential characteristic, which holds with high probability. This
characteristic produces extra linear equations, which can be used to augment
the original algebraic system. Based on this augmented system, the algebraic
solver can detect, whether the differential characteristic holds for a particular
P-C pair, and to derive information about key bits.

In our research, instead of trying to break some specific cipher, we try to
understand empirically the effect of having multiple P-C pairs, and of applying
differential techniques on a simple Substitution Permutation Network model.
In our experiments we use SAT representation and SAT solver CryptoMiniSat
[8] integrated within SAGE [9].

In our experiments with algebraic differential cryptanalysis, we have de-
veloped a different technique to represent the system. The standard model
produces a system of equations for each tuple of P-C pairs (supposedly con-
nected by a differential characteristic) as a union of equations for encryption
F1, and F2, along with linear equations describing a chosen differential. In
our new method, we model single encryption (only one of each 2 P-C pairs),
but we use the differential to restrict the equations that model active S-boxes.
Suppose that differential characteristic goes through some S-box with input
difference ∆x and output difference ∆y. We replace the original S-box equa-
tion, which has the solution set {(x, y);S(x) = y}, with the new equation with
the solution set {(x, y);S(x) = y ∧ S(x + ∆x) = y + ∆y}. The number of
additional clauses that express new restrictions based on differences is smaller
than in the standard model. The important information about the chosen
differential (equations on active S-boxes) is preserved (as well as the original
solution of the whole cipher, if we use enough P-C pairs to avoid false keys).

2. Preliminaries

Algebraic cryptanalysis focuses on breaking cryptographic schemes with
algebraic methods. There are two main tasks involved: representing crypt-
analytic problem by a set of equations and then solving the corresponding
system. Although there are many types of algebraic attacks, we will focus
mainly on a simple key recovery from a known set of plaintext-ciphertext
pairs.

Let us have an encryption scheme with (efficiently computable) encryption
function Enc : ZnB2 × ZnK2 → ZnB2 . A key recovery problem is a problem of
determining unknown key k ∈ ZnK2 from a (parametric) set of equations in
the form

(2.1) Enc(xi, k) = yi,
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where (xi, yi) ∈ ZnB2 × ZnB2 are pairs of plaintext and ciphertext pairs (P-
C pairs in short). The number of P-C pairs required to determine correct
encryption key depends on the relation between nK and nB and properties of
the encryption function. For us, however, we are mainly interested how fast
a specified solver can solve system of equations (2.1): determine any solution
k, or determine that no such k exists.

2.1. Substitution-permutation network. Instead of studying various concrete
cipher designs, we focus on a simpler model. We use a substitution-
permutation network (SPN). An SPN is a key alternated iterative cipher
where each round consists of a layer of S-box substitution and a simple per-
mutation of bits.

An S-box is a (non-linear) bijective vectorial Boolean function S : Zm2 →
Zm2 . We will use a substitution layer σ : ZnB2 → ZnB2 constructed as a brick-
layer permutation from a single S-box S. This means that the input of σ is
split into m-bit blocks. The S-box function is applied independently to each
of these blocks. Finally, the results are concatenated back and form a result
of function σ.

Let P be a nB × nB permutation matrix. The permutation layer π :
ZnB2 → ZnB2 is defined by π(x) = P · xT . This layer is linear, and essentially
just changes the order of bits during the encryption.

Substitution-permutation network is a composition of r − 1 round func-
tions defined by round transformations ρi : ZnB2 → ZnB2 , ρi(x) = π(σ(x⊕ki)),
and one final round transformation ρr = σ(x⊕ kr)⊕ kr+1. Constants ki, for
i = 1, 2, . . . , r + 1, are computed by a key schedule κ : ZnK2 → Z(r+1)·nB

2 .
In our experiments we use a 4-round SPN with nB = 16, m = 4 with

variable S-boxes, and a fixed permutation layer given by bit permutation
(1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16). As a key schedule, we use either
repetition of a 16-bit key (for nK = 16), 5 independent 16-bit subkeys (for
nK = 80), or a sequence of low 16-bits from a shifted 32-bit key (for nK = 32).

2.2. Algebraic attack on SPN. A general equation system (2.1) can be in-
stantiated by selecting SPN as an encryption function. Each equation
SPN(xi, k) = yi can be further rewritten as a system of simpler equations by
introducing intermediate variables: input (denoted by ui), and output (de-
noted by vi) bit vectors of S-box layers in each SPN round. In each round,
there are nB/m non-linear equations of the form

S(ui,km+1, . . . , ui,km+m) = vi,km+1, . . . , vi,km+m,

along with linear equations between bits of vi, ui+1 and ki+1. Specific lin-
ear equations are also added for the first and last round that connect S-box
inputs/outputs with the first and last subkey and plaintext/ciphertext bits.
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We can use many different representations of the algebraic problem, and
then different solvers to find a solution. In our experiments, we use a CNF
representation and a SAT solver, with details described in Section 3.

In general, solving the system is believed to be difficult, as it is based
on the NP-hard problem of solving a system of non-linear equations over
Z2. For random non-linear equation systems, we only have algorithms with
average complexity exponential in the size of the system. However, in the case
of algebraic cryptanalysis, we know that the complexity is upper bounded by
2nK verifications of a solution because we can use an exhaustive search through
the keyspace to find a correct solution or to show there is no key, for which
the system has a solution.

Note that experiments show that in practice the solution of the system
can be found by a solver faster than by exhaustive search. We will consider
an algebraic attack to be successful if it is faster than an exhaustive search
on average for a random key selection.

Intuition tells us that extra information obtained by adding more equa-
tions from more P-C pairs should lead to faster attack methods. However,
for a generic solver, extra equations and variables mean extra work, as the
system is larger, and the solver requires more memory and computation steps
to find a solution (or a conflict indicating that no solution exists). If we have
a large number of P-C pairs available, we should consider statistical methods
to extract the extra information provided by this amount of available data.

2.3. Differential cryptanalysis. Differential cryptanalysis studies attacks based
on differential distinguishers. Let us consider a specific set of P-C pair tuples
{(xi, yi), (x∗i , y∗i )} with a fixed input difference ∆x, e.i., xi⊕x∗i = ∆x for each
i. A secure encryption function should be indistinguishable from a random
function. This implies that the set of output differences ∆y,i = yi⊕y∗i should
have a uniform random distribution, with Pr(∆y,i = ∆y) = 2−nB for each
choice of ∆y. A differential distinguisher arises, when some choice of input
difference ∆x produces some output difference ∆y with significantly higher
probability p � 2−nB . We call a pair (∆x,∆y) a differential, and denote
its differential probability with p∆x,∆y

= Pr(∆y/∆x) (for a randomly chosen
P-C pairs tuples with fixed difference ∆x).

For an SPN, we can find a differential with high differential probability
by analysing S-box differentials, and concatenating S-box differentials through
affine layers of SPN. An S-box differential is again a pair (∆u,∆v), with its
probability p∆u,∆v

= Pr(S(u ⊕ ∆u) ⊕ S(u) = ∆v), for a random choice
of S-box input u. To construct SPN differential, we select suitable input
differential, and follow it through affine layers of the cipher, using the fact
that ∆y = Mx⊕ k⊕Mx∗⊕ k = M(x⊕x∗) = M∆x (with probability 1). On
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S-box layer, each S-box with non-zero input difference1 we select a suitable S-
box differential with high differential probability. We call these S-boxes active
S-boxes. An r-round differential trail is a combination of S-box differentials
and corresponding linear transformations provided by affine layers, leading to
an r-round differential (∆x,∆y). Probability p∆x,∆y

can be lower bounded by
a product of S-box differential probabilities, if we assume S-box differentials
are independent.

2.4. Algebraic-Differential cryptanalysis. We can associate a set of linear
equations in state bits ∆ui,j = ui,j ⊕ u∗i,j with each differential trail.
These equations hold if the encryptions used to produce P-C pair tuple
{(x, y), (x∗, y∗)} followed exactly the selected differential trail, and can again
be approximated as a product of differential probabilities on active S-boxes.

Albrecht et al. in [1] introduced a notion of algebraic-differential crypt-
analysis. Basic attack (method A) can be summarized in the following steps:

1. Identify a suitable differential trail with associated differential proba-
bility p� 2−nB .

2. Construct a (parametric) system of equations for the encryption of a
tuple of P-C pairs with the same key, Enc(x, k) = y, and Enc(x∗, k) =
y∗. Add linear equations corresponding to an identified differential
trail ∆ui,j = ui,j ⊕ u∗i,j .

3. For each P-C pair tuple {(xi, yi), (x∗i , y∗i )}, try to solve the equation
system. With probability p, the system provides a solution k, otherwise
it is rejected (due to the added linear equations).

We can limit the execution of the last step to such P-C pair tuples, which
satisfy differential (∆x,∆y), in which case solution is found with the probabil-
ity of the selected differential trail being used to produce the final differential.
We can generalize the technique to use truncated differentials (that are not
fully determined) to produce only a partial set of linear equations between
bits of internal variables. In our attacks, we either use full differential trails or
truncated differentials that imply linear equations only bits on the first and
last layer of S-boxes (allowing any differential trail in between).

Suppose that the average time required to solve a system of algebraic
equations Enc(x, k) = y, and Enc(x∗, k) = y∗ is T0. Suppose that an average
time to solve the system with added linear equations corresponding to a (trun-
cated) differential trail with probability p is Ts < T0, and an average time to
reject solution of such system is Tr. Algebraic-differential cryptanalysis is
preferable to a standard algebraic cryptanalysis, if p−1Tr + Ts < T0.

1A zero input difference corresponds to a zero output difference with probability 1.
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3. A new representation of the equation system

Algebraic cryptanalysis requires a suitable representation of an equation
system and a solver related to the chosen representation. In our experiments,
we have chosen a CNF representation with SAT solvers for easy comparison
with results from different authors. Note that the technique presented in this
section can be easily adapted to other different representations, such as ANF,
or an MRHS representation.

System of equations Enc(x, k) = y is represented in a conjunctive normal
form (CNF) with a standard conversion based on natural bijection between
Z2 and Boolean ring. Variables from Z2 are associated with literals, with
literal xi being true if and only if variable xi = 1. For the sake of simplicity
we will use the same notation for Boolean variables and Z2 variables, and
freely associate value 1 with true and 0 with false.

We transform each equation in the system into a corresponding formula,
which is true if and only if each of the equation solutions corresponds to a
satisfiable setting of literals for the formula. All partial formulas are then
joined with a conjunction. If each equation in the system is represented by a
CNF, then the final system representation is also in a CNF.

Let S : Zm2 → Zm2 be an S-box used in a substitution permutation net-
work. We can construct a Boolean function FS : Zm2 × Zm2 → Z2, with
FS(u1, . . . , um, v1, . . . , vm) = 1 if and only if S(u1, . . . , um) = (v1, . . . , vm).
Equation S(u) = v is transformed into a CNF by computing a corresponding
CNF formula which is true if and only if FS(u, v) = 1.

Similarly, we can represent each linear equation in the system to a CNF by
associating it with a similar Boolean function. However, in our chosen SPN,
we only have linear equations with 2 or 3 variables. These can be transformed
into CNF using x⊕ y = z if and only if the following formula is true

(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z).

In the basic Albrecht A method for each P-C pair tuple we need to
join three CNF’s: the first two are constructed from Enc(x, k) = y, and
Enc(x∗, k) = y∗, respectively. Final CNF is constructed from linear equa-
tions corresponding to a selected differential trail. Using the previous logic
formula, for each non-zero bit in the selected differentials, we need 4 clauses
of 3 literals each. The size of this extra formula is smaller than each of the
encryption formulas, but it still increases the input size of the system that
must be processed by a SAT solver.

It would be beneficial to optimize the formulas before we attempt the
solution. Note, however, that differential formulas are connected to both of
the encryption formulas. We have instead chosen a different approach. We
do not use both encryption formulas, along with differential equations, but
instead, try to provide extra information from differential trail directly to
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the encryption formula. Thus, we only use a single ”enhanced” encryption
formula for a single P-C pair, with extra information from differential trail
contributing extra constraints on possible S-box values.

Figure 1. New S-box representation construction. Lines
with green background show an example of S-box entries that
remain in the reduced table of valid input-output pairs (their
I/O differences are fulfilled). Red background denotes an
example of input-output pairs that are removed due to an
I/O difference mismatch.

Suppose that we have selected a differential trail with some active S-box
S and the corresponding S-box differential (∆u,∆v), with ∆u 6= 0. Equation
S(u⊕∆u)⊕S(u) = ∆v holds for only a limited number of values u (depending
on S-box differential probability). Consider an S-box with a truth table de-
picted in Fig. 1. If we select differential (1011, 0010), input values 0000, 1011
lead to a required input and output difference combination. On the other
hand inputs 0010, 1001 do not lead to a required output difference, given the
input difference. In standard S-box representation we use function FS , which
is true on each combination of input-output values. In the new representa-
tion, we instead construct a Boolean function GS,∆u,∆v

: Zm2 × Zm2 → Z2 (or
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simply G), such that GS,∆u,∆v
(u1, . . . , um, v1, . . . , vm) = 1 if and only if

S(u) = v, and S(u⊕∆u)⊕ S(u) = ∆v.

Now we construct an equation system for Enc(x, k) = y and associated differ-
ential trail together by replacing standard (F ) CNF representation of active
S-boxes with the restricted (G) CNF representation of active S-boxes.

If we select any of the two P-C pairs that correspond to a satisfied differ-
ential trail, the associated CNF will be satisfiable (as each S-box differential
is covered correctly). On the other hand, if we select incorrect P-C pair (one
that does not fulfill the differential trail exactly), the associated restricted
CNF can still have a solution. This is because we do not use the second P-C
pair and exact linear equations for differentials. The probability of obtaining
a solution given an incorrect pair depends on the correspondence between in-
tersection of supports for GS,∆u,∆v

for different differentials (∆u,∆v). With
an increasing number of active S-boxes, this probability quickly decreases.
In practice, this means that with differential trails with a small number of
active S-boxes we have a higher probability of solving the system than the
one predicted by differential trail probability, and the data complexity of the
algebraic-differential cryptanalysis decreases. The exact probabilities must be
computed for each concrete attack, as they depend on selected S-boxes and
S-box differentials.

4. Experimental results

We have experimentally verified the effectiveness of algebraic and alge-
braic-differential cryptanalysis on a 4-round S-P network using mathematical
software SAGE [9]. Equation systems were uniformly generated by our soft-
ware. We have measured the solution time as an average of the time required
to solve a specified number of randomly generated instances. However, we
were not interested in solving time itself. Instead, we were interested in the
overall ratio of the solving time in a specified set of scenarios.

4.1. Influence of the differential information on solving time. In the first set
of experiments, we examined several factors. We were interested in the ques-
tion, whether adding differential information can affect the complexity of the
solution. Furthermore, we investigated how the change of differential trajec-
tories, and S-boxes, affects the solving time of the system.

For each S-box mapping, we created three different systems of clauses
with two P-C pairs computed for 20 randomly generated keys:

1. A system with randomly generated, unrelated P-C pairs for a pure
algebraic attack.

2. A system that contained specific P-C pairs which all satisfied a cho-
sen differential characteristic. This system did not contain differential
clauses.
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3. A system of clauses with specific P-C pairs which all satisfied a chosen
differential characteristic. This system contained a different represen-
tation of S-box clauses with additional differential information based
on our proposed technique of algebraic-differential attack.

In each run of the experiment, we considered a different differential char-
acteristic. Each characteristic had a differential probability p > 22−nB , so
the probability of a differential characteristic was large enough to break the
cipher by differential cryptanalysis.
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Figure 2. Comparison of algebraic-only and algebraic-
differential attack depending on S-box selection.

The average time required to obtain an 80-bit key depending on randomly
generated S-boxes for three modeled systems is shown in Figure 2.

We can see that the fastest way to obtain a correct solution is solving the
third system of clauses, which includes additional differential information.
Basic algebraic cryptanalysis takes a longer time, regardless of whether P-C
pairs are random, or whether they are related by a given differential.

The graph in Figure 3 shows the computation time of an 80-bit key for
a system of clauses that uses information from differential cryptanalysis de-
pending on S-box mappings. We can see, that the solving time for individual
S-box choices is very similar. Systems with arbitrarily chosen differential
characteristics, that satisfy a certain differential probability can be solved at
about the same time.

4.2. A comparison with standard algebraic differential cryptanalysis. As a
demonstration of our results, we have prepared a concrete comparison for a
selected SPN setting and differential characteristic. We base our settings and
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Figure 3. Comparison of algebraic-differential attack.

trajectories on a well-known tutorial on linear and differential cryptanalysis
[6]. The S-box setting is presented in Table 1.

Table 1. The S-box selected for the experiment.

Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

The full differential characteristic and truncated characteristic used in
experiments are presented in Figure 4. The truncated characteristic uses
active S-boxes only from the first and the last rounds. The selected differential
trail has an estimated differential probability p1 = 0.00165, and the truncated
version has differential probability p2 = 0.03125.

We have compared the effectiveness of our system representation with the
standard one presented by Albrecht and Cid in [1]. Specifically, we compared
the time complexity of finding the key (or rejecting the system) depending on
the number of P-C pairs. We have separately tested cases when the system
of clauses contains correctly or incorrectly selected P-C pairs related to the
preselected full or truncated differential trail.

The basic system covering a tuple of P-C pairs for 4 round SPN consisted
of 2368 clauses. Our representation reduced this to 1216 in case of trun-
cated difference and 1246 in case of full difference. Albrecht’s representation
required 2392 (truncated), and 2416 clauses (full), respectively.

For all examined cases, we have randomly generated 20 keys of 16-bits,
32-bits, and 80-bits, respectively. For each of them, we have constructed a
system of clauses with the appropriate number of suitably selected P-C pairs.
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Figure 4. Full (left) and truncated (right) differential char-
acteristic used in the demonstration experiments.

A comparison of our method with Albrecht method for correctly selected
P-C pairs is presented in Figures 5, 6 and 7. We can observe that the system
of clauses for each technique can be solved on average faster if we know the
whole differential characteristic, followed by truncated differential, and then
a system with no extra differential knowledge.

Our method outperforms the Albrecht A method in all cases with a full
differential trail, but the distinction is more pronounced for a small 16-bit
key. When using 80-bit keys, Albrecht’s method is slightly faster for a system
with an average number of P-C pairs. This might be caused by the fact that
our system can produce more false solutions for a given tuple of P-C pairs,
and thus the solver follows false trails for a longer time.

The case of incorrectly selected P-C pairs is shown in Figures 8, 9 and
10. For large systems, the solver can disprove the existence of the solution
for the system of clauses with truncated differences significantly faster than
finding a solution when it exists. With the Albrecht method, the solution of
the system is an empty set in all cases even for smaller systems.
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Figure 5. Comparison of our new method with Albrecht
method, correctly selected P-C pairs, 16-bit key.
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Figure 6. Comparison of our new method with Albrecht
method, correctly selected P-C pairs, 32-bit key.

With our model, it is possible to find a (possibly false) solution with
a small number of P-C pairs, so the average time complexity is higher in
these cases (because we average a possibly shorter time needed to find a
conflict in some instances, with a longer time needed to find a solution in
other instances). With the increasing number of P-C pairs, even our method
can only find an empty solution. When no solutions can be found, we can
see that the computation of the system in case of incorrect P-C pairs can get
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Figure 7. Comparison of our new method with Albrecht
method, correctly selected P-C pairs, 80-bit key.
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Figure 8. Comparison of our new method with Albrecht
method, incorrectly selected P-C pairs, 16-bit key.

faster than the computation by the Albrecht method. However, the inability
to quickly distinguish between correct and incorrect P-C pairs is detrimental
to the overall performance.

As an example let us compare concrete numbers for the attack on 4 round
SPN with a 16-bit key. The solver can find a key on average in 71 ms with-
out differential information. The system with added truncated differentials
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Figure 10. Comparison of our new method with Albrecht
method, incorrectly selected P-C pairs, 80-bit key.

requires 8.2 ms with our representation and 11.7 ms with Albrecht’s represen-
tation. Adding full differentials reduces time to 3.6 ms with our representation
and 4.9 with Albrecht’s representation. These comparisons scale to larger sys-
tems as well.

However, if we switch to an incorrect input P-C pair tuple, our represen-
tation leads to rejection in 10.6 ms for reduced, and 3.5 ms for full differential
information. This is essentially the same as the time required to solve the
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system for the correct P-C pair tuple. Note that in 1 of 20 cases, the correct
key was found even from the incorrect P-C pair tuple. On the other hand,
with Albrecht’s representation, we can reject incorrect P-C pair tuple faster,
3.5 ms for the truncated case, and 0.9 for the full case. In Albrecht’s case,
the overall time to reject incorrect P-C pairs (based on expected differential
probability) is then faster than the full solution required in the truncated
case, 12.5 ms. In other examined cases of small systems with short keys, the
full time expected to reject all incorrect P-C pairs makes standard algebraic
cryptanalysis, without differential information, faster overall.

This however changes for instances with larger keys. The differential
information speeds the key search significantly. On the other hand, if we use
a single P-C pair tuple, we will likely get just a false solution. When planning
an attack on a concrete cipher, some trade-offs must be carefully considered.
We suggest that Albrecht’s method should be used to quickly reject incorrect
pairs, running in parallel with our method. If the P-C pair tuple is not rejected
in some short time, a (potential) solution can be found faster with our method.
Once a system for a single P-C pair tuple is shown to be solvable (with any
potential key), we can save the P-C pair tuple as a potentially correct P-C
pair tuple. We can then incrementally append information from other P-C
pairs and extend the system until a correct key is found.

5. Conclusions

We have presented a new representation of an algebraic system suitable
for algebraic differential cryptanalysis. The system created with our new
model is smaller, and can theoretically be solved faster. Our experiments
show that the advantage depends on the overall number of P-C pairs available
and whether the chosen differential characteristic is correctly estimated. One
of the advantages of the new method is that it can use partial information
from the differential, and still determine a correct solution faster than both
standard algebraic attack, and standard algebraic-differential attack. On the
other hand, our method requires more time to identify incorrect P-C pair
tuple. Thus, in an experimental setup, we recommend running it in parallel
with Albrecht’s method: we expect that for correct P-C pair candidates our
method provides a solution faster, while incorrect P-C pair candidates are
quickly filtered by a solver using Albrecht’s representation.

Note that in this article we have examined only applications to basic
algebraic differential attacks. However, the new representation can easily be
adapted for other types of attacks that provide additional information about
the S-box inputs or outputs. It can also be used to model extra information
obtained from the side-channel analysis, to combine side-channel attacks with
algebraic cryptanalysis.
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Novi prikaz S-kutija za algebarsku diferencijalnu kriptoanalizu

Alena Bednáriková i Pavol Zajac

Sažetak. Algebarska kriptoanaliza može se koristiti za
razbijanje blokovne šifre male složenosti podataka. Ako imamo
pristup velikom broju P-C parova, može se kombinirati algebarska
kriptoanaliza i diferencijalne tehnike. Diferencijalna karakter-
istika daje dodatne linearne jednadžbe, koje se mogu koristiti
za uvećanje izvornog algebarskog sustava. U našim eksperimen-
tima s algebarskom diferencijalnom kriptalizom razvili smo dru-
gačiju tehniku predstavljanja sustava. U našoj novoj metodi,
modeliramo šifriranje zasnovano na paru P-C, ali koristimo difer-
encijal za ograničavanje jednadžbi koje modeliraju aktivne S-
kutije. Algebarski sustav stvoren s našim novim modelom je
manji i može se teoretski riješiti brže. Naši eksperimenti pokazuju
da prednost ovisi o ukupnom broju dostupnih P-C parova i o
tome je li odabrana diferencijalna karakteristika ispravno pro-
cijenjena. Jedna od prednosti nove metode je da može ko-
ristiti djelomične informacije iz diferencijala i odrediti ispravno
rješenje brže od standardnog algebarskog napada i standardnog
algebarsko-diferencijalnog napada.
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