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HIERARCHICAL AND DYNAMIC THRESHOLD PAILLIER
CRYPTOSYSTEM WITHOUT TRUSTED DEALER

Andreas Klinger, Stefan Wüller, Giulia Traverso and Ulrike
Meyer

Abstract. We propose the first hierarchical and dynamic threshold
Paillier cryptosystem without trusted dealer and prove its security in the
malicious adversary model. The new cryptosystem is fully distributed, i. e.,
public and private key generation is performed without a trusted dealer.
The private key is shared with a hierarchical and dynamic secret sharing
scheme over the integers. In such a scheme not only the amount of share-
holders, but also their levels in the hierarchy decide whether or not they
can reconstruct the secret and new shareholders can be added or removed
without reconstruction of the secret.

1. Introduction

The use of homomorphic threshold cryptosystems for distributed com-
puting on encrypted data has been proposed in various areas of application,
including double auction (e. g., [5]), privacy preserving data mining (e. g., [28]),
and data integration and sharing (e. g., [8]). In these cryptosystems, the access
structure underlying the sharing of the private key between the shareholders
is typically assumed to be a fixed flat access structure requiring a minimum
number t of n equally powerful shareholders to cooperate during decryption.
Many of these use cases could profit from supporting more complex access
structures, such as hierarchical access structures, in which each shareholder is
associated with a certain level in a hierarchy, as well as supporting dynamic-
ity, such that shareholders may join or leave. A homomorphic cryptosystem
with both properties is applicable in many scenarios, among others, online
auctions where bidders join at different points in time, or server aided secure
multi-party computation. In particular, hierarchical access structures often
better reflect the structure within an organization or between different coop-
erating organizations, and are also well suited for certain functionalities such
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as adding auditing to distributed computation on encrypted data. Dynamic
systems on the other hand allow for reusing previously computed ciphertexts
even if shareholders join or leave the system. For example, a simple auction
consists of a seller and a number of bidders. As the involved parties typically
do not know each other, there can be mutual distrust. Using a hierarchi-
cal access structure that enforces that the seller (highest level) and a certain
number of bidders (lower level) are present, ensures that neither the seller
nor the bidders itself can cheat, and thus creates trust. In addition, in online
auctions it is common that not all bidders are present from the very begin-
ning and some bidders might leave after a certain amount of time. Therefore,
bidders need to be able to join and leave dynamically.

In the past, many (t, n) threshold encryption schemes have been pro-
posed (e. g., [10, 11, 16, 29, 34, 35]). Some of these cryptosystems are homo-
morphic [9,12,22], others are dynamic (e. g., [17,18]), and yet others support
hierarchical access structures (e. g., [1, 32]). However, none of these schemes
supports all three properties simultaneously. Straight forward constructions
of a dynamic and hierarchical secret sharing scheme from Shamir’s Secret
Sharing scheme either require the threshold to be adapted continuously or
would enable a subset of shareholders to prevent decryption. Recently, a dy-
namic and hierarchical secret sharing scheme based on Birkhoff interpolation
has been proposed [39] that does not exhibit such disadvantages. However,
a threshold cryptosystem that uses this secret sharing scheme has not been
proposed yet.

In this paper we propose the first hierarchical and dynamic threshold
Paillier cryptosystem without trusted dealer and prove its security in the
malicious adversary model. We tackle the problem in two steps. First, we
develop a verifiable hierarchical and dynamic secret sharing scheme without
trusted dealer that shares a secret over the integers. The new secret sharing
scheme combines the verifiable (t, n) threshold sharing scheme over the inte-
gers in [29] with the dynamic and verifiable hierarchical secret sharing scheme
in [39]. Second, we develop a hierarchical and dynamic threshold Paillier cryp-
tosystem without trusted dealer based on the threshold Paillier cryptosystem
without trusted dealer in [29].

We start by briefly discussing related work in Section 2. In Section 3, we
introduce the cryptographic background. In Section 4, we present the verifi-
able hierarchical and dynamic secret sharing over the integers and continue
in Section 5 with presenting the hierarchical and dynamic threshold Paillier
cryptosystem without trusted dealer.

2. Related work

Secret sharing: Blakley [4] suggested the first secret sharing to securely
store keys. Shortly afterwards, a much more efficient (t, n) threshold secret
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sharing scheme was introduced by Shamir [36], in which the secret is shared
among n shareholders such that reconstructing the secret requires at least t
shares, while with t−1 or fewer shares one learns nothing. Early secret sharing
schemes supporting general access structures were introduced, e. g., in [3, 25]
and require the shareholders to store exponentially many shares. In order
to support hierarchical access structures, Shamir suggested that higher-level
shareholders should receive more shares [36].1 This approach is not optimal,
as it overloads these higher-level shareholders with more shares to protect
and manage. Furthermore, the resulting scheme is not ideal, meaning that
the length of the shares is longer than the shared secret which can result in
high storage consumption. Simmons [37] and Brickell [7] made steps forward
to hierarchical secret sharing. However, as shown in [38] these schemes are not
efficient as in the worst case the dealer has to preform exponentially many
checks or find an irreducible polynomial. Later, Ghodosi et al. [19] intro-
duced efficient schemes for specific access structures, but without the ability
to add or delete shareholders. Tassa [38] provided the first polynomial-based
hierarchical secret sharing schemes based on Birkhoff interpolation, i. e., a gen-
eralization of the Lagrange interpolation problem used in Shamir’s threshold
secret sharing scheme. The sharing phase of the scheme is based on evalu-
ation of point on polynomials or derivatives of polynomials and an efficient
reconstruction algorithm. Finally, Traverso et al. [39] extended Tassa’s hier-
archical secret sharing schemes to a hierarchical and dynamic secret sharing
scheme, i. e., it allows adding and deleting shareholders, modifying the access
structure and refreshing the shares periodically to enhance the security. Fur-
thermore, Traverso et al. [40] provided algorithms to perform computations
over hierarchically shared secrets. However, these secret sharing schemes in
general do not easily allow reusing computations if shareholders join or leave
during the protocol execution, e. g., in online algorithms.
Threshold cryptosystems: The need for threshold cryptosystems was first
discussed in [13]. After the seminal paper by Desmedt [14], several approaches
to enable threshold cryptosystem have been proposed. Threshold cryptosys-
tems for general access structure have been proposed by [23, 26] but are not
ideal or require a trusted dealer, respectively. Shamir’s secret sharing scheme
was heavily used to develop (t, n) threshold versions for various cryptosys-
tems [10, 11, 34, 35]. Fouque et al. [16] developed a threshold Paillier cryp-
tosystem that uses a trusted dealer to generate the public and private key.
After the key generation, the private key is shared with Shamir’s secret sharing
scheme. Nishide and Sakurai [29] showed how to implement a fully distributed
threshold Paillier cryptosystem, i. e., the key generation and the sharing of
the private key is performed without a trusted dealer. However, these (t, n)

1See Remark 3.6 in Section 3.4 why a (t, n)-threshold secret sharing scheme cannot
easily be used to implement a hierarchical and dynamic secret sharing scheme.
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threshold cryptosystems do neither support hierarchical access structures nor
can they be dynamically modified. Dynamic (t, n) threshold cryptosystems
that allow adding new shareholders either have large overhead [18], or use a
trusted dealer and new shareholders get non-ideal shares [17]. Hierarchical
threshold cryptosystems are less well studied than (t, n) threshold cryptosys-
tem. An early approach generates keys by applying an one way function
multiple times [1]. The final key can not be influenced in advance and thus
is not suitable for general public key cryptosystems which typically require
keys with special properties. The first distributed key generation for a dis-
crete log based cryptosystem without a trusted dealer was introduced by [32]
and uses the hierarchical secret sharing of [38]. However, the system is not
dynamic and cannot be used for other cryptosystems like RSA or the Paillier
cryptosystem. The latter cryptosystem is widely used [9,12] in the context of
secure multi-party computations, as it is additively homomorphic.

None of these approaches allows to implement a hierarchical and dynamic
threshold cryptosystem that is homomorphic.

3. Preliminaries

In this section we first recap some basic notations and definitions. We
continue with a brief description of secret sharing [36] in general, a hierarchical
secret sharing scheme [38], and a hierarchical and dynamic secret sharing
scheme [39]. We conclude with the Paillier cryptosystem [31], and a threshold
version of Paillier’s cryptosystem without trusted dealer [29].

3.1. Notation. Throughout the paper we will use the following notation: We
denote the set of natural numbers with and without 0 as N0 and N, respec-
tively. The cardinality of a finite set A is denoted by |A| and the power set
is denoted by P(A). We write r ←$ A to denote that r is sampled uni-
formly at random from the set A. For a natural number b ∈ N we define
the set Zb := {0, 1, . . . , b − 1} and Z∗b := {a ∈ Zb | gcd(a, b) = 1}. Euler’s
totient function is denoted by ϕ(N) := |Z∗N | and the Carmichael function is
denoted by λ(N). For N = pq, where p and q are two distinct primes, it is
ϕ(N) = (p−1)(q−1) and λ(N) := lcm(p−1, q−1), where lcm(p−1, q−1) is
the least common multiple of p− 1 and q− 1. We denote the ceiling function
for a real value c by dce, i. e., dce is the smallest integer greater than or equal
to c.

3.2. Secret sharing. A secret sharing scheme is a cryptographic primitive to
share a secret among different parties referred to as shareholders. An access
structure defines sets of shareholders who are allowed to reconstruct the secret.

Definition 3.1 (Secret sharing scheme [39]). Let M be a set of secrets
and let Σ be a set of shares. Let S := {s1, . . . , sn} be a set of n shareholders
and let Γ ⊆ P(S) be an access structure over S. A secret sharing scheme
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consists of two probabilistic polynomial-time algorithms Share and Recon-
struct.

Share: The algorithm takes as input a secret m ∈ M and outputs n
shares σi ∈ Σ for i ∈ {1, . . . , n}, where the share σi is sent to shareholder
si ∈ S.

Reconstruct: Let R := {si1 , . . . , sik} ⊆ S be a subset of shareholders,
where ij ∈ {1, . . . , n} for all j ∈ {1, . . . , k}. The algorithm takes as input a
set of shares σi1 , . . . , σik ∈ Σ. If R 6∈ Γ the algorithm outputs ⊥, otherwise
the algorithm outputs the shared secret m.

A (t, n) threshold scheme [36] is a secret sharing scheme where a secret
m ∈M is split into n shares σ1, . . . , σn ∈ Σ. Any t or more different shares σi
can be used to reconstruct the secret m, but with any t−1 or fewer shares one
gains no knowledge about m in an information theoretic sense. The most well
known threshold secret sharing scheme is Shamir’s secret sharing scheme [36].

3.3. Hierarchical secret sharing. A hierarchical access structure assumes a hi-
erarchy between the shareholders. When devising a hierarchical threshold
secret sharing scheme, the access structure needs to reflect the position of
the shareholders in this hierarchy. This can be done in multiple different
ways, e. g., with ideal weighted access structures where the total weight of
the shareholders has to surpass a threshold [2]. More generally one may only
require that any shareholder in an authorized set has to be replaceable by a
hierarchically superior one [15].

We here focus on two very intuitive approaches to reflect hierarchies,
namely a disjunctive and a conjunctive approach [38]. In a disjunctive ap-
proach each level in the hierarchy is associated with a strictly increasing
threshold on the number of shares required for reconstruction. A set of share-
holders can reconstruct the secret if it meets the threshold on at least one level,
where higher level shareholders may replace lower level share holders. In a
conjunctive access structure a minimum number of shareholders for each level
is required to participate in the reconstruction where again lower level share-
holders may be replaced by higher level shareholders. These two approaches
are captured in the following definition [38]:

Definition 3.2 (Conjunctive, disjunctive (~t, n)-hierarchical threshold ac-
cess structure [38]). Let S be a set of n shareholders composed of l+1 pairwise
disjoint levels Sh for h ∈ {0, . . . , l} s. t. S :=

⋃l
h=0 Sh. Level 0 is the high-

est level and level l is the lowest level. Let ~t := (t0, t1, . . . , tl) ∈ Nl+1 be a
monotonically increasing vector of integers, i. e., t0 < t1 < . . . < tl.

The conjunctive (~t, n) hierarchical threshold access structure is defined as

Γ :=
{
B ⊆ S : ∀h ∈ {0, . . . , l} it is

∣∣∣∣∣B ∩
h⋃
i=0
Si

∣∣∣∣∣ ≥ th
}
.
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The disjunctive (~t, n) hierarchical threshold access structure is defined as

Γ :=
{
B ⊆ S : ∃h ∈ {0, . . . , l} s. t.

∣∣∣∣∣B ∩
h⋃
i=0
Si

∣∣∣∣∣ ≥ th
}
.

In the following, we will refer to these access structures also just by conjunc-
tive and disjunctive access structure.

In [38] Tassa introduced a hierarchical secret sharing scheme based on
Birkhoff interpolation that can be used for conjunctive as well as disjunctive
access structures. The shares of the shareholders are points of the actual
polynomial f(x) and points of its derivatives f (j)(x), where f (j)(x) denotes the
j-th derivative of f(x). If the shareholders want to reconstruct the secret, they
need to solve a Birkhoff interpolation problem. The conjunctive hierarchical
secret sharing scheme is described in Protocol 3.1. The disjunctive version is
given in brackets whenever it differs from the conjunctive scheme.

Protocol 3.1 (Hierarchical secret sharing scheme [38]). Let S be a set
of shareholders composed of l + 1 pairwise disjoint levels. Let n−1 := 0 and
let nh ∈ N be such that nh ≥ nh−1 + |Sh| for h ∈ {0, . . . , l}. Let Γ ⊆ P(S) be
a conjunctive (disjunctive) (~t, nl) hierarchical threshold access structure with
~t := (t0, . . . , tl) ∈ Nl+1 and let t−1 := 0. Let (i, j) denote the unique ID of
shareholder si,j ∈ Sh for h ∈ {0, . . . , l}, where i ∈ {nh−1 + 1, . . . , nh} and

j := th−1 (j := tl− th). Let p > 2−(tl−2) · (tl− 1)
tl−1

2 · (tl− 1)! ·n
(tl−2)(tl−1)

2
l be

a prime. Let m ∈ N0 be the secret. The Share algorithm proceeds as follows:
1. Set a0 := m mod p (atl−1 := m mod p) and select a1, . . . , atl−1 ←$ Zp

(a0, . . . , atl−2 ←$ Zp).
2. Construct f(x) :=

∑tl−1
ω=0 aωx

ω mod p.
3. Distribute the share σi,j := f (j)(i) mod p to shareholder si,j, for all

si,j ∈ S.
The Reconstruct algorithm proceeds as follows to reconstruct a shared secret:
Let R ⊆ S be a minimal authorized set.

1. If R 6∈ Γ , the algorithm outputs ⊥.
2. If R ∈ Γ , the algorithm solves the Birkhoff interpolation problem and

outputs m ≡ a0 mod p (m ≡ atl−1 mod p).

The condition nh ≥ nh−1 + |Sh| for h ∈ {0, . . . , l} in Protocol 3.1 is
required for extending the hierarchical secret sharing scheme to a dynamic
secret sharing scheme in Section 3.4. It ensures that new shareholders ob-
tain a unique ID, which guarantees correctness. Thus, the values nh for
h ∈ {0, . . . , l} must be chosen in advance, as it restricts level h to a maxi-
mal number of nh − nh−1 shareholders. Note that the maximal number of
shareholder that are supported is then nl ≥ n = |S|.
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Remark 3.3. The condition p > 2−(tl−2) ·(tl−1)
tl−1

2 ·(tl−1)!·n
(tl−2)(tl−1)

2
l

yields an upper bound for the size of the reconstruction matrix and thus
guarantees that its inverse exists [38].

The reconstruction matrix is used to compute a solution for the Birkhoff
interpolation problem and is defined as follows:

Definition 3.4 (Reconstruction matrix [27]). Let E := (ei,j)ki=1
r
j=0

be an interpolation matrix, i. e., a binary matrix where ei,j ∈ {0, 1} for
i ∈ {1, . . . , k} and j ∈ {0, . . . , r}, and in addition

∑k
i=1
∑r
j=0 ei,j = t. Let

X := {x1, . . . , xk} ⊂ N0 and G := {g0, . . . , gt−1} be a system of linearly in-
dependent and r times continuously differentiable real-valued functions. Let
g

(j)
i denote the j-th derivative of gi. Let I(E) := {(i, j) : i ∈ {1, . . . , k}, j ∈
{0, . . . , r}, ei,j = 1} be the ordered set of indices of the interpolation matrix
where the entries are 1. Specifically, I(E) := {(i0, j0), . . . , (it−1, jt−1)} is or-
dered such that (i, j) precedes (i′, j′) if and only if i < i′ or i = i′ ∧ j < j′.
The reconstruction matrix A(E,X,G) is defined as follows:

A(E,X,G) :=


g

(j0)
0 (xi0) · · · g

(j0)
t−1(xi0)

...
. . .

...
g

(jt−1)
0 (xit−1) · · · g

(jt−1)
t−1 (xit−1)

 .

The reconstruction matrix is indexed starting from 0, i. e., A(E,X,G) is a
t× t matrix.

In the conjunctive hierarchical secret sharing scheme it holds that X :=
{x1, . . . , xk} = {i | si,j ∈ S} and G := {g0, . . . , gt−1} = {1, x, x2, . . . , xtl−1},
i. e., gω(x) := xω. The set I(E) := {(i, j) | si,j ∈ R} is the set of the IDs of
the shareholders reconstructing the secret.

The original polynomial can be reconstructed with

f(x) ≡
t−1∑
ω=0

aωgω(x) mod p

where

aω := det(A(E,X,Gω))
det(A(E,X,G)) .

The matrix A(E,X,Gω) is obtained from A(E,X,G) by replacing its ω-th
column with the shares σi,j in lexicographic order [39]. We want to stress the
fact that a coefficient aω can be computed in a distributed fashion [39] with
Laplace’s expansion formula: It is aω ≡

∑t−1
u=0 au,ω mod p, where

au,ω := σiu,ju(−1)u+ω · det(Au,ω(E,X,G))
det(A(E,X,G))
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and Au,ω(E,X,G) is the matrix that results from A(E,X,G) by removing
the u-th row and the ω-th column. We will write A for det(A(E,X,G)) and
Au,ω for det(Au,ω(E,X,G)). In addition, the j-th derivative f (j)(x) of the
interpolation polynomial f(x) can be computed in a distributed fashion [39]:
It holds that f (j)(x) ≡

∑t−1
u=0 f

(j)
u (x) mod p where

(3.1) f (j)
u (x) :=

t−1∑
ω=0

au,ωg
(j)
ω (x) mod p.

3.4. Dynamic secret sharing. In the previous sections we considered fixed ac-
cess structures, i. e., the access structure is not altered after the Share algo-
rithm. However, there are many cases where the access structure needs to
be altered, e. g., a shareholder shall be added or removed. Next, we describe
the flavor of dynamic secret sharing scheme coined in [39] and present how
the authors of [39] turned the hierarchical secret sharing scheme of [38] into
a dynamic secret sharing scheme.

Definition 3.5 (Dynamic secret sharing scheme [39]). A dynamic se-
cret sharing scheme consists of two additional probabilistic polynomial-time
algorithms Add and Reset compared to Theorem 3.1.

Add: Let R := {si1 , . . . , sik} ⊆ S be a subset of shareholders, where
ij , k ∈ {1, . . . , n} for all j ∈ {1, . . . , k}. Let sn+1 6∈ S be a new shareholder.
The algorithm takes as input a set of shares σi1 , . . . , σik ∈ Σ. If R 6∈ Γ , it
outputs ⊥. If R ∈ Γ , it outputs without secret reconstruction a new share
σn+1 ∈ Σ, where the share σn+1 is sent to the new shareholder sn+1.

Reset: Let R = {si1 , . . . , sik} ⊆ S be a subset of shareholders, where
ij , k ∈ {1, . . . , n} for all j ∈ {1, . . . , k}. Let S ′ = {s′1, . . . , s′n′} be a new set
of shareholders. Let Γ ′ ⊆ P(S ′) be a new access structure. The algorithm
takes as input a set of shares σi1 , . . . , σik ∈ Σ. If R 6∈ Γ , it outputs ⊥. If
R ∈ Γ , it outputs without secret reconstruction n′ new shares σ′i ∈ Σ for
i ∈ {1, . . . , n′}, where the share σ′i is sent to the shareholder s′i ∈ S ′ and the
old shares σ1, . . . , σn ∈ Σ are deleted.

The Reset algorithm has no constraints on the new set of shareholders
S ′, e. g., S and S ′ can but do not have to be disjoint. Note that Theorem 3.5
allows that a previously unauthorized set R 6∈ Γ can become an authorized
set R ∈ Γ ′ after the execution of the Reset algorithm. This is a desired
property, as the purpose of the Reset algorithm is to create a completely
new access structure Γ ′. Nevertheless, the Reset algorithm provides security
in the presence of mobile adversaries [39], i. e., the adversary can alter the set
of corrupted shareholders: The shares before and after executing the Reset
algorithm cannot be combined. Thus, if the Reset algorithm is executed
often enough, then the mobile adversary will never obtain enough shares to
reconstruct the secret.
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The hierarchical secret sharing scheme as introduced in [38] (see Pro-
tocol 3.1) can be extended to a dynamic and hierarchical secret sharing
scheme [39]. The Add and Reset algorithm of this scheme are described
in Protocols 3.3 and 3.4 and make use of the sub-algorithm Birkhoff Setup
descried in Protocol 3.2. The Birkhoff Setup sub-algorithm is also used in
the hierarchical threshold Paillier cryptosystems in Section 5.

Protocol 3.2 (Birkhoff Setup). Let R ⊆ S be a subset of shareholders.
1. If R 6∈ Γ , the algorithm outputs ⊥. If R ∈ Γ , we assume that R is a

minimal authorized set.
2. Set X := {x1, . . . , xk} = {i : si,j ∈ R} s. t. x1 < . . . < xk, set

d := min{j : si,j ∈ R}, set r := max{j : si,j ∈ R} − d, and set
E := (ei,j)ki=1

r
j=0 s. t. ei,j = 1 if sxi,j+d ∈ R and otherwise ei,j = 0.

3. Set G :=
{
d!, (d+1)!

1! x, . . . , (tl−1)!
(tl−1−d)!x

tl−1−d
}
.

4. Let I(E) := {(i0, j0), (i1, j1), . . . , (ik−1, jk−1)}.
5. Let A := det(A(E,X,G)) and let b := 0 (b := tl − 1).

The Add algorithm is implemented by computing a point or derivative
of the function f(x) in a distributed fashion [39]. The Reset algorithm can
be implemented by computing the shares of a new polynomial f ′(x) in a
distributed fashion such that f ′(0) ≡ m ≡ f(0) mod p holds [39].

Protocol 3.3 (Add [39]). Let R ⊆ S be an authorized set, then a new
shareholder is Added as follows:

1. Let (i′, j′) be the ID of the new shareholder si′,j′ .
2. Execute Protocol 3.2 (Birkhoff Setup).
3. Let su := siu,ju and σu := σiu,ju for (iu, ju) ∈ I(E).
4. Each shareholder su ∈ R computes and splits

f j
′

u (i′) := σu

tl−1∑
ω=j′

ω!(−1)u+ω

(ω − j′)! ·
Au,ω−d

A i′ω−j
′
mod p

s. t. f j′u (i′) ≡ λ0,u + . . .+ λk−1,u mod p and sends λu′,u to shareholder
su′ ∈ R.

5. Each Shareholder su ∈ R sends δu :=
∑k−1
u′=0 λu,u′ mod p to share-

holder si′,j′ .
6. The new share is then σi′,j′ :=

∑k−1
u=0 δu mod p.

Protocol 3.4 (Reset [39]). Let Γ ′ be the new access structure for new
shareholders s′i′,j′ ∈ S ′. Let R ⊆ S be an authorized set, then Γ is Reseted
as follows:

1. Execute Protocol 3.2 (Birkhoff Setup).
2. Let su := siu,ju and σu := σiu,ju for (iu, ju) ∈ I(E).
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3. Each shareholder su ∈ R computes

au,b := σu(−1)u+b−dAu,b−d
A mod p

and shares au,b with Protocol 3.1 according to Γ ′. Let λui′,j′ be the share
for shareholder s′i′,j′ ∈ S ′.

4. Old shares σi,j of si,j ∈ S are deleted and the new share of s′i′,j′ ∈ S ′

is σ′i′,j′ :=
∑k−1
u=0 λ

u
i′,j′ mod p.

Remark 3.6 (Why a (t, n)-threshold secret sharing scheme is not
enough). To the best of our knowledge, there are two main techniques using
a (t, n)-threshold secret sharing scheme to realize a conjunctive hierarchical
access structure:

1. Shareholders obtain different amounts of shares corresponding to their
level.

2. The secret is split in multiple parts (one for each level). Each part is
then shared with a threshold secret sharing scheme.

The first approach does not allow to model any disjunctive hierarchical access
structures with support for arbitrary number of shareholders: Assume the
following ((1, 3), n) hierarchical access structure, i. e., reconstruction can be
done by three shareholders where at least one is from level 0, and the other
two are from level 0 or level 1. Let t be the threshold of Shamir’s secret
sharing scheme, and let A and B denote the number of shares a shareholder
in level 0 and level 1 obtains, respectively. Assume we want to support x
shareholds in level 1 and at least 3 in level 0. Then it has to hold that
X ·B < t and 2A < t. However, according to the access structure it must be
that t ≤ A + 2B. Combining these inequalities lead to (X − 2)B < A and
A < 2B, and thus (X − 2)B < 2B ⇔ X < 4. Hence, this access structure
can support at most 3 shareholders in level 1. Note, the hierarchical secret
sharing scheme based on Birkhoff interpolation has also a limit on the number
of shareholders per levels once the shares are distributed. However, this limit
can be chosen arbitrarily large in advance during the setup, and thus it is only
a minor restriction w. r. t. practical applications.

In the second approach, a subset of shareholders can prevent secret re-
construction, namely if all shareholders of one part of the secret refuse to par-
ticipate. This cannot happen in the hierarchical secret sharing scheme based
on Birkhoff interpolation, as higher level shareholder are able to replace lower
level shareholders.

3.5. Security model. A threshold cryptosystem is a cryptosystem where t par-
ties can jointly decrypt a ciphertext [29]. In a public key cryptosystem the
private key is typically shared among the parties. Each shareholder is in the
possession of a secret share σi. An authorized set of shareholders can jointly
decrypt a ciphertext c by combing their shares: Each shareholder si uses their
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secret share σi and the ciphertext c to compute a partial decryption ci. The
partial decryptions ci are sent to the combiner, i. e., the party who shall learn
the decryption of c. The combiner uses the partial decryptions to obtain the
plaintext.

We differentiate between two main adversary types: A semi-honest ad-
versary and a malicious adversary [24]. A semi-honest adversary behaves like
an honest party and follows the protocol as intended. However, a semi-honest
adversary might store all messages received and carry out additional compu-
tations in order to deduce more information than the intended output. The
malicious adversary can additionally arbitrarily deviate from the protocol,
i. e., send inconsistent inputs, send different messages deviating from the pro-
tocol specifications or even refuse to send messages and abort the protocol at
any point in time.

Semi-honest or malicious adversaries can additional be mobile adver-
saries [21], i. e., the set of corrupted parties can be altered, but the total
amount of corrupted parties at any point in time is limited. In the real world
such a mobile adversary can occur if the adversary can break into different
servers storing the shares or is able to bribe the shareholders [39]. At the
same time, the administrators of the corresponding servers can slowly block
the adversary or the bribed shareholders reveal their shares only once, and
thus the set of corrupted parties can change over time while the total number
of parties is still limited. The counter part is called a static adversary, i. e., the
set of corrupted parties cannot be altered once it is chosen by the adversary.

Our hierarchical and dynamic threshold Paillier cryptosystem without
trusted dealer (see Section 5) is robust and threshold semantic secure in the
malicious adversary model. We therefore introduce these two notions of se-
curity and adapted the definitions of [16, 29] to general access structures: A
robust threshold cryptosystem guarantees that the combiner, i. e., the party
that shall learn the plaintext, obtains a correct decryption.

Definition 3.7 (Robustness [16,29]). Let S be the set of shareholders and
let Γ be the access structure. Let R ⊆ S be the set of shareholders participating
in the decryption. Let U ⊂ R be a set of unauthorized shareholders (U 6∈ Γ )
chosen and controlled by a malicious adversary such that R \ U ∈ Γ .

A threshold cryptosystem is said to be robust if the combiner is able to
correctly decrypt any ciphertext, even in the presence of a malicious adversary
who corrupts all shareholders in U .

The definition of threshold semantic security is based on a game between
the adversary and a challenger. Again, we adapted the definitions in [16, 29]
and provide a version for general access structures:

Definition 3.8 (Threshold semantic security [16, 29]). Let S be the set
of shareholders and let Γ be the access structure. Let R ⊆ S be the set of
shareholders participating in the decryption. Let k ∈ N be a security parameter
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and let K : N → N be a function s. t. 1/K(·) is negligible. The game between
the challenger and the malicious adversary proceeds as follows:

1. The adversary selects a set U ⊂ R of unauthorized shareholders (U 6∈
Γ ) such that R \ U ∈ Γ . The challenger controls the honest parties.

2. The key generation is performed and the adversary learns the public
key, all verification shares and all secret information generated or ob-
tained by any of the corrupted shareholders in U .

3. The adversary chooses a message m and sends it to a partial decryption
oracle that returns the encryption c of m and the partial decryptions
ci for si ∈ R\U of the honest parties to the adversary. The adversary
may repeat this step a polynomial number of times in k.

4. The adversary sends two messages m0,m1 to the challenger. The chal-
lenger picks a random bit b ∈ {0, 1} and sends the ciphertext c, which
is the encryption of mb, to the adversary.

5. The adversary repeats Step 3.
6. The adversary outputs a guess b′ ∈ {0, 1}.
A threshold cryptosystem is said to be threshold semantic secure if it holds

that
∣∣Pr(b = b′)− 1

2
∣∣ ≤ 1/K(k).

In order for the fully distributed protocols to be robust, the participating
parties need to follow the protocol specification. For this purpose we make
use of Pedersen commitments [33] and zero-knowledge proofs [20], where the
prover can prove knowledge or a certain relation. The interfaces of the used
zero-knowledge proofs are given in Protocols 3.5 to 3.7.

Protocol 3.5 (Discrete logarithm equality [16]). For public g1, g2, y1, y2
and private x the prover can show that logg1(y1) = logg2(y2) = x.

Protocol 3.6 (Zero-knowledge range proof [30]). For public v, g, h, p
and private s, r the prover can show that v ≡ gshr mod p and that s is from
a certain range.

Protocol 3.7 (Zero-knowledge proof for verification [29, Appendix C]).
For public g, h, p, v,N and public commitments gσhσ′ mod p, vσ and private
σ, σ′ the prover can show that logv

(
vσ mod N2) = σ holds.

3.6. Threshold Paillier cryptosystem without trusted dealer. The Paillier
cryptosystem [31] is an asymmetric and probabilistic encryption scheme, i. e.,
one message can encrypt to multiple ciphertexts. In addition, it is also ad-
ditive homomorphic, i. e., the multiplication of two ciphertexts results in the
addition of the corresponding plaintexts. The Encryption and Decryption
algorithm are given in Protocol 3.8.

Protocol 3.8 (Paillier cryptosystem [31]). Let N := pq, where p and q
are two distinct primes such that gcd(N,ϕ(N)) = 1. Let g be a generator of
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WN := {a ∈ Z∗N2 : aN ≡ 1 mod N2}. The value N and the generator g are
public.
The Encryption is performed as follows:

1. Let m ∈ ZN be the message to be encrypted.
2. Select r ←$ Z∗N .
3. The ciphertext is then c := gmrN mod N2.

The Decryption is performed as follows:
1. Let c ∈ Z∗N2 be the ciphertext to be decrypted.

2. Messagem ∈ ZN is obtained by computingm := L(cλ(N) mod N2)
L(gλ(N) mod N2) mod N

where L(w) := w−1
N .

Nishide and Sakurai implemented a fully distributed Paillier cryptosys-
tem without trusted dealer [29], i. e., the primes, the modulus, the private
key and corresponding shares are generated without a trusted dealer. In the
following we give a brief description of their threshold Paillier cryptosystem
without trusted dealer [29], as we will reuse their key generation for our hi-
erarchical and dynamic threshold Paillier cryptosystem without trusted dealer
in Section 5.

We first present their verifiable secret sharing over the integers as intro-
duced in [29]. This scheme is required to share the private key: Recall that
λ(N) is the private key of the Paillier cryptosystem (cf. Protocol 3.8). The
private key cannot be shared with Shamir’s secret sharing scheme (or a vari-
ant with different modulus), as for correctness it would have to be shared
modulo a multiple of λ(N), which then allows decryption by knowing only
the modulus. Thus, the private key is shared over the integers to prevent
unauthorized shareholders obtaining the private key. The scheme is based
on Shamir’s secret sharing scheme, but the coefficients of the polynomial are
chosen from a larger range. The actual shared secret is m · n! instead of m,
where n is the number of shareholders. This is required to prevent informa-
tion leakage, as otherwise an adversary with t−1 shares can guess a secret m′
and check if the coefficients of the reconstructed polynomial are all integers.
If a fraction occurs (caused by the Lagrange interpolation), then the guessed
secret m′ can be excluded from the possible secrets. The Share and Recon-
struct algorithm are described in Protocol 3.9. Verifiability can be achieved
with standard techniques as shown in the full version in [29].

Protocol 3.9 (Secret sharing over the integers [29]). Let z ∈ N and let
the secret be m ∈ [−z, z] ⊂ Z. Let S = {s1, . . . , sn} be a set of n shareholders.
Let t ∈ {1, . . . , n} be the threshold and let ∆ := n!. Let k ∈ N be a security
parameter and let K : N → N be a function s. t. 1/K(·) is negligible. The
Share algorithm proceeds as follows:

1. Set a0 := m∆.
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2. Select coefficients a1, . . . , at−1 ←$ [−K(k)z∆2,K(k)z∆2] ⊂ Z.
3. Construct f(x) :=

∑t−1
ω=0 aωx

ω.
4. Send the share σi := f(i) to shareholder si ∈ S.

An authorized set of shareholders R, i. e., |R| ≥ t, can Reconstruct the
secret m by computing

m = 1
∆

∑
si∈R

σi
∏

sj∈R,j 6=i

j

j − i
.

The Key Generation of the threshold Paillier cryptosystem without
trusted dealer [29] (see Protocol 3.10) is performed by n shareholders in a
distributed fashion.

Protocol 3.10 (Threshold Paillier cryptosystem without trusted dealer
- Key Generation [29]). Let S = {s1, . . . , sn} be a set of n sharehold-
ers. Let t ∈ N, t ≤ (n + 2)/3 be the threshold and let ∆ = n!. Let
k ∈ N be a security parameter, i. e., the required bit size for the generated
prime candidates and let K : N → N be a function s. t. 1/K(·) is negligi-
ble. Let P ′ > 2(2n∆ (K(k))2

N2
max(1 + tnt∆K(k)) + θmax) be a prime where

θmax := 2n∆K(k)(1 + K(k))N2
max, Nmax := p2

max and pmax := 3n · 2k−1. In
order to create a modulus N and a private key in a distributed fashion the
shareholders proceed as follows:

1. The shareholders perform the distributed computation of RSA modulus
and thus obtain N := pq, shares p̃i, q̃i of two prime candidates p and
q with bit size k, and shares ϕ̃i of ϕ(N) over ZP ′ .

2. The shareholders test p, p−1
2 , q and q−1

2 for small divisors with trial
division. They also test whether N is the product of two primes with
the biprimality test. If a test fails, restart at Step 1.

3. Each shareholder si selects βi ←$ [0, N − 1], ri ←$ [0,K(k)N ] and
shares βi over ZP ′ and ri over the integers with Protocol 3.9. They
compute θ̃i := ∆ϕ̃iβ̃i +N∆r̃i mod P ′.

4. Let σi := Nr̃i − θ. The corresponding verification key is vσi :=
gσihσ

′
i mod P . The shareholders have now a sharing of σ := −∆ϕ(N)β

over the integers.
5. The shareholders set v := H(N)2 mod N2 (H is a hash function mod-

eled as random oracle), publish verification keys vi := v∆σi mod N2,
and prove that logv∆(vi) = σi (Protocol 3.7).

The public key is (N, θ) and the private key is σ. Note that θ ≡ ∆ϕ(N)β +
N∆r ≡ ∆ϕ(N)β mod N .

The shareholders first perform a distributed computation of an RSA mod-
ulus (see Step 1. in Protocol 3.10), i. e., the generation of two prime candidates
p and q s. t. p ≡ q ≡ 3 mod 4 (needed for the biprimality test later). In order
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to generate a k bit prime candidate, each shareholder si ∈ S selects a ran-
dom value ri from an appropriate range. Then the first shareholder computes
p1 := 4r1 + 3 and the other shareholders compute pi := 4ri for i ∈ {2, . . . , n}.
The final prime candidate is then p :=

∑n
i=1 pi. The modulus N := pq is

computed in a distributed fashion by multiplying the corresponding shares
and reconstruction of the result [29]. In addition, the shareholders now have
shares p̃i, q̃i of the primes p, q such that they can locally compute shares
ϕ̃i := N − p̃i − q̃i + 1 of ϕ(N). Note that with high probability p and q are
not safe primes. However, the condition on p and q being safe primes can
be relaxed when p−1

2 and q−1
2 are not divisible by any prime less than n (see

[11,29]). This is tested with trial division (see Step 2. in Protocol 3.10), i. e.,
testing whether p and q are divisible by small numbers. After the trial divi-
sion, the shareholders perform the biprimality test [6], i. e., they test whether
N is the composite of two primes. If all checks succeed, they accept the
primes.

The private key is computed as follows [29] (see Step 3. and 4. in Pro-
tocol 3.10): Each shareholder si selects βi ←$ [0, N − 1] and shares it over
ZP ′ where P ′ is a large prime. In addition, they agree on a function K(k)
such that 1/K(k) is negligible in k, select ri ←$ [0,K(k)N ] and share it
over the integers with the secret sharing scheme over the integers (see Pro-
tocol 3.9). The shareholders are now in possession of shares β̃i and r̃i of
β :=

∑n
i=1 βi mod P ′ and r :=

∑n
i=1 ri ∈ [0, nK(k)N ], respectively. They

locally compute θ̃i := ∆ϕ̃iβ̃i + N∆r̃i mod P ′. The shareholders now have
shares σi of the private key σ := Nr − θ = −∆ϕ(N)β over the integers.

The Encryption algorithm is the same as for the original Paillier cryp-
tosystem (Protocol 3.8) with g := 1 + N . The Decryption algorithm is
described in Protocol 3.11. The resulting system is robust and threshold se-
mantically secure in the presence of a malicious adversary corrupting at most
t− 1 shareholders [29].

Protocol 3.11 (Threshold Paillier cryptosystem without trusted dealer
-Decryption [29]). Let c be the ciphertext to be decrypted. Let R ⊆ S denote
the shareholders who participate in the decryption process. Each shareholder
si ∈ R proceeds as follows:

1. Compute ci := c2∆σi mod N2.
2. Prove that logc4∆

(
c2i
)

= logv(vi) (Protocol 3.5).
3. Send ci and the proof to the combiner.

The combiner performs the following steps:

1. Let R′ ⊆ R be the set of shareholders with correct proofs. If |R′| < t,
then the decryption fails.



122 A. KLINGER, S. WÜLLER, G. TRAVERSO AND U. MEYER

2. Otherwise compute

m := L
( ∏
si∈R′

c2µii mod N2

)
· 1
−4∆2θ

mod N

where

µi := ∆ ·
∏
sj∈R′
j 6=i

j

j − i
∈ Z.

4. Verifiable hierarchical and dynamic secret sharing over the
integers

Our new hierarchical and dynamic threshold Paillier cryptosystem with-
out trusted dealer (see Section 5) needs to share a secret with a hierarchical
access structure in a verifiable way over the integers. The hierarchical secret
sharing scheme as presented in Sections 3.3 and 3.4 cannot be used for this,
as the shareholders do not know the correct modulus or cannot publish it.
In addition, the secret reconstruction is based on the quotient det(A(E,X,Gω))

det(A(E,X,G)) .
This quotient is not guaranteed to be an integer if the hierarchical secret shar-
ing from [38,39] is used over the integers directly. If an adversary corrupts an
unauthorized set of shareholders such that only one shareholder is missing to
form an authorized set, then the adversary could guess a possible secret and
compute the quotient. If the quotient is not an integer, then the adversary
can exclude the guessed secret.

Thus, we devise a novel hierarchical and dynamic secret sharing scheme
that shares a secret over the integers and prove its security. In order to prevent
information leakage we share mΛ instead of only the secret m, where Λ :=

lcm(2, . . . ,Amax) and Amax :=
⌈

2−(tl−2) · (tl − 1)
tl−1

2 · (tl − 1)! · n
(tl−2)(tl−1)

2
l

⌉
.

The value of Amax is an upper bound for the largest possible determinant
Amax = maxE,X,G det(A(E,X,G)) that can occur (cf. Theorem 3.3 in Sec-
tion 3.3).

Verifiability is achieved with Pedersen commitments [33]. Our newly de-
veloped Share algorithm of the actual scheme is described in Protocol 4.1.
We will focus on a conjunctive access structure. The version for a disjunctive
access structure is given in brackets.

Protocol 4.1 (Hierarchical secret sharing over the integers). Let k ∈ N
be a security parameter and let K : N → N be a function s. t. 1/K(·) is
negligible. Let z ∈ N and let the secret be m ∈ [−z, z] ⊂ Z. Let S be a
set of shareholders composed of l + 1 pairwise disjoint levels. Let n−1 := 0
and let nh ∈ N be such that nh ≥ nh−1 + |Sh| for h ∈ {0, . . . , l}. Let
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Γ ⊆ P(S) be a conjunctive (disjunctive) (~t, nl) hierarchical threshold ac-
cess structure with ~t := (t0, . . . , tl) ∈ Nl+1 and let t−1 := 0. Let (i, j) de-
note the unique ID of shareholder si,j ∈ Sh for h ∈ {0, . . . , l}, where i ∈
{nh−1 + 1, . . . , nh} and j := th−1 (j := tl− th). Let Λ := lcm(2, 3, . . . ,Amax),

where Amax :=
⌈

2−(tl−2) · (tl − 1)
tl−1

2 · (tl − 1)! · n
(tl−2)(tl−1)

2
l

⌉
. The Share al-

gorithm proceeds as follows:
1. Set a0 := mΛ (atl−1 := mΛ).
2. Select a1, . . . , atl−1 ←$ [−K(k)zΛ2,K(k)zΛ2]

(a0, . . . , atl−2 ←$ [−K(k)zΛ2,K(k)zΛ2]).
3. Construct f(x) :=

∑tl−1
ω=0 aωx

ω.
4. Distribute the share σi,j := f (j)(i) to shareholder si,j, for all si,j ∈ S.
The Verification is performed as follows: Let P and P ′ be primes such

that P ′ | (P − 1) and P ′ > 2
(
2zΛ+ 2(tl − 1)ntl−1

l K(k)zΛ2). Let g, h ∈ ZP
such that the order of g, h is P ′ and logg(h) is unknown.

1. Select m′ ←$ ZP ′ , set a′0 := m′Λ (a′tl−1 := m′Λ) and select coefficients
a′1, . . . , a

′
tl−1 ←$ ZP ′ (a′0, . . . , a′tl−2 ←$ ZP ′).

2. Construct f ′(x) :=
∑tl−1
ω=0 a

′
ωx

ω mod P ′.
3. Distribute the share σ′i,j := f ′(j)(i) to shareholder si,j, for all si,j ∈ S.
4. The dealer publishes vω := gaωha

′
ω mod P for ω ∈ {0, . . . , tl − 1}.

5. The dealer publishes zero-knowledge range proofs (Protocol 3.6) that
aω ∈ [−K(k)zΛ2,K(k)zΛ2] ⊂ Z for ω ∈ {1, . . . , tl − 1} and that m ∈
[−z, z] ⊂ Z (they first compute gmhm′ mod P , prove the range, and

then compute v0 =
(
gmhm

′
)Λ

mod P ).

Each shareholder verifies their share as follows:

1. Shareholder si,j checks if gσi,jhσ
′
i,j ≡

∏tl−1
ω=j (vω)

ω!
(ω−j)! i

ω−j
mod P . The

dealer is disqualified if more than tl − 1 checks fail.
2. Shareholder si,j checks if |σi,j | ≤

(
zΛ+ (tl − 1)ntl−1

l K(k)zΛ2), other-
wise publishes σi,j and the dealer is disqualified.

The Reconstruct, Add and Reset algorithm are analogous to Proto-
cols 3.1, 3.3 and 3.4 in Sections 3.3 and 3.4 and thus not detailed again. Note
that during the Add or Reset algorithm the shareholders obtain rational
numbers, as they need to divide by A := det(A(E,X,G)). This is not a prob-
lem, as it is easy to see that the final shares are guaranteed to be integers
(the shared secret is an integer). In addition, the relevant computations for
verification are performed modulo P ′ > Amax and thus the inverse of A exists.

Proposition 4.1. Let a semi-honest/malicious adversary corrupt one
unauthorized set U ⊂ S of shareholders, i. e., U 6∈ Γ . The view of the adver-
sary of the secret shares generated by Protocol 4.1 is statistically independent
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of the sharing of a random secret by an appropriate polynomial with coeffi-
cients taken from the same range.

Proof. W.l.o.g. assume the adversary corrupts a maximal unauthorized
set of shareholders U such that only one share is missing to be able to recon-
struct the secret, i. e., there is a shareholder s ∈ S such that U ∪ {s} ∈ Γ .
This assumption is made to cover the conjunctive and the disjunctive case. We
present the proof for the conjunctive version and give the disjunctive version
in brackets.

We show that for any m′ ∈ [−z, z] there is a polynomial h(x) over the
integers that shares the secret m′Λ and f (j)(i) = h(j)(i) for all shareholders
si,j ∈ U . This can be seen by first constructing a polynomial h′(x) that shares
the secret (m−m′)Λ and σ′i,j := h′(j)(i) = 0 for all the shareholders si,j ∈ U .
We define U ′ := U ∪ {s0,0} (U ′ := U ∪ {s0,tl−1}) and the corresponding share
as σ′0,0 := h′(0) = (m −m′)Λ (σ′0,tl−1 := h′(tl−1)(0) = (m −m′)Λ · (tl − 1)!).
It is U ′ ∈ Γ . Let E,X and G be defined according to Protocol 3.2. Let
A := det(A(E,X,G)) and Ax,y := det(Ax,y(E,X,G)). For h′(x) it holds

h′(x) =
|U ′|−1∑
ω=0

det(A(E,X,Gω))
det(A(E,X,G)) x

ω

=
|U ′|−1∑
ω=0

|U
′|−1∑
u=0

σ′iu,ju(−1)u+ω · Au,ωA xω

 .

Furthermore, σ′i,j = 0 for all shareholders si,j ∈ U and

h′(x) =
|U ′|−1∑
ω=0

σ′i0,j0
(−1)ω · A0,ω

A xω.

For the conjunctive case it holds that

h′(x) =
|U ′|−1∑
ω=0

σ′0,0(−1)ω · A0,ω

A xω

=
|U ′|−1∑
ω=0

(m−m′)Λ(−1)ω · A0,ω

A xω
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and for the disjunctive case it holds that

h′(x) =
|U ′|−1∑
ω=0

σ′0,tl−1(−1)ω · A0,ω

A xω

=
|U ′|−1∑
ω=0

(m−m′)Λ(tl − 1)!(−1)ω · A0,ω

A xω.

As Λ is chosen as the least common multiple of all numbers between 2 and
the largest possible determinant of A(E,X,G) that can occur, it holds that
det(A(E,X,G)) | Λ. Hence, h′(x) is a polynomial over the integers. Define
h(x) := f(x) − h′(x). Since f(x) 6= h′(x) it holds that h(0) = mΛ − (m −
m′)Λ = m′Λ and h(j)(i) = f (j)(i) for all si,j ∈ U .

Let aω, a′ω and bω for ω ∈ {0, . . . , tl − 1} denote the coefficients of f(x),
h′(x) and h(x), respectively. The coefficients a′ω are bounded absolutely by

|a′ω| ≤
∣∣∣∣(m−m′)Λ(−1)ω · A0,ω

A

∣∣∣∣ =
∣∣∣∣(m−m′)Λ · A0,ω

A

∣∣∣∣
≤ |(m−m′)Λ ·A0,ω| ≤ |(m−m′)Λ · Λ| =

∣∣(m−m′)Λ2∣∣
≤
∣∣2zΛ2∣∣ .

As |aω| ≤ K(k)zΛ2, the coefficients bω are bounded by

|aω − a′ω| ≤ |aω|+ |a′ω| ≤ K(k)zΛ2 + 2zΛ2 ≤ (K(k) + 2)zΛ2.

Hence, the probability that any bω 6∈ [−K(k)zΛ2,K(k)zΛ2] is tl· 2·2zΛ2

2(K(k)+2)zΛ2 =
2tl

K(k)+2 . Thus, with high probability the coefficients are in the correct range.
As 1/K(k) is negligible in k, the view of the adversary is statistically inde-
pendent of the sharing of a random secret.

5. Hierarchical and dynamic threshold Paillier cryptosystem
without trusted dealer

In this section, we devise the first hierarchical and dynamic threshold
Paillier cryptosystem without trusted dealer.2 Our new scheme uses the tech-
niques of the threshold Paillier cryptosystem without trusted dealer [29]. We
reuse the key generation of the threshold Paillier cryptosystem without trusted
dealer (see Protocol 3.10) and obtain a private key shared with the verifiable
secret sharing scheme over the integers (see Protocol 3.9). Next, we use the

2We first developed a hierarchical threshold Paillier cryptosystem with trusted dealer
that is secure in the semi-honest adversary model. However, as it is a rather straight
forward modification of the threshold Paillier cryptosystem in [16], we include it only for
completeness in Appendix A.
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Reset algorithm of the hierarchical secret sharing scheme and obtain a hi-
erarchical sharing of the private key.3 The verifiable secret sharing scheme
over the integer is a special case of our hierarchical secret sharing scheme over
the integers (see Protocol 4.1). Thus, the Reset algorithm allows changing
a (t, n) threshold access structure into a (~t, nl) hierarchical access structure.
However, the decryption needs to be adapted to cover the hierarchical struc-
ture.

In the overall setup one needs to be careful when choosing the threshold
t and ~t for the corresponding access structure before and after the Reset
algorithm. In order to prevent unauthorized access to the private key, we
need to assume that the adversary can corrupt only an unauthorized set of
shareholders and that during the key generation the adversary is a static
adversary. If the threshold t of Protocol 3.10 and ~t := (t0, . . . , tl) is chosen
such that t ≤ tl (t ≤ t0), then any corrupted set of t−1 shareholders is before
and after the Reset algorithm unable to retrieve the private key. After the
key generation is finished, the system can cope with mobile adversaries if the
Reset algorithm is executed in regular intervals.

This new hierarchical and dynamic threshold Paillier cryptosystem with-
out trusted dealer allows to dynamically add and remove shareholders while
providing a hierarchical access structure. The new cryptosystem is robust and
threshold semantic secure in the malicious adversary model. We will focus on
a conjunctive access structure. The version for a disjunctive access structure
is given in brackets. The Key Generation algorithm is described in Proto-
col 5.1. The Encryption algorithm is the same as for the original Paillier
cryptosystem (Protocol 3.8) with g := 1 +N . The Decryption algorithm is
described in Protocol 5.2.

Protocol 5.1 (Hierarchical and dynamic threshold Paillier cryptosys-
tem without trusted dealer - Key Generation). Let S be a set of share-
holders composed of l + 1 pairwise disjoint levels. Let n−1 := 0 and let
nh ∈ N be such that nh ≥ nh−1 + |Sh| for h ∈ {0, . . . , l}. Let Γ ⊆ P(S)
be a conjunctive (disjunctive) (~t, nl) hierarchical threshold access structure
with ~t := (t0, . . . , tl) ∈ Nl+1 and let t−1 := 0. Let (i, j) denote the unique
ID of shareholder si,j ∈ Sh for h ∈ {0, . . . , l}, where i ∈ {nh−1 + 1, . . . , nh}
and j := th−1 (j := tl − th). Let Λ := lcm(2, 3, . . . ,Amax), where Amax :=⌈

2−(tl−2) · (tl − 1)
tl−1

2 · (tl − 1)! · n
(tl−2)(tl−1)

2
l

⌉
. Let k̃ ∈ N be a security pa-

rameter, i. e., the required bit size for the generated prime candidates. In
3It is also possible to exchange Shamir’s secret sharing scheme and the verifiable se-

cret sharing scheme over the integers in Protocol 3.10 with the hierarchical secret sharing
schemes in Sections 3.3 and 4. The primes are shared with the hierarchical secret sharing
scheme and the multiplication is performed analogously as described in [40]. We decided
against this approach, as the multiplication in the hierarchical secret sharing scheme is
more expensive and does not provide additional security.
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order to create a modulus N and a private key in a distributed fashion Proto-
col 3.10 (Section 3.6) is executed with the following modifications:

1. Select a security parameter k ≥ k̃ and k > log2(Amax) to assure that
p > Amax.

2. Choose the threshold t of Protocol 3.10 and ~t := (t0, . . . , tl) such that
t ≤ tl (t ≤ t0).

3. In Step 3. when Protocol 3.9 is executed, we use ∆ := Λ (instead of
∆ := n!).

4. At the end of Step 4. of Protocol 3.10 execute the Reset algorithm
(Theorem 3.5) such that the new access structure after the execution is
Γ . The private key σ := −Λϕ(N)β is now shared with the hierarchical
secret sharing scheme over the integers (Protocol 4.1) with secret shares
σi,j for si,j ∈ S.

5. In Step 5. of Protocol 3.10 the shareholders set v := H(N)2 mod N2

(H is a hash function modeled as random oracle). Each shareholder
si,j publishes a verification key vi,j := vΛσi,j mod N2 and proves that
logvΛ(vi,j) = σi,j (Protocol 3.7).

The public key is (N, θ) and the private key is σ. Note that θ ≡ Λϕ(N)β +
NΛr ≡ Λϕ(N)β mod N .

Protocol 5.2 (Hierarchical and dynamic threshold Paillier cryptosystem
without trusted dealer -Decryption). Let c be the ciphertext to be decrypted.
Let R ⊆ S denote the shareholders who participate in the decryption process.
The shareholders proceed as follows:

1. Execute Protocol 3.2 (Birkhoff Setup).
2. Let su := siu,ju and σu := σiu,ju for (iu, ju) ∈ I(E).
3. Compute cu := c2Aσu mod N2.
4. Prove that logc4A

(
c2u
)

= logv(vu) (Protocol 3.5).
5. Send cu and its proof to the combiner.
The combiner performs the following steps:
1. Let R′ ⊆ R be the set of shareholders with correct proofs. If R 6= R′,

then restart the protocol with R := R′. If R′ 6∈ Γ , then the decryption
fails.

2. Otherwise compute

m := L
( ∏
su∈R′

c2ψuu mod N2

)
1

−4A2θ
mod N

where
ψu := (−1)u+b−d · det(Au,b−d(E,X,G)).

Proposition 5.1 (Correctness). The combiner obtains a correct decryp-
tion of a ciphertext with the execution of Protocol 5.2 if it holds that R = R′
and R′ ∈ Γ .
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Proof. We prove that the decryption is correct. Therefore, we first
prove that the private key is shared correctly, i. e., the private key can be
reconstructed. Second, we show that the proposed decryption will yield the
correct plaintext.

Let su := siu,ju ∈ R and let σu := σiu,ju for (iu, ju) ∈ I(E). Let A :=
det(A(E,X,G)) and Ax,y := det(Ax,y(E,X,G)). It holds that R = R′ and
R′ ∈ Γ . This means that the partial decryptions are correct and that R is an
authorized set of shareholders.

Using the shares of the shareholders, the private key can be reconstructed,
as it holds that ∑

su∈R
ψuσu =

∑
su∈R

σu · (−1)u+b−d ·Au,b−d

= A
∑
su∈R

σu · (−1)u+b−dAu,b−d
A

= Aab = −AΛϕ(N)β.

Hence, for the decryption of a ciphertext c := (1 +N)mrN mod N2 we get∏
su∈R

c2ψuu ≡
∏
su∈R

(
c2Aσu

)2ψu ≡ c4A
∑

su∈R
σuψu

≡ c−4A2Λϕ(N)β ≡
(
(1 +N)mrN

)−4A2Λϕ(N)β

≡ (1 +N)−4A2Λϕ(N)βm ·
(
rϕ(N)

)
︸ ︷︷ ︸

rϕ(N)≡1 mod N

−4A2ΛβN

≡ (1 +N)−4A2Λϕ(N)βm mod N2.

Thus, we have

L
( ∏
su∈R′

c2ψuu mod N2

)
· 1
−4A2θ

≡ L
(

(1 +N)−4A2Λϕ(N)βm mod N2
)
· 1
−4A2θ

≡ −4A2 Λϕ(N)β︸ ︷︷ ︸
≡θ mod N

m · 1
−4A2θ

≡ m mod N.

Proposition 5.2. The key generation of the hierarchical and dynamic
Paillier cryptosystem in Protocol 5.1 is robust and threshold semantic secure
in the presence of a malicious adversary corrupting at most t−1 shareholders.

Proof. As shown in [29], the key generation of the threshold Paillier
cryptosystem without trusted dealer (Protocol 3.10) is robust and threshold
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semantic secure. Thus, we need to show that the modifications of Proto-
col 3.10 as described in Protocol 5.1 do not affect robustness or threshold
semantic security.

Modification 1. has no influence at all, as it is just a lower bound for the
needed bit security.

Modification 2. is only a condition on the threshold t which ensures that
unauthorized sets during the key generation with Protocol 3.10 are also unau-
thorized according to the hierarchical access structure Γ after the Reset al-
gorithm in Step 4. of Protocol 5.1. Hence, it does no influence robustness or
threshold semantic security.

Modification 3.: The secret sharing scheme over the integers [29] (Pro-
tocol 3.9) is a special case of the hierarchical secret sharing scheme over the
integers (Protocol 4.1), namely if only one level of shareholders exists. Both
schemes provide the same security (cf. [29] and Theorem 4.1).

Modification 4.: The Reset algorithm does not alter security as shown
in [39].

Modification 5. does not affect robustness, as the zero-knowledge proof is
basically identical to the original protocol: The verification keys vi and vi,j
are both Pedersen commitments. The hierarchical secret sharing scheme over
the integers guarantees that the new verification key vi,j corresponds to the
new share σi,j . As Shamir’s secret sharing scheme is a special case of the
hierarchical secret sharing scheme, it follows that if the zero-knowledge proof
in Protocol 5.1 leaks information, then it leaks information in Protocol 3.10,
too. Hence, computing the zero-knowledge proof does not affect robustness
or threshold semantic security.

None of the modifications influence robustness or threshold semantic se-
curity of the key generation of the threshold Paillier cryptosystem without
trusted dealer. Hence, the key generation of the hierarchical and dynamic
Paillier cryptosystem is robust and threshold semantic secure.

Proposition 5.3. The hierarchical and dynamic threshold Paillier cryp-
tosystem as described in Protocols 5.1 and 5.2 is robust in the presence of a
malicious adversary corrupting at most t− 1 shareholders.

Proof. Theorem 5.1 guarantees a correct decryption and thus robustness
if the combiner is able to distinguish between corrupted shareholders and
honest shareholders, and the combiner finally has received only correct partial
decryptions.

Let R ⊆ S be the set of shareholders participating in the decryption. Let
U ⊂ R be a set of unauthorized shareholders (U 6∈ Γ ) chosen and controlled
by a malicious adversary such that R \ U ∈ Γ . The partial decryptions
cu are either correct or incorrect. The combiner can distinguish between
them by verifying the corresponding proof and exclude the corresponding
shareholders from the decryption process. With each round the amount of
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corrupted shareholders providing wrong partial decryptions decreases, i. e.,
R′ ⊆ R. As R \ U ∈ Γ , it has to hold that at some point in time it is
either that only honest shareholders are left or that all partial decryptions are
correct, i. e., it holds that R = R′. Hence, the combiner can correctly decrypt
any ciphertext and the protocol is robust.

Theorem 5.4. The hierarchical and dynamic threshold Paillier cryptosys-
tem as described in Protocols 5.1 and 5.2 is threshold semantically secure in
the random oracle model with a malicious adversary corrupting at most t− 1
shareholders.

Proof. We prove that the hierarchical and dynamic threshold Paillier
cryptosystem without trusted dealer is threshold semantic secure by showing
that if there exists an adversary that can break threshold semantic security,
then we can construct a simulator that uses the power of the adversary to
break the semantic security of the original Paillier cryptosystem.

The key generation of the new hierarchical and dynamic threshold Paillier
cryptosystem (Protocol 5.1) is robust and threshold semantic secure as proven
in Theorem 5.2. Theorem 5.3 guarantees robustness for the Decryption
algorithm. Thus, it is left to show that the decryption is threshold semantic
secure. We start with the generation of the verification keys in Protocol 5.1.
We prove the conjunctive case and give changes for the disjunctive case in
brackets.

Let S be the set of shareholders and let R ⊆ S be the set of shareholders
participating in the decryption. Let U ⊂ R be a set of unauthorized sharehold-
ers (U 6∈ Γ ) chosen by the adversary. Let U ′ := U∪{s0,0} (U ′ := U∪{s0,tl−1})
and w.l.o.g. assume that the adversary has chosen the corrupted parties such
that U ′ ∈ Γ , where s0,0 (s0,tl−1) is a non existing shareholder with corre-
sponding share σ0,0 := −Λϕ(N)β (σ0,tl−1 := −Λϕ(N)β · (tl − 1)!). Note that
σ0,0 (σ0,tl−1) is unknown to the simulator.

For verification v is generated as H(N)2 mod N2 with a random oracle
H where H(N) := (1 + N)mvrNv mod N2 and mv, rv ∈ ZN are chosen by
the simulator. Thus, we have v ≡ (1 + N)2mvr2N

v mod N2. During the key
generation in Protocol 5.1 the simulator has learned the values σi,j for si,j ∈ U
as shown in [29].

The simulator has to create the verification keys for all shareholders in
R: The simulator can easily compute the verification keys vi,j := vΛσi,j for
si,j ∈ U from the knowledge of σi,j . It holds that

v−Λϕ(N)β ≡
(
(1 +N)2mvr2N

v

)−Λϕ(N)β

≡ (1 +N)−2mvΛϕ(N)β

≡ 1− 2mvΛϕ(N)βN mod N2.
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As θ = Λϕ(N)β +NΛr, it holds that

1− 2mvθN ≡ 1− 2mv(Λϕ(N)β +NΛr)N
≡ 1− 2mvΛϕ(N)βN − 2mvΛrN

2

≡ 1− 2mvΛϕ(N)βN mod N2.

Hence, it is v−Λϕ(N)β ≡ 1− 2mvθN mod N2.
As θ is public, the simulator can compute a correct verification key for s0,0

(s0,tl−1) by setting v0,0 := 1−2mvΛθN mod N2 (v0,tl−1 := 1−2mvΛθN(tl−
1)! mod N2). Let E,X and G be defined according to Protocol 3.2. Now, the
simulator can compute the verification shares of the honest parties by using
Birkhoff interpolation in the exponent: Let Ax,y := det(Ax,y(E,X,G)). The
shareholders compute

f (j′)
u (i′) := σiu,ju

tl−1∑
ω=j′

ω!
(ω − j′)! (−1)u+ω · Au,ω−dA i′ω−j

′

and then
∑k−1
u=0 f

(j′)
u (i′) = σi′,j′ (cf. Equation (3.1)).

Let U ′ = {si0,j0 , . . . , sik−1,jk−1} be lexicographically ordered by their
unique index. Observe that si0,j0 = s0,0 (si0,j0 = s0,tl−1) and that U =
{siu,ju ∈ U ′ : u ≥ 1}. Then, it holds that

vi′,j′ ≡ vΛσi′,j′ ≡ vΛ
∑k−1

u=0
f(j′)
u (i′) ≡

k−1∏
u=0

vΛf
(j′)
u (i′)

≡ vΛf
(j′)
0 (i′) ·

k−1∏
u=1

vΛf
(j′)
u (i′) mod N2.

If the simulator can compute vΛf
(j′)
0 (i′) and

∏k−1
u=1 v

Λf(j′)
u (i′), then they can

compute a verification share for every honest shareholder. The simulator can
easily compute

∏k−1
u=1 v

Λf(j′)
u (i′) as they are in possession of σiu,ju . Next, we

show how to compute vΛf
(j′)
0 (i′). The simulator can compute vΛf

(j′)
0 (i′) as it

holds that

vΛf
(j′)
0 (i′) ≡ vΛσi0,j0

∑tl−1
ω=j′

ω!
(ω−j′)! (−1)ω

A0,ω−d
A i′ω−j

′

≡ v
Λ
Aσi0,j0

∑tl−1
ω=j′

ω!
(ω−j′)! (−1)ωA0,ω−d·i′ω−j

′

≡ v(−Λϕ(N)β)ΛA
∑tl−1

ω=j′
ω!

(ω−j′)! (−1)ωA0,ω−d·i′ω−j
′

≡
(
v−Λϕ(N)β

)Λ
A

∑tl−1
ω=j′

ω!
(ω−j′)! (−1)ωA0,ω−d·i′ω−j

′

≡ (1− 2mvθN)
Λ
A

∑tl−1
ω=j′

ω!
(ω−j′)! (−1)ωA0,ω−d·i′ω−j

′

mod N2.
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The disjunctive case is done analogously by exchanging 1 − 2mvΛθN
with 1 − 2mvΛθN(tl − 1)!. Consequently, the simulator can for all honest
shareholders compute correct verification key.

In the disjunctive case, the simulator cannot compute the verification key
for every shareholder in general, i. e., the simulator cannot compute the verifi-
cation key for a lower level shareholder than the lowest corrupted shareholder,
as higher level shares contain no information about the lower coefficients.
However, the simulator can avoid this problem by selecting an appropriate
access structure.

If the adversary sends a message m to the partial decryption oracle, the
simulator has to respond with an encryption c, the partial decryptions and
corresponding proofs. The encryption is just selecting a random r ←$ ZN
and then c := (1 + N)mrN mod N2. The partial decryptions are created
analogously to the verification keys. However, as the set of shareholders par-
ticipating in the decryption protocol is known, we do not have to use Λ to
avoid calculating the inverse in the exponent. Instead, we can just use A,
which is covered by the definition of ψu. The simulator can easily gener-
ate the corresponding zero-knowledge proofs, as the simulator controls the
random oracle H.

If there is an adversary that can break the threshold semantic security
of the hierarchical and dynamic threshold Paillier cryptosystem, then the
simulator can use the adversary’s power to break the semantic security of
the original Paillier cryptosystem as shown above. This is a contradiction to
the original Paillier cryptosystem being semantically secure [31]. This implies
threshold semantic security of the hierarchical and dynamic threshold Paillier
cryptosystem without trusted dealer.

5.1. Computation and communication complexity. The key generation of the
threshold Paillier cryptosystem [29] and our novel system are both probabilis-
tic, as they first generate two prime candidates, check their primality, and
if the check fails restart, e. g., x times. The total complexity w. r. t. compu-
tation (number of modular exponentiations) and communication (number of
messages exchanged) of the key generations of both systems is O

(
xn2) where

n is the number of parties participating.
For security parameter k (the bit size of the primes) the share size in bits is

bound by 4k+6+log2(t)+(t+7)log2(n)+2log2(∆)+3log2(K(k)), with∆ := n!
for the threshold Paillier cryptosystem [29], and ∆ := lcm(2, 3, . . . ,Amax) for
our system where additionally k has to be chosen such that k > log2(Amax).

A malicious adversary controlling t−1 parties can prevent the decryption
at most t− 1 times, as in each round at least one malicious party is detected
and excluded from participation. Therefore, the decryption consists of at
most t rounds. In each round a shareholder computes a partial decryption
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and corresponding proof of correctness which have computation and commu-
nication complexity O (1) with a message size in the order of the share size.
The combiner has to check at most t

2 (2n − t + 1) proofs. If all proofs are
correct, then the plaintext can be restored with computational complexity
O (n).

6. Conclusion

In this paper, we introduced a hierarchical and dynamic threshold Paillier
cryptosystems without a trusted dealer. As a building block we also intro-
duced a verifiable hierarchical and dynamic secret sharing scheme over the
integers. Our new hierarchical and dynamic Paillier cryptosystems without
trusted dealer allows using hierarchical access structures while being dynamic
at the same time. This allows dynamically adding or removing shareholders.

In the future, we plan to explore the applicability of our novel cryptosys-
tem in the context of secure multi-party computations, as our system allows
reusing computations for different party constellations, even if shareholders
join or leave during the protocol execution.
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Appendix A. Hierarchical threshold Paillier cryptosystem with
trusted dealer

The hierarchical threshold Paillier cryptosystem with trusted dealer is
based on the threshold Paillier cryptosystem of [16] which uses a trusted dealer
to perform the setup, i. e., computing the private and public key, as well as
sharing the private key with Shamir’s secret sharing scheme. In their scheme,
the trusted dealer also generates verification keys for each party, in order to
provide verifiability. Their system is robust and threshold semantically secure
in the presence of a malicious adversary corrupting at most t−1 shareholders
excluding the dealer [16], i. e., the dealer is honest. The Key Generation
algorithm is described in Protocol A.1. The Encryption algorithm is the
same as for the original Paillier cryptosystem (Protocol 3.8) with g := 1 +N .
The Decryption algorithm is described in Protocol A.2.

Protocol A.1 (Threshold Paillier cryptosystem -Key Generation [16]).
Let S := {s1, . . . , sn} be a set of shareholders and let ∆ := n!. Let
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t ∈ {1, . . . , n} be the threshold. Let k be a security parameter. The following
steps are performed by the trusted dealer:

1. Select uniformly at random two distinct safe primes4 p and q and set
N := pq s. t.
(a) p, q > n, p, q have bit size k, and gcd(N,ϕ(N)) = 1
(b) and p = 2p′+ 1 and q = 2q′+ 1, where p′ and q′ are also primes

2. Select β ←$ Z∗N , set N ′ := p′q′, set θ := βN ′ mod N and set a0 :=
βN ′.

3. Select a1, . . . , at−1 ←$ {0, . . . , NN ′ − 1}.
4. Construct f(x) :=

∑t−1
ω=0 aωx

ω mod NN ′.
5. Distribute the share σi := f(i) mod NN ′ to shareholder si, for i ∈
{1, . . . , n}.

6. Select w ←$ Z∗N2 and set v := w2 mod N2.
7. Compute verification keys vi := v∆σi mod N2 for i ∈ {1, . . . , n}.

The public key is (N, θ) and the private key is βN ′. In addition, all verification
keys vi and v are published for i ∈ {1, . . . , n}.

Protocol A.2 (Threshold Paillier cryptosystem - Decryption [16]).
Let c be the ciphertext to be decrypted. Let R ⊆ S denote the shareholders
who participate in the decryption process. Each shareholder si ∈ R proceeds
as follows:

1. Compute ci := c2∆σi mod N2.
2. Prove that logc4∆

(
c2i
)

= logv(vi) (Protocol 3.5).
3. Send ci and its proof to the combiner.

The combiner performs the following steps:
1. Let R′ ⊆ R be the set of shareholders with correct proofs. If |R′| < t,

then the decryption fails.
2. Otherwise compute

m := L
( ∏
si∈R′

c2µii mod N2

)
· 1

4∆2θ
mod N

where
µi := ∆ ·

∏
sj∈R′
j 6=i

j

j − i
∈ Z.

The hierarchical threshold Paillier cryptosystem with trusted dealer is
created by replacing Shamir’s secret sharing scheme with a hierarchical secret
sharing scheme to share the private key. We consider a semi-honest adver-
sary as this will yield an efficient protocol. We will focus on a conjunctive
access structure. The version for a disjunctive access structure is given in

4A prime p is a safe prime if p−1
2 is also a prime.
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brackets. The Key Generation algorithm is described in Protocol A.3. The
Encryption algorithm is the same as for the original Paillier cryptosystem
(Protocol 3.8) with g := 1+N . TheDecryption algorithm solves the Birkhoff
interpolation problem in the exponent and is described in Protocol A.4.

Protocol A.3 (Hierarchical Paillier cryptosystem - Key Generation).
Let S be a set of shareholders composed of l + 1 pairwise disjoint levels. Let
n−1 := 0 and let nh ∈ N be such that nh ≥ nh−1 + |Sh| for h ∈ {0, . . . , l}. Let
Γ ⊆ P(S) be a conjunctive (disjunctive) (~t, nl) hierarchical threshold access
structure with ~t := (t0, . . . , tl) ∈ Nl+1 and let t−1 := 0. Let (i, j) denote the
unique ID of shareholder si,j ∈ Sh for h ∈ {0, . . . , l}, where i ∈ {nh−1 +
1, . . . , nh} and j := th−1 (j := tl − th). Let k be a security parameter.

The following steps are performed by the trusted dealer:
1. Select uniformly at random two distinct safe primes p and q and set

N := pq s. t.
(a) p and q have bit size k, and gcd(N,ϕ(N)) = 1.
(b) p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also primes
(c) p′, q′ > 2−(tl−2) · (tl − 1)

tl−1
2 · (tl − 1)! · n

(tl−2)(tl−1)
2

l

2. Select β ←$ Z∗N , set N ′ := p′q′, θ := βN ′ mod N and a0 := βN ′

(atl−1 := βN ′).
3. Select a1, . . . , atl−1 ←$ {0, . . . , NN ′−1} (a0, . . . , atl−2 ←$ {0, . . . , NN ′−

1}).
4. Construct f(x) :=

∑tl−1
ω=0 aωx

ω mod NN ′.
5. Distribute the share σi,j := f (j)(i) mod NN ′ to shareholder si,j, for

all si,j ∈ S.
The public key is (N, θ) and the private key is βN ′.

Protocol A.4 (Hierarchical Paillier cryptosystem -Decryption). Let c
be the ciphertext to be decrypted. Let R ⊆ S denote the shareholders who
participate in the decryption process. The shareholders proceed as follows:

1. Execute Protocol 3.2 (Birkhoff Setup).
2. Let su := siu,ju and σu := σiu,ju for (iu, ju) ∈ I(E).
3. Compute cu := c2Aσu mod N2.
4. Send the partial decryption cu to the combiner.

If R ∈ Γ , then the combiner computes

m := L
( ∏
su∈R′

cψuu mod N2

)
1

2A2θ
mod N

where
ψu := (−1)u+b−d · det(Au,b−d(E,X,G)).
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Due to the fact that the modulus NN ′ is unknown to the shareholders,
Protocol A.3 is not dynamic, as the required computations cannot be per-
formed in the correct field. However, the dealer can be used to generate new
shares or reset the structure.

Proposition A.1 (Correctness). The combiner obtains a correct decryp-
tion of a ciphertext with the execution of Protocol A.4 if it holds that R ∈ Γ .

Proof. We prove that the decryption is correct. Therefore, we first
prove that the private key is shared correctly, i. e., the private key can be
reconstructed. Second, we show that the proposed decryption will yield the
correct plaintext.

Let su := siu,ju ∈ R and let σu := σiu,ju for (iu, ju) ∈ I(E). Let A :=
det(A(E,X,G)) and Ax,y := det(Ax,y(E,X,G)). Using the shares of the
shareholders, the private key can be reconstructed, as it holds that∑

su∈R
ψuσu ≡

∑
su∈R

σu · (−1)u+b−d ·Au,b−d

≡ A
∑
su∈R

σu · (−1)u+b−d · Au,b−dA

≡ Aab ≡ AβN ′ mod NN ′.

The order of c2 divides NN ′ [16]. Hence, for a ciphertext c := (1 +
N)mrN mod N2 it holds that∏

su∈R
cψuu ≡

∏
su∈R

(
c2ARσu

)ψu ≡ c2AR∑su∈R
σuψu

≡ c2A2βN ′ ≡
(
(1 +N)mrN

)2A2βN ′

≡ (1 +N)m2A2βN ′ ·
(
r2NN ′

)
︸ ︷︷ ︸

≡rλ(N2)≡1 mod N

A2β

≡ (1 +N)m2A2βN ′ mod N2.

Thus, we have

L
( ∏
su∈R

cψuu mod N2

)
· 1

2A2θ
≡ L

(
(1 +N)m2A2βN ′ mod N2

)
· 1

2A2θ

≡ m2A2 βN ′︸︷︷︸
≡θ mod N

· 1
2A2θ

≡ m mod N.
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Theorem A.2. The hierarchical threshold Paillier cryptosystem as de-
scribed in Protocols A.3 and A.4 is threshold semantically secure in the ran-
dom oracle model with a semi-honest adversary corrupting an unauthorized
set U 6∈ Γ of shareholders.

Proof. The proof of Theorem A.2 is analogous to the proof of Theo-
rem 5.4 of the hierarchical and dynamic threshold Paillier cryptosystem with-
out trusted dealer in Section 5. The main difference is that we don’t have
to generate verification keys. The partial decryptions are computed as fol-
lows: The simulator chooses random shares for the corrupted shareholders
and then computes the partial decryption shares analogous as in the proof of
Theorem 5.4.

Remark A.3 (Creating a hierarchical and dynamic threshold RSA cryp-
tosystem). The techniques used for the hierarchical and dynamic threshold
Paillier cryptosystem can also be applied to the RSA cryptosystem.5 In the
case of a trusted dealer, the dealer generates the public and private key and
shares the private key with the hierarchical and dynamic secret sharing scheme
from Sections 3.3 and 3.4. If no trusted dealer is used, the key generation
of Protocol 5.1 can be reused to create the modulus and shares of the primes.
The private key can be generated analogously to the threshold RSA cryp-
tosystem in [6]. As the decryption in the RSA cryptosystem is also based
on exponentiation, a similar technique as in Protocol A.4 and Protocol 5.2
can be applied to realize the decryption of a corresponding hierarchical RSA
cryptosystem, respectively.

A.1. Evaluation. In order to give an impression of the performance, we mea-
sure the run time of the hierarchical threshold Paillier cryptosystem with
trusted dealer as described in Appendix A. We consider the conjunctive case
for different combinations of threshold vectors and number of shareholders.
One test run consists of the dealer generating the keys, the shareholders com-
puting the partial decryptions and the combiner recovering the plain text.
The reconstruction of the plaintext is performed with the minimal amount of
shareholders required from each level. The thresholds and the total number of
shareholders are chosen arbitrarily, as the run time measurements shall only
provide an idea of the performance.

The tests were performed in a single run on a Thinkpad T420 notebook
with an Intel Core i5-2520M CPU with 2.50GHz (turbo: 3.20GHz) and 8GB
of memory. Each test was executed in a single thread with Java 8. Each
test run was executed ten times, and we measured the average run time. The
actual run times are given in Table 1.

5The hierarchical and dynamic secret sharing scheme over the integers from Section 4
can be used to share the private key of any cryptosystem where the private key can be
shared additively.
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Table 1. The average time of ten runs needed by the par-
ticipating parties for different combinations of thresholds and
number of shareholders in the hierarchical threshold Paillier
cryptosystem (Appendix A). The times are measured for the
key generation performed by the dealer, the computation of a
partial decryption of a shareholder and the message recovery
performed by the combiner. The key size is 2048 bit, i. e.,
log2(N) = 2048.

~t (|S0|, |S1|, . . . , |Sl|) |S| Dealer Shareholder Combiner
(1, 4, 8) (20, 30, 50) 100 54.5 s 46 ms 13 ms
(1, 7, 14) (20, 30, 50) 100 79.1 s 772 ms 40.7 s

(1, 7, 11, 14) (20, 30, 50, 100) 200 49.2 s 86 ms 3.9 s

The dealer requires most of the time for the prime generation. The differ-
ent timings for a shareholder or the combiner for different threshold vectors
~t are caused by the corresponding reconstruction matrices. The most time-
consuming part of the decryption is the computation of the determinant of
the reconstruction matrix. The reconstruction matrix contains more 0’s in
the case ~t = (1, 7, 11, 14) than in the case ~t = (1, 7, 14) and thus, the determi-
nant can be computed faster. As the reconstruction matrix depends on the
threshold vector, the time needed for decryption can vary largely for different
threshold vectors.

Hijerarhijski i dinamički Paillierov kriptosustav bez pouzdanog
distributera

Andreas Klinger, Stefan Wüller, Giulia Traverso i Ulrike Meyer

Sažetak. U ovom članku predlažemo prvi hijerarhijski i
dinamički Paillierov kriptosustav bez pouzdanog distributera i
dokazujemo njegovu sigurnost u modelu zlonamjernog protivnika.
Novi kriptosustav je potpuno distribuiran, tj. stvaranje javnog i
privatnog ključa obavlja se bez pouzdanog distributera. Privatni
ključ dijeli se s hijerarhijskom i dinamičkom shemom dijeljenja
tajni preko cijelih brojeva. U takvoj shemi, ne samo broj dio-
ničara, već i njihove razine u hijerarhiji, odlučuju hoće li ili ne
oni moći rekonstruirati tajnu i novi dioničari se mogu dodati ili
ukloniti bez rekonstrukcije tajne.
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