
RAD HAZU. MATEMATIČKE ZNANOSTI
Vol. 25 = 546 (2021): 143-159
DOI: https://doi.org/10.21857/y54jofkjdm

FORMAL LANGUAGE IDENTITY-BASED
CRYPTOGRAPHY

Ádám Vécsi and Attila Pethő

Abstract. The rapid growth of the digital economy makes fine-
grained access control more and more challenging. One of the most im-
pacted areas is cloud computing, which for security purposes requires cryp-
tographic access control. Currently, the best solution for that is the use of
Attribute-based Cryptography, which allows the definition of access poli-
cies, based on the attributes of entities. Unfortunately, this family of
schemes comes along with a significant drawback, specifically the required
user-side computation is growing with the growth of the complexity of the
access policy. We provide a concept, called Formal Language Identity-
based Cryptography, which gives a solution to this problem, making fine-
grained cryptographic access control practical.

1. Introduction

Identity-based Cryptography (IBC) is a unique branch of public-key cryp-
tography. This uniqueness lies in the fact that the public key in these systems
is a known identifier string of an entity. One may think about an email ad-
dress, a username, or a phone number. The concept behind IBC was coined
by Adi Shamir [20]. The core idea of IBC was to simplify the certificate
management and eliminate the need for certification authorities, that is why
the known identifier strings as public keys came handy. In the public key in-
frastructure scenario, public keys and user identities are bound together with
certificates. With IBC, however, there is no need for such certificates, since the
public key corresponds directly to the user identity. However, at this point,
Shamir could not build an encryption scheme. The first break-through was the
Boneh-Franklin Identity-based Encryption system [3], having the novelty of
using the operation of pairing to achieve the needed performance for practical
use. This step forward opened the gate for this branch of cryptography.

Furthermore, there is an expansion of the idea that the public key may
contain more information and domain-specific data, not just the identity of the

2020 Mathematics Subject Classification. 94A62, 68P25.
Key words and phrases. Identity-based Cryptography, Attribute-based Cryptography,

access control, proxy signature.

143



144 Á. VÉCSI AND A. PETHŐ

user, for example, the current date. This extension enables a broad-spectrum
of use-cases [21,23]. Although, one limitation of IBC is that the public key of
the receiver must be bit-accurate to the encryption key to be able to extract
the belonging private key. Consequently, IBC is not able to handle finely
granulated policies as keys.

In multi-user computer systems, it was always necessary to define different
levels of access, so the users are only authorized to the proper resources. It is
handled by access control services, which mostly are policy-based. The owner
of the resources defines and manages authorization policies that specify which
user or which role has access. One of the most dominant multi-user systems is
cloud computing, which is applied in many commercial fields with numerous
users. The fast growth of cloud service providers makes it mandatory to
maintain scalable, reliable, and flexible access control.

There are several attempts to implement flexible and fine-grained access
control mechanisms [4, 11], but security is still one of the main issues. There
are two aspects of security issues. One is the data breach caused by hacking
or identity management issues [16], what is preventable with secure authen-
tication protocols [9, 10]. The other is that it is necessary to assume that
the providers are honest but curious, which means they may try to peek into
the user data to extract information without the knowledge of the user. Be-
cause of this issue, cloud service providers can not be regarded as trustworthy
entities. A solution to this problem seems to be the usage of cryptographic
methods to outsource encrypted data only.

The most convenient option is Attribute-based Encryption [2,7], to handle
the encryption and the access control simultaneously. This type of cryptosys-
tem uses an access policy to determine which ciphertexts a user able to de-
crypt. The core idea is to treat the keys as expressions, which contain logical
operators between attributes and values, thereby the keys are more flexible
and capable to define fine-grained access policies. Although, a significant
drawback of the ABC schemes is that they require more computation on the
user-side (encryption and decryption functions) with the growth of the com-
plexity of the access policy. This in turn affects the usability of these schemes,
since several potential applications target devices with limited computational
power.

With encryption, the user can protect its data, but there is still the issue
of placing unauthentic data to the cloud servers. Most of the solutions to
this problem require a lot of additional client-side computations to provide
authentication, which in most cases, especially for mobile data owners is im-
practical. An obvious solution to this is the proxy signature [13], which allows
the delegation of the signing operations to computationally powerful entities,
providing authenticity to the data with signature.

Our motivation was to design a cryptographic system with the possibility
of fine-grained access policy definition, but without the performance drawback



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 145

on the client-side, to provide a cryptographic access control method, which is
usable in practice.

The model we designed is based on IBC, thus we inherit a system where
every entity has a public key, which is an identity and some linked domain-
specific data. In the standard IBE model, this public key is also the encryption
key. In our scheme, however, that is not the case. The main ideas of our
model are the introduction of an authorization formula, which is characterized
by the encryptor entity as an access policy, and that the public keys are
used as authorization keys. Hence everyone whose public key satisfies the
authorization formula is authorized to extract the belonging decryption key.
This inspection is handled by the trusted Private Key Generator, which is
also inherited from IBE. The keys used for encryption and decryption are still
valid IBE key pairs.

Furthermore, to utilize the potential of the authorization formula, we use
formal languages. The formula is built from attribute constraints, concate-
nated with logical operators. Each attribute constraint comprises a formal
language, defining which entities may have access and which may not. Hence,
the scheme provides robust tools for defining a fine-grained access policy tar-
geting an arbitrary group of entities.

Using this idea, we built encryption and multi-proxy signature schemes to
provide a solution to both of the mentioned cloud computing issues, namely
the data leakage and data authenticity. Our concepts are built on secure
Identity-based Encryption (IBE) and Identity-based Signature (IBS). Besides
those, the only operations required are some formal language operations and
the evaluation of logical formulas. Thus the level of security of our schemes
is the same as the used IBE and IBS.

The rest of the paper is organized as follows. Section 2 contains some
general definitions about Identity-based Cryptography, Proxy Signature and
formal languages. The related work is found in Section 3. Afterward, Section
4 presents some necessary definitions and our schemes. Section 5 outlines the
performance of our concept, compared to the BSW-ABE [2]. Finally, Section
6 gives a conclusion.

2. Preliminaries

2.1. Identity-based Cryptography. In the Identity-based Cryptography model,
there are two main roles distinguished by their purpose. There are the user
entities (encryptors, decryptors, signers and verifiers) and a trusted third
party called Private Key Generator (PKG). The PKG generates the private
key for every request, based on the user ID, and some system parameters, and
also on the master secret, which is only known by the PKG.

An IBE scheme consists of four algorithms:



146 Á. VÉCSI AND A. PETHŐ

• Setup: Based on the given security level parameter λ, this function
outputs the public parameters of the system params and a master
secret ms.

• Extract: Receives a public key (user ID) id and the master secret ms
and outputs a private key pkid.

• Encrypt: Given the public parameters of the system params, a public
key id and a message m, the function outputs a ciphertext c.

• Decrypt: Receives a private key pkid and a ciphertext c and outputs
the plain message m.

The Encrypt and Decrypt functions form the inverse of each other, which
means if there is a message space M , then

∀m ∈M : Decrypt(Encrypt(m, id), pkid) = m.

The IBS model is also similar, just instead of the Encrypt and Decrypt
functions, it consists a Sign and a Verify function.

2.2. Proxy signature. The idea of proxy signature schemes is to delegate the
task of digital signature creation. The main reasons for this solution are
that the original signer may be offline regularly, which means he/she cannot
perform this task, or the original signer does not have enough computational
power. This way the task can be delegated to a proxy signer, who helps out
the original signer with his computational power and availability.

There are several types of proxy signatures based on the delegation of
the signing key. The main types are full delegation, partial delegation, and
delegation by warrant. I would also mention another useful type, namely
partial delegation with warrant [12].

Let us say Alice is the original signer and Bob is the proxy signer. In the
case of full delegation, Alice’s secret key is given to Bob. So Bob has the same
capabilities as Alice. In practice, this method is impractical and insecure,
because the signatures created by Bob and Alice, are indistinguishable and
Bob is not limited in any way.

In partial delegation, Bob receives a signing key which differs from Alice’s.
Hence the signatures created by Bob are different from Alice’s. With this, the
signatures are distinguishable, but there is still no restrictions on Bob’s signing
capability.

The weakness of no limitation is eliminated by the delegation by warrant
technic, because in the warrant Alice specifies, what kinds of messages are
allowed to sign by Bob. The warrant may contain any kind of description
about the limitations of Bob and it is signed by Alice. The warrant also
contains its valid period.

While the key revocation is not a problem in the case of delegation by
warrant, because of the included validity period, it is for the partial delega-
tion, which requires a revocation method, which makes those schemes more



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 147

difficult and complicated. Here comes to the picture, the partial delegation
with warrant, which is the combination of the last two technics.

2.3. Formal Language. Formal language is a powerful and flexible tool to
define the required set of strings. Here we collect the basic definitions, which
help to the understanding of the paper. You find a good overview of the
classical theory of formal languages in Salomaa’s work [19].

Definition. Alphabet. A finite but nonempty set of symbols (or letters).
Alphabets are usually denoted as Σ.

Definition. Word. A finite sequence of symbols chosen from a given
alphabet Σ. The set of all words that can be formed using symbols from Σ is
denoted as Σ∗.

Definition. Word over alphabet. If we form a word using symbols
from a given alphabet Σ, then this word is said to be a word over Σ.

Definition. Language. Given an alphabet Σ, a language L is a set of
words over Σ: L ⊆ Σ∗.

Definition. Grammars. A finite set of rewrite rules generating words
over some alphabet. Grammars are usually denoted as G in which the language
generated by the grammar is written as L(G).

3. Related Work

There are multiple directions and attempts to achieve a broadcast type of
encryption in the Identity-based and Attribute-based domain. Some of them
even focus on the fine-grained definition of the target group.

The first step towards was the Fuzzy-IBE [17]. The main novelty of
this scheme found in the public keys, which are not just strings, but sets of
attributes. With this concept, it could add fuzziness into the system in a way
that it requires only a certain amount of overlap between the encryptor key
and the public key of the decryptor, not a total bit accuracy. The advantage
of this system is much faster group encryption, but it comes with runtime
drawbacks in every other function (setup, extract, and decrypt).

Then came the general idea with the definition of a big target set of
entities, who are aimed at the broadcast encryption [5, 18, 25]. The research
of this type of scheme is focusing on constant-size ciphertext and private keys
regardless of the size of the target group [5, 25], which is an important area,
but the performance of the encryption and/or the decryption functions is
highly dependent on the size of the target group. Also, the maintenance of
the target group might be a time-costly process, if the group is big.

Another direction towards the fine-grained definition of the encryption
targets is Identity-based encryption with wildcards (WIBE) [1]. The idea of
this attempt is that the encryption key is a pattern, which is treated as a



148 Á. VÉCSI AND A. PETHŐ

vector of bitstrings and wildcards. Let P be the encryption key, then P =
(P1, ..., Pl) ∈ ({0, 1}∗ ∪ {∗})l. Here the wildcard character (∗) represents an
“any kind of bitstring” part in the key.

Example 3.1. *@cs.*.edu

The example 3.1 pattern represents that anyone who has a computer
science educational email address in that form can decrypt the encrypted
document. A valid email address is name@cs.unideb.edu. This scheme allows
us to use a very flexible encryptor key, although if too many wildcards are
added, it slows down excessively.

Traditionally identification and authorization are different tasks, the first
is cryptographic, while the second is administrative. The concept of the Fuzzy-
IBE that the public keys are sets of attributes started a new branch called
attribute-based cryptography, which serves, among others, with a unique so-
lution for identification and authorization. This branch follows the same idea,
but with an extension of it, with building an access-tree to the keys. In the
leaf nodes, placed the attributes and the other nodes are logical gates of AND,
OR operations. There are two main types of attribute-based cryptography,
key-policy [7], and ciphertext-policy [2]. The difference is located in which
data is associated with policies and which with sets of descriptive attributes.
The key-policy is working with ciphertexts associated with sets of attributes
and the user public key with policies, while ciphertext-policy is the opposite.
There are also more advanced attribute-based cryptography schemes, which
allow more flexible access-trees, with the occurrence of negation [14,15,22] and
multi-use of attributes [22]. However, a significant drawback of the Attribute-
based Cryptography schemes is that they require more computation on the
user-side functions (encryption and decryption), with the growth of the com-
plexity of the access policy. This directly affects the usability of these schemes
since several potential applications target devices with limited computational
power. The authors in the work [22] were able to create a scheme that man-
aged to fix this issue, but only for decryption, and only if the access-tree is
built with AND and OR gates and does not contain multi-use, nor negation
of the same attribute. It is a step further, but it involves less access-policy
flexibility.

4. Formal Language Identity-based Cryptography

Now, we introduce our concept to fine-grained cryptographic access con-
trol. These schemes provide an especially flexible access policy definition,
with the usage of formal languages and without the performance drawback of
the client-side algorithms, making them effective in practice.

4.1. Definitions. First, we define the notions needed for our schemes.



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 149

Definition. Attribute: Let
∑

be an alphabet specified by the domain
our schemes are applied in (most commonly the alphabet of a natural lan-
guage). An attribute a is a pair (Na, La), where Na is a word over

∑
for the

name of the attribute and La is the formal language containing all the possible
values of the attribute. The universe of the attributes U is also limited only
by the domain.

Definition. Property: A property p = (Np, Vp) defines actual values
of an entity regarding to the attribute a, if Np is a word over

∑
such that

Np = Na and Vp is a formal language such that Vp ⊆ La.

Definition. Attribute constraint: Let a = (Na, La) be an attribute.
Γ = (NΓ, LΓ) is an attribute constraint for a, if NΓ = Na and LΓ ⊆ La, where
LΓ is the formal language, which contains the accepted property values.

Definition. Authorization formula: An authorization formula Υ is
a logic formula that contains attribute constraints and boolean operators.

Definition. Public key: Let Ω be the set of entities and P the set of
properties in a given domain. In our scheme PKα is the public key of an entity
α ∈ Ω, if PKα ⊆ P and ∀β ∈ Ω, ∃ IDα ⊆ PKα, such that IDα \ IDβ 6= ∅.
IDα is called the identifier of α.

The schemes are based on secure Identity-based Encryption (IBE) and
Identity-based Signature (IBS). To be clear with the notations, and the pur-
pose of the algorithms, here we will redefine the IBE algorithms already men-
tioned in section 2 and define the IBS algorithms, which will be referred to in
our schemes.

An IBE scheme is usually specified by four algorithms: {SetupIBE, Ex-
tractIBE, EncryptIBE, DecryptIBE}, where

• SetupIBE
Initializes the system by generating its parameters and the master-

key which will be used for the users private key generation.
• ExtractIBE

Generates a private key based on the requesting users identity.
Performed by the private key generator.

• EncryptIBE
Encrypts the given message.

• DecryptIBE
Decrypts the given ciphertext.

An IBS scheme is usually specified by four algorithms: {SetupIBS, Ex-
tractIBS, SignIBS, VerifyIBS}, where

• SetupIBS
Initializes the system by generating its parameters and the master-

key which will be used for the users private key generation.



150 Á. VÉCSI AND A. PETHŐ

• ExtractIBS
Generates a private key based on the requesting users identity.

Performed by the private key generator.
• SignIBS

Signs the given message.
• VerifyIBS

Verifies the given signature.

4.2. Formal Language Identity-based Encryption. In this subsection, we pro-
vide a comprehensive description of FLIBE by presenting its algorithms. For
a better understanding of the idea, we show how it works through a simple
example and a flow chart of the system’s operation.

There are three types of participants in the scheme. The sender (α) who
encrypts a message, the receiver (β) who decrypts a cipher, and the private
key generator (PKG).

• Setup Input: inherited from the used IBE and IBS schemes.
Calls the SetupIBE and SetupIBS algorithms.

• SignFormula Input: An authorization formula Υ, the private key of
the sender SKα (which was generated with the ExtractIBS algorithm)
and inheritance from the used IBS scheme.

Generates the digital signature σΥ by calling the SignIBS function.
• Evaluate Input: An authorization formula Υ and the public key of
the receiver PKβ .

First, the algorithm checks for every attribute constraint in Υ, if
PKβ satisfies it. So, if the current attribute constraint is Γ = (NΓ, LΓ)
and ∃ p ∈ PKβ property, such that Np = NΓ and Vp ∩ LΓ 6= ∅, then
PKβ satisfies Γ, else not. After the check is finished, the constraint is
replaced with a boolean value in the formula and once all the checks
are done, the last step is the evaluation of the authorization formula,
which by now only contains boolean values and boolean operators.

• GenerateEncryptionKey Input: The public key of the sender PKα.
The function creates a property gen, where Vgen is a unique gener-

ated value. After that it appends gen to PKα, resulting in a generated
encryption key PKαgen .

• Extract Input: An authorization formula Υ, a digital signature σΥ of
it, the public key PKα of the signature creator (the sender), the public
key PKβ of the extractor (the receiver), the encryption key PKαgen

and inheritance from the used IBE scheme.
The PKG checks if Υ is authentic, with the verification of σΥ.

After that it calls the Evaluate function. If it results with a positive
output, the PKG generates the SKαgen private key by calling the Ex-
tractIBE algorithm to the PKαgen encryption key, and outputs it to
the extractor (β).



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 151

• Encrypt Input: An encryption key PKαgen , a message M and inher-
itance from the used IBE scheme.

Creates a ciphertext C by calling the EncryptIBE function.
• Decrypt Input: A decryption key SKαgen , a ciphertext C and inher-

itance from the used IBE scheme.
Calls the DecryptIBE function to achieve the decryption.

Figure 1 shows the full process of the scheme.

Figure 1. Formal Language Identity-based Encryption flow
diagram

The scheme starts with an initialization function, called Setup. Its re-
sponsibility is to generate the public parameters and the master secret(s) of
the used identity-based cryptography schemes.



152 Á. VÉCSI AND A. PETHŐ

The next step gives the essence of the scheme. Before the encryption, it
is required to obtain an authorization formula. It is a logic formula that con-
tains attribute constraints and boolean operations. The attribute constraint
defines which are the required values for a given attribute, these combined
with the logic operators, allows the definition of fine-grained access policy. In
summary, with the authorization formula, the sender defines which entities
are authorized to access the decryption key for the encrypted document.

Example 4.1.

(”e-mail”, .*@company\.com)
AND

(”job”, Lead developer, Chief Technology Officer)

As the example 4.1 shows, there is an authorization formula containing
two attribute constraints combined with an AND operation. The first con-
straint is given with a regular expression and means an email address ending
with @company.com is required. The second is given with an enumeration
authorizing entities, with a property called job of which value equals one of
the included values.

After the formula is created, the sender (α) creates a digital signature
with a secure IBS. It is required to prevent the forge of the authorization
formula.

In our scheme the public keys of the receivers are only used for authoriza-
tion, the encryption is done with a generated key, which is the sender’s public
key (PKα) expanded with a property with a unique value. This is in direct
connection with the authorization formula, in the way that, if the formula
did not change, there is no need to generate a new key, in this situation it is
reusable. However, if the formula changed, it is of course required to gener-
ate a new key. Besides, the property values of the decryptors are constantly
changing, which might be a problem, if one had access to the private key once,
he/she can decrypt every cipher encrypted with the same key. In conclusion,
it is recommended to operate with single-use encryption keys if the domain
requires that. Also, since the encryption key is an expansion of PKα, which
is the verification key for the formula’s digital signature, this guarantees for
the PKG that the formula and the signature are created by α.

As Figure 1 shows after this step, the sender entity is ready to encrypt
the message, with that finishing his part of the scheme.

Before the receiver could decrypt the ciphertext, it needs to do the Extract
process to obtain the decryption key. Once it has finished, it can start the
decryption.

Security. The security of our scheme is highly dependent on the used IBE
and IBS schemes, so we assume they are secure. This means that the digital
signature for the authorization formula Υ is correct, also the decryption key



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 153

SKαgen for the generated encryption key PKαgen cannot be guessed and the
ciphertext is secure to the chosen ciphertext attack.

The Evaluate function should be secure, if Υ is not vulnerable, because,
in the standard model, the adversary cannot extract a decryption key with
a fitting public key. So we assume if the adversary tries to extract with any
public key to the authorization formula Υ, the formula will not be satisfied.

Besides those, the only attackable surface is forging a new authorization
formula. Since the used IBS scheme is secure, the adversary cannot replace the
signed document without creating a new digital signature, also cannot extract
and forge the digital signature of the original signer (α) for Υ. Furthermore,
the adversary has no chance to replace Υ and its digital signature σΥ, because
the encryption key PKαgen includes the signature verification key PKα, so
the deception would be obvious for the PKG.

Based on these, the scheme should be secure.

4.3. Formal Language Identity-based Proxy Signature. Fine-grained crypto-
graphic access control is not restricted to encryption only, another obvious
area is the proxy signature. With the definition of a policy, the users are able
to automate the authorization method of proxy signers. It allows a higher
level of unavailability for the user, which is one reason for the existence of
this branch of cryptography, providing availability, through the proxy signers
and not the original signer. Here we introduce our scheme for this purpose.

There are four types of participants in the scheme. The original signer
(α) who authorizes proxies to sign documents on behalf of him, the proxy (β)
who signs documents on behalf of α, the private key generator (PKG) and
finally the verifier who checks the authenticity of the signature created by β.

• Setup Input: inherited from the used IBS scheme.
Calls the SetupIBS algorithm.

• SignFormula Input: An authorization formula Υ and the private key
of the original signer SKα (which was generated with the ExtractIBS
algorithm) and inheritance from the used IBS scheme.

Generates the digital signature σΥ by calling the SignIBS function.
• Evaluate Input: An authorization formula Υ and the public key of

the proxy PKβ .
First, the algorithm checks for every attribute constraint in Υ, if

PKβ satisfies it. So, if the current attribute constraint is Γ = (NΓ, LΓ)
and ∃ p ∈ PKβ property, such that Np = NΓ and Vp ∩ LΓ 6= ∅, then
PKβ satisfies Γ, else not. After the check is finished, the constraint is
replaced with a boolean value in the formula and once all the checks
are done, the last step is the evaluation of the authorization formula,
which by now only contains boolean values and operators.



154 Á. VÉCSI AND A. PETHŐ

• Extract Input: An authorization formula Υ, a digital signature σΥ of
it, the public key PKα of the original signer, the public key PKβ of
the proxy and inheritance from the used IBS scheme.

The PKG checks if Υ is authentic, with the verification of σΥ.
After that it calls the Evaluate function. If it results with a posi-
tive output, the PKG creates PKαβΥ with the concatenation of PKα

and PKβ and Υ and generates the private key SKαβΥ by calling the
ExtractIBS function on it and outputs the private key.

• Sign Input: The private key SKαβΥ, a message M and inheritance
from the used IBS scheme.

Creates a digital signature σM of M by calling the SignIBS func-
tion.

• Verify Input: An authorization formula Υ, a digital signature of the
authorization formula σΥ, the public key of the original signer PKα, a
message M , a digital signature σM , the public key of the proxy PKβ

and inheritance from the used IBS scheme.
The verifier checks if Υ is authentic, with the verification of σΥ.

After that it calls the Evaluate function. (If Υ contains appended
warrant information and descriptions, the verifier checks that too.)
If the checks were correct, the verifier inspects if σM is authentic by
calling the VerifyIBS function.

Figure 2 shows the complete process of the scheme.
The flow of the FLIBPS and FLIBE are very similar. The only difference

is the creation of the public key, which is part of the extraction function in
the case of the FLIBPS.

With a slight modification on the authorization formula, it could fill the
role of the warrant too, which would provide a partial delegation with a war-
rant proxy signature scheme.



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 155

Figure 2. Formal Language Identity-based Proxy Signature
flow diagram

5. Performance

We created a proof of concept implementation of the Formal Language
Identity-based Encryption scheme based on the CryptID library [24], which
is available on GitHub1. It is a naive approach built on the Boneh-Franklin
Identity-based Encryption [3] and the Hess Identity-based Signature [8], does
not include any optimization or multi-thread implementation, however, it may
give a better understanding of our concept.

1https://github.com/cryptid-org/cryptid-native



156 Á. VÉCSI AND A. PETHŐ

Besides the implementation of the scheme, we created benchmark tests
too, which let us compare the performance of FLIBE and BSW-ABE [2], giv-
ing clear proof that FLIBE is more scalable. The benchmark was created
with Google benchmark [6]. The measurement process included five repeti-
tions, where every repetition consists of twenty iterations. The final results
are the mean values of the runs.

Figure 3. Performance comparison of FLIBE and BSW-ABE

In Figure 3 the x-axis represents the number of attributes included in
the access policies and the y-axis is the runtime in milliseconds. The number
of attributes is not knitted in the tested schemes, chosen like this for our
convenience. The diagram shows that in the case of BSW-ABE the amount
of computation is highly dependent on the number of attributes, also FLIBE
is not affected by that, which makes the latter efficiently scalable and practical
even in the case of complex access policies. As a remark, the FLIBE decrypt
function has almost the same runtime as the encrypt function, this is why it
is “hiding” on the diagram and only a little bit visible.

We also performed a test on FLIBE out of curiosity, where the number of
attributes was set to millions. The result was that the performance was still
not affected, stayed “constant”.

These performance tests point out that we reached our goal of reducing
the client-side computation, making the schemes practical, but it comes with a
major drawback. The extract function, which is a server-side function used by
the PKG. The minor addition to its calculations is the authorization formula
verification and evaluation. The actual drawback comes from the fact that the



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 157

decryptors are using a private key created from a generated encryption key,
which in practice cannot be a long-term key due to the continuous changes
in the decryptor’s property values (which is domain-specific). We think that
the single-use encryption keys will be the most common use case. Therefore,
the decryptors have to use the extract method regularly.

6. Conclusion

In this paper, we investigated the importance of fine-grained crypto-
graphic access control today, because of the growth of the digital economy.
We presented the current options and ideas for that kind of cryptographic
schemes, with their benefits and drawbacks. We pointed out, that a general
problem of these schemes is that the client-side computation is growing with
the growth of the access policy, which makes most of them impractical.

After the examination of the current solutions, we presented our con-
cepts, called Formal Language Identity-based Encryption and Formal Lan-
guage Identity-based Proxy Signature. Our main focus was to eliminate the
extra computation from the clients because in general, they have less com-
putational power. We managed to achieve this with minimal growth on the
server-side. The proof of concept implementation and benchmark tests are
showing it clearly. Furthermore, we managed to reach it in a way, that our
schemes are providing a more flexible access policy definition, with the use
of formal language. These schemes seem to make fine-grained cryptographic
access control practical.

Acknowledgements.
This work was partially supported by the construction EFOP-3.6.3-

VEKOP-16-2017-00002. The project was supported by the European Union,
co-financed by the European Social Fund. The research was partially sup-
ported by the 2018-1.2.1-NKP-2018-00004 Security Enhancing Technologies
for the Internet of Things project.



158 Á. VÉCSI AND A. PETHŐ

References
[1] M. Abdalla, D. Catalano, A. W. Dent, J. Malone-Lee, G. Neven and N. P. Smart,

Identity-based encryption gone wild, in: Automata, Languages and Programming, Lec-
ture Notes in Comput. Sci. 4052, Springer, Berlin, 2006, pp. 300–311.

[2] J. Bethencourt, A. Sahai, and B. Waters, Ciphertext-policy Attribute-based encryption,
in: 2007 IEEE Symposium on Security and Privacy (SP ’07), IEEE, 2007.

[3] D. Boneh and M. K. Franklin, Identity-based encryption from the Weil pairing, in: Ad-
vances in Cryptology – CRYPTO 2001, Lecture Notes in Comput. Sci. 2139, Springer,
Berlin, 2001, pp. 213–229.

[4] F. Cai, N. Zhu, J. He, P. Mu, W. Li and Y. Yu, Survey of access control models and
technologies for cloud computing, Cluster Computing 22 (2018), 6111–6122.

[5] C. Delerablée, Identity-based broadcast encryption with constant size ciphertexts and
private keys, in: Advances in Cryptology – ASIACRYPT 2007, Lecture Notes in Com-
put. Sci. 4833, Springer, Berlin, 2007, pp. 200–215.

[6] Google Benchmark – A microbenchmark support library, 2019.
https://github.com/google/benchmark.

[7] V. Goyal, O. Pandey, A. Sahai and B. Waters, Attribute-based encryption for fine-
grained access control of encrypted data, in: Proceedings of the 13th ACM conference
on Computer and communications security – CCS ’06, ACM Press, 2006.

[8] F. Hess, Efficient identity based signature schemes based on pairings, in: Selected
Areas in Cryptography, Lecture Notes in Comput. Sci. 2595, Springer, Berlin, 2003,
pp. 310–324.

[9] A. Huszti and N. Oláh, A simple authentication scheme for clouds, in: 2016 IEEE
Conference on Communications and Network Security (CNS), IEEE, 2016.

[10] A. Huszti and N. Oláh, Security analysis of a cloud authentication protocol using
applied pi calculus, International Journal of Internet Protocol Technology 12.1 (2019),
pp. 16–25.

[11] I. Indu, P. R. Anand, and V. Bhaskar, Identity and access management in cloud
environment: Mechanisms and challenges, Engineering Science and Technology, an
International Journal 21.4 (2018), 574–588.

[12] S. Kim, S. Park and D. Won, Proxy signatures, revisited, in: Information and Com-
munications Security, Lecture Notes in Comput. Sci. 1334, Springer, Berlin, 1997, pp.
223–232.

[13] M. Mambo, K. Usuda and E. Okamoto, Proxy signatures: Delegation of the power to
sign messages, IEICE Trans. Fundamentals, A 79.9 (1996), 1338–1354.

[14] T. Okamoto and K. Takashima, Fully secure unbounded inner-product and Attribute-
based encryption, in: Advances in Cryptology – ASIACRYPT 2012, Lecture Notes in
Comput. Sci. 7658, Springer, Heidelberg, 2012, pp. 349–366.

[15] R. Ostrovsky, A. Sahai and B. Waters, Attribute-based encryption with non-monotonic
access structures, in: Proceedings of the 14th ACM conference on Computer and
communications security – CCS ’07, ACM Press, 2007.

[16] R. Pompon, Is the Cloud Safe? Part 2: Breach Highlights for the Past
3 Years, Dec. 2019. https://www.f5.com/labs/articles/threat-intelligence/is-
the-cloud-safe--part-2--breach-highlights-for-the-past-3-years.

[17] A. Sahai and B. Waters, Fuzzy Identity-based encryption, in: Advances in Cryptology
– EUROCRYPT 2005, Lecture Notes in Comput. Sci. 3494, Springer, Berlin, 2005,
pp. 457–473.

[18] R. Sakai and J. Furukawa, Identity-based broadcast encryption, IACR Cryptol. ePrint
Arch. 2007:217, 2007.

[19] A. Salomaa, Formal languages, Academic Press, New York, 1973.



FORMAL LANGUAGE IDENTITY-BASED CRYPTOGRAPHY 159

[20] A. Shamir, Identity-based cryptosystems and signature schemes, in: Advances in Cryp-
tology – CRYPTO 84, Lecture Notes in Comput. Sci. 196, Springer, Berlin, 1985, pp.
47–53.

[21] C. C. Tan, H. Wang, S. Zhong and Q. Li, IBE-Lite: A lightweight Identity-based
cryptography for body sensor networks, IEEE Transactions on Information Technology
in Biomedicine 13.6 (2009), 926–932.

[22] J. Tomida, Y. Kawahara and R. Nishimaki, Fast, compact, and expressive Attribute-
based encryption, in: Public-key cryptography – PKC 2020. Part I, Lecture Notes in
Comput. Sci. 12110, Springer, Cham, 2020, pp. 3–33.

[23] Using MIKEY-SAKKE: Building secure multimedia services, https://www.ncsc.gov.
uk/whitepaper/using-mikey-sakke--building-secure-multimedia-services.

[24] Á. Vécsi, A. Bagossy and A. Pethő, Cross-platform Identity-based cryptography using
WebAssembly, Infocommunications journal 11.4 (2019), pp. 31–38.

[25] L. Zhang, Y. Hu and Q. Wu, Adaptively secure identity-based broadcast encryption
with constant size private keys and ciphertexts from the subgroups, Math. Comput.
Modelling 55 (2012), pp. 12–18.

Kriptografija formalnog jezika temeljena na identitetu

Ádám Vécsi i Attila Pethő
Sažetak. Brzi rast digitalne ekonomije čini kontrolu pristupa

sve izazovnijom. Jedno od najviše pogodenih područja je računal-
stvo u oblaku, koje iz sigurnosnih razloga zahtijeva kriptografsku
kontrolu pristupa. Trenutno je najbolje rješenje za to upotreba
kriptografije temeljene na atributima, koja omogućuje definiranje
pravila pristupa, na temelju atributa entiteta. Nažalost, ova
familija shema ima značajan nedostatak, budući da potrebno
računanje od strane korisnika raste s rastom složenosti kontrole
pristupa. U ovom radu, dajemo koncept, nazvan kriptografija
formalnog jezika temeljena na identitetu, koji daje rješenje ovog
problema, čineći kriptografsku kontrolu pristupa praktičnom.

Ádám Vécsi
Department of Computer Science
University of Debrecen
Kassai str. 26
H-4028 Debrecen, Hungary
E-mail: vecsi.adam@inf.unideb.hu

Attila Pethő
Department of Computer Science
University of Debrecen
Kassai str. 26
H-4028 Debrecen, Hungary
E-mail: Petho.Attila@inf.unideb.hu

Received: 31.10.2020.
Revised: 11.5.2021.
Accepted: 18.5.2021.


