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1. Introduction

In probability theory, the study of stochastic partial differential equations (SPDE) is
an important topic of research. Precisely, the linear stochastic heat equation driven
by white noise is one of the most studied SPDEs. This is due to its mathematical
simplicity and its application in several areas. The solution to this stochastic partial
differential equation has been of great interest to researchers in the last years. It is
known that a mild solution exists if and only if the spatial dimension is one, it is
also Hölder continuous of order 0 < δ < 1/4 with respect to its time coordinate and
of order 0 < δ < 1/2 with respect to its space coordinate and it has a close relation
with the fractional Brownian motion and the bifractional Brownian motion, among
other interesting properties (for more details, see section 2.1 [16]).

Spatial and temporal quadratic variations of this process can be found in [17], and
in [15], respectively. In relation to parameter estimation for the heat equation with
white noise using variations, we can mention [13, 19, 2] and [3], and the references
therein. Other approaches to the problem of the limit behavior of variations could
be used (see, for example, [4, 5, 6, 19]).
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It is known that the covariance of this process is stationary with respect to the
space variable, but dependent on time. Thus, for the purpose of observing the
influence of the time variable in the behavior in space of higher variations of this
process, a new parameter α must be defined. This new parameter allows us to
consider the behavior of the variation when the time variable is either fixed or big
or small. This approach has been introduced in [8], based on the tools developed in
[12], to study the influence of the time variable on the spatial quadratic variation of
the solution to the heat equation.

The aim of this paper is to study higher order spatial variations of the solution
to the linear heat equation driven by space-time white noise. Precisely, we will focus
on the Hermite spatial variations with moving time.

For every N ≥ 1 and for every i = 0, . . . , N , we denote xi =
i
N . So, the Hermite

variation statistic with moving time, over the unit interval [0, 1], is defined in the
following way:

VN =

N−1∑
i=0

Hq

 u(Nα, xi+1)− u(Nα, xi)√
E (u(Nα, xi+1)− u(Nα, xi))

2

 ,

where u is the solution to the linear heat equation, Hq is a Hermite polynomial of
order q and α ∈ R.

We prove that, under suitable normalization depending on α, this sequence con-
verges in law to a normal random variable. More precisely, we have

d(FN ,N (0, 1)) ≤ C
1√
N
.

Here, FN = VN/vN with v2N = E(V 2
N ), where d could be either the Kolmogorov,

the Wasserstein, or total variation distance. Furthermore, we prove an almost sure
central limit theorem for FN .

We organized our paper as follows. In Section 2 we give a brief introduction
to Malliavin calculus and the heat equation driven by space-time white noise. In
Section 3, we introduce Hermite variations and estimate their second moment. In
Section, 4 we study the asymptotic distribution of Hermite variations. Finally, in
Section 5, an almost sure central limit theorem is obtained.

2. Preliminaries

This section is dedicated to presenting some definitions and results that are used in
this paper, related to Malliavin calculus and the heat equation driven by space-time
white noise.

2.1. Elements of Malliavin calculus

Here, we briefly recall some elements of stochastic analysis; for an in-depth introduc-
tion we refer the reader to [11]. Consider (H, ⟨., .⟩H) a real separable Hilbert space
and (B(φ), φ ∈ H) an isonormal Gaussian process on a probability space (Ω, F, P ),
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which is a centered Gaussian family of random variables such that E (B(φ)B(ψ)) =
⟨φ,ψ⟩H, for every φ,ψ ∈ H. Denote by Iq the qth multiple stochastic integral with
respect to B. This Iq is actually an isometry between the Hilbert space H⊙q (a sym-
metric tensor product) equipped with the scaled norm 1√

q!
∥ · ∥H⊗q and the Wiener

chaos of order q, which is defined as the closed linear span of random variables
Hq(B(φ)), where φ ∈ H, ∥φ∥H = 1 and Hq is the Hermite polynomial of degree
q ≥ 1 defined by:

Hq(x) =
(−1)q

q!
exp

(
x2

2

)
dq

dxq

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as:

E
(
Ip(f)Iq(g)

)
=

{
q!⟨f̃ , g̃⟩H⊗q if p = q

0 otherwise,
(1)

for p, q ≥ 1, f ∈ H⊗p and g ∈ H⊗q,
It also holds that

Iq(f) = Iq
(
f̃
)
,

where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xq) =
1

q!

∑
σ∈Sq

f(xσ(1), . . . , xσ(q)).

We recall that any square-integrable random variable F , which is measurable
with respect to the σ-algebra generated by B, can be expanded into an orthogonal
sum of multiple stochastic integrals:

F =
∑
q≥0

Iq(fq);

here the series converges in L2(Ω)-sense, the kernels fq, belonging to H⊙q, are
uniquely determined by F and I0(f0) = E (F ).

We denote by D the Malliavin derivative operator that acts on smooth functions
of the form F = g(B(φ1), . . . , B(φn)), where n ≥ 1, g : Rn → R is a smooth function
with compact support and φi ∈ H, and that is defined as follows:

DF =

n∑
i=1

∂g

∂xi
(B(φ1), . . . , B(φn))φi.

The operator D is continuous from Dα,p (H) into Dα−1,p (H) .

We will need a general formula for calculating products of Wiener chaos integrals
of any order p, q, so, for any symmetric integrand f ∈ H⊙p and g ∈ H⊙q, it is:

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g). (2)
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If H is the space L2([0, T ]), then the contraction f ⊗r g is the element of
H⊗(p+q−2r) defined by:

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=

∫
[0,T ]r

f(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur)du1 . . . dur.

We will use the following result that characterizes the convergence in the distri-
bution of a sequence of multiple integrals toward the Gaussian law (see [10] or [9]
for details).

Theorem 1. Let Iq(f) be a multiple integral of order q ≥ 1. Assume E[Iq(f)
2] = σ2.

Then

d(Iq(f),N (0, σ2)) ≤ c

√√√√V ar

[(
1

q
∥DIq(f)∥2H

)2
]
,

where D stands for the Malliavin derivative with respect to u and c = 1/σ2, when d
is the Kolmogorov distance, and c = 1/σ, when d is the Wasserstein distance, and
finally c = 2/σ2, when d is the total variation distance.

2.2. Heat equation with space-time white noise

In this subsection, we recall some known facts concerning the solution to the linear
stochastic heat equation driven by white noise in time and space (our main reference
is [16]).

The linear stochastic heat equation is given by the following expression:

ut =
1

2
∆u+ Ẇ (3)

u(0, x) = 0, for every x ∈ R;

here ∆ is the Laplacian on R, ut := ∂u
∂t and W = {W (t, A) : t ≥ 0, A ∈ Bb(R)} is

space-time Gaussian white noise, that is, W is a Gaussian process with mean zero
and covariance given by

E(W (t, A)W (s,B)) = (t ∧ s)λ(A ∩B), s, t ≥ 0,

where λ denotes the Lebesgue measure.
Process u(t, x) is the solution to (3) (in the mild sense) if

u(t, x) =

∫ t

0

∫
R
G(t− s, x− y)W (ds, dy), x ∈ R, t ≥ 0, (4)

where G is the fundamental solution of the corresponding deterministic heat equa-
tion, that is,

G(t, x) = (2πt)−1/2 exp

(
−|x|2

2t

)
1(0,∞)(t)

for t, x ∈ R. Process (4) is well-defined as a square integrable random variable if
and only if the spatial dimension d is equal to 1.
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2.2.1. The spatial correlation structure

The covariance of the process u given by (4) can be obtained by (see e.g. formula
(7) in [8]):

E(u(t, x)u(s, y))

=
1√
2π

(√
t+ se−

|y−x|2
2(t+s) −

√
t− se−

|y−x|2
2(t−s)

)
− 1√

π
|y − x|

∫ |y−x|√
2(t−s)

|y−x|√
2(t+s)

e−z2

dx

=
1√
2π

(√
t+ se−

|y−x|2
2(t+s) −

√
t− se−

|y−x|2
2(t−s)

)
−
√
2|x− y|erf

(
|x− y|√
2(t− s)

)
+
√
2|x− y|erf

(
|x− y|√
2(t+ s)

)
,

where erf denotes the error function

erf(x) =
1√
2π

∫ x

0

e−z2

dz.

In particular, when t = s,

E(u(t, x)u(t, y)) =
1√
π

√
te−

|y−x|2
4t +

√
2|x− y|erf

(
|x− y|
2
√
t

)
− 1

2
|y − x|, (5)

while for x = y we find, as in [15] and [16],

E(u(t, x)u(s, x)) =
1√
2π

(√
t+ s−

√
|t− s|

)
.

Hence, u(t, x) is a normal random variable with mean zero and variance
√

t
π .

In the sequel we will denote xi =
i
N for every i = 0, .., N and for every N ≥ 1.

Due to [8], the following results will play an important role in the study of the
Hermite variations VN :

Lemma 1 (see [8]). For α ∈ R, let gα(N) be defined by

gα(N) = E |u(Nα, xj+1)− u(Nα, xj)|2 .

1. If α > −2, then
Ngα(N) −−−−→

N→∞
1/2.

2. If α = −2, then

Ngα(N) −−−−→
N→∞

2√
π
(1− e−1/4) +

1

2
√
π

∫ ∞

1/4

b−1/2e−bdb.

3. If α < −2, then

N−α
2 gα(N) −−−−→

N→∞

2√
π
.
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Lemma 2 (see [8]). Let u be given by (4), α ∈ R and

rN (i− j) := E (u(Nα, xi+1)− u(Nα, xi)) (u(N
α, xj+1)− u(Nα, xj)) ,

where, for k ∈ Z,

rN (k) =
1√
π
Nα/2

[
2 exp

(
− k2

4N2+α

)
− exp

(
− (k + 1)2

4N2+α

)
− exp

(
− (k − 1)2

4N2+α

)]
+
√
2

[
2
|k|
N
erf

(
|k|

2N1+α/2

)
− |k + 1|

N
erf

(
|k + 1|
2N1+α/2

)
− |k − 1|

N
erf

(
|k − 1|
2N1+α/2

)]
.

(6)

Then for k = 1, . . . N − 1, we have

rN (k) ≤ C
1

N2+α
2
hN (k), (7)

where

hN (k) =

(
(k + 1)2

N2+α
+ 1

)
e
−
(k − 1)2

4N2+α .

In particular, if α > 0

rN (k) ≤ C
1

N2+α
2
.

3. Hermite variation with moving time

Now we focus on the asymptotic behavior of Hermite spatial variations for the so-
lution to the heat equation; our main tools are the estimates given by Lemma 1,
Lemma 2 and the Stein-Malliavin theory (see [9]).

Let us recall that for every N ≥ 1 and for every i = 0, . . . , N , we denoted
xi =

i
N . So, the Hermite variation statistic over the unit interval [0, 1], is defined in

the following way:

VN =

N−1∑
i=0

Hq

 u(Nα, xi+1)− u(Nα, xi)√
E (u(Nα, xi+1)− u(Nα, xi))

2

 ,

for α ∈ R.
We denote by H the canonical Hilbert space associated to the Gaussian solution

process (u(Nα, x))x∈R. This Hilbert space is defined as the closure of the set ξ of
indicator functions 1[0,x], x > 0, with respect to the inner product:

⟨1[0,x], 1[0,y]⟩H = E
(
u(Nα, x)u(Nα, y)

)
.
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The above inner product has the explicit form given by (5).

From now on, we denote by Iuq , q ≥ 1, the multiple Wiener-integral with respect
to the Gaussian process (u(Nα, x))x∈[0,1], so the increment u(Nα, y)−u(Nα, x) can

be expressed as Iu1 (1[x,y]), for every x < y.

Therefore, we can easily rewrite

VN =

N−1∑
i=0

Hq

(
gα(N)−1/2Iu1 (1[xi,xi+1])

)
,

with gα(N) = E |u(Nα, xi+1)− u(Nα, xi)|2. Let us note that gα(N) does not depend
on i (stationary in space). So

VN =
1

q!

N−1∑
i=0

gα(N)−q/2Iuq (1
⊗q
[xi,xi+1]

) = Iuq (sN ),

where

sN :=
1

q!

N−1∑
i=0

gα(N)−q/21⊗q
[xi,xi+1]

∈ H⊗q.

In order to apply the fourth moment theorem we need to consider the following
normalized sequence:

FN =
VN
vN

=
Iuq (sN )

vN
with v2N = E(V 2

N ). (8)

Lemma 3. Let vN be given by (8). Then

1

N
v2N −−−−→

N→∞



1

q!
if α+ 2 > 0

1

q!
+

1

2q−1q!
if α+ 2 < 0

1

q!
+ c3 if α+ 2 = 0,

where

c3 =
2

q!
C−q

0

∞∑
k=1

(
1√
π

[
2 exp

(
−k

2

4

)
− exp

(
− (k + 1)2

4

)
− exp

(
− (k − 1)2

4

)]
+

√
2

[
2|k|erf

(
|k|
2

)
− |k + 1|erf

(
|k + 1|

2

)
− |k − 1|erf

(
|k − 1|

2

)])q

.
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Proof. By isometry formula (1), we get

v2N =
1

q!
gα(N)−q

N−1∑
i,j=0

⟨1⊗q
[xi,xi+1]

, 1⊗q
[xj ,xj+1]

⟩H⊗q

=
1

q!
gα(N)−q

N−1∑
i,j=0

⟨1[xi,xi+1], 1[xj ,xj+1]⟩
q
H

=
N

q!
+

2

q!
gα(N)−q

N−1∑
i,j=0,i>j

⟨1[xi,xi+1], 1[xj ,xj+1]⟩
q
H.

= R
(1)
N +R

(2)
N .

Clearly, for every α, we have

1

N
R

(1)
N −−−−→

N→∞

1

q!
.

For rN given by (6),

1

N
R

(2)
N =

2

q!

1

N
gα(N)−q

N−1∑
k=1

(N − k)(rN (k))q. (9)

The limit behavior of R(2) is divided into three cases:

Case 1: α+ 2 > 0. By Lemma 1, we know that gα(N) behaves as 1
2N ; then by

inequality (7) we have:

1

N
R

(2)
N ≤ 2

q!
C

1

N
gα(N)−q 1

N (2+α/2)q

N−1∑
k=1

(N − k) (hN (k))
q

≤ C
2q+1

q!
Nq−1 1

N (2+α/2)q

N−1∑
k=1

(N − k) (hN (k))
q

≤ C
1

N (1+α/2)q

N−1∑
k=1

(hN (k))
q
,

and following the same steps in the proof of Proposition 1 in [8], we obtain

1

N
R

(2)
N → 0.

Case 2: α+ 2 < 0. By Lemma 1, gα(N) ∼ 2√
π
Nα/2. Furthermore, by Proposi-

tion 2 in [8], the only contribution to the expression of R
(2)
N /N in (9) is given when
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k = 1. Therefore, by (6)

1

N
R

(2)
N ∼ 2

q!

1

N
N−qα/2

(
2√
π

)−q

(N − 1)×
(
Nα/2 1√

π

(
2e−

1
4N

−2−α

− e−N−2−α

−1
)

+
2
√
2

N

(
erf

(
1

2N1+α/2

)
− erf

(
1

N1+α/2

)))q

−−−−→
N→∞

1

2q−1q!
.

Case 3: α + 2 = 0. By Lemma 1, we know that gα(N) behaves as C0N
−1.

Therefore,

1

N
R

(2)
N ∼ 2

q!
C−q

0 Nq−1
N−1∑
k=1

(N − k)(rN (k))q,

given that α = −2 and (6), we get

rN (k) = N−1(r
(1)
N (k) + r

(2)
N (k)),

where

r
(1)
N (k) =

1√
π

[
2 exp

(
−k

2

4

)
− exp

(
− (k + 1)2

4

)
− exp

(
− (k − 1)2

4

)]
and

r
(2)
N (k) =

√
2

[
2|k|erf

(
|k|
2

)
− |k + 1|erf

(
|k + 1|

2

)
− |k − 1|erf

(
|k − 1|

2

)]
.

So

1

N
R

(2)
N ∼ 2

q!
C−q

0

N−1∑
k=1

(r
(1)
N (k) + r

(2)
N (k))q

and

lim
N→∞

1

N
R

(2)
N = c3,

where

c3 =
2

q!
C−q

0

∞∑
k=1

(
1√
π

[
2 exp

(
−k

2

4

)
− exp

(
− (k + 1)2

4

)
− exp

(
− (k − 1)2

4

)]
+

√
2

[
2|k|erf

(
|k|
2

)
− |k + 1|erf

(
|k + 1|

2

)
− |k − 1|erf

(
|k − 1|

2

)])q

.

Let us note that the constant c3 is finite.
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4. Central limit theorem

In this section, we will prove the convergence of the sequence FN toward the Gaussian
law. In fact, we can apply Theorem 1 to the sequence FN given by (8) since it is a
multiple integral of order q, obtaining the following normal convergence result.

Theorem 2. Let FN be given by (8) with q ≥ 2. Then we have

d(FN ,N (0, 1)) ≤ C
1√
N
.

Proof. Let us compute the Malliavin derivative of FN

DFN =
1

(q − 1)!

1

vN
gα(N)−q/2

N−1∑
i=0

Iuq−1(1
⊗q−1
[xi,xi+1]

)1[xi,xi+1],

so

∥DFN∥2H =
1

(q − 1)!2
1

v2N
gα(N)−q

N−1∑
i,j=0

Iuq−1(1
⊗q−1
[xi,xi+1]

)Iuq−1(1
⊗q−1
[xj ,xj+1]

)

× ⟨1[xi,xi+1], 1[xj ,xj+1]⟩H.

Product formula (2) implies

∥DFN∥2H =
1

(q − 1)!2
1

v2N
gα(N)−q

q−1∑
r=0

r!(Cq−1
r )2

N−1∑
i,j=0

Iu2q−2−2r(1
⊗q−1−r
[xi,xi+1]

⊗̃1⊗q−1−r
[xj ,xj+1]

)

× ⟨1[xi,xi+1], 1[xj ,xj+1]⟩
r+1
H ,

where Cq−1
r =

(
q−1
r

)
and ⊗̃ denotes the symmetric tensor product. Furthermore,

following [14], we can write ∥DFN∥2H as

∥DFN∥2H = S1,N + S2,N , (10)

where

S1,N =
1

(q − 1)!

1

v2N
gα(N)−q

N−1∑
i,j=0

⟨1[xi,xi+1], 1[xj ,xj+1]⟩
q
H

and

S2,N =
1

(q − 1)!2
1

v2N
gα(N)−q

q−2∑
r=0

r!(Cq−1
r )2

N−1∑
i,j=0

Iu2q−2−2r(1
⊗q−1−r
[xi,xi+1]

⊗̃1⊗q−1−r
[xj ,xj+1]

)

× ⟨1[xi,xi+1], 1[xj ,xj+1]⟩
r+1
H .

By Theorem 1, we get

d(FN ,N (0, 1)) ≤ C
(
V ar∥DFN∥2L2([0,1])

)1/2
= C

(
E(S2

2,N )
)1/2

.
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Clearly, H = L2([0, 1]). Now we will prove that S2,N converges to zero in L2(Ω). In
fact, by (1),

E(S2
2,N ) =

1

(q − 1)!4
1

v4N
gα(N)−2q

q−2∑
r1,r2=0

r1!r2!(C
q−1
r1 )2(Cq−1

r2 )2
N−1∑

i1,i2,j1,j2=0

E
[
Iu2q−2−2r1(1

⊗q−1−r1
[xi1 ,xi1+1]

⊗̃1⊗q−1−r1
[xj1 ,xj1+1]

)Iu2q−2−2r2(1
⊗q−1−r2
[xi2 ,xi2+1]

⊗̃1⊗q−1−r2
[xj2 ,xj2+1]

)
]

× ⟨1[xi1 ,xi1+1], 1[xj1 ,xj1+1]⟩
r1+1
H ⟨1[xi2 ,xi2+1], 1[xj2 ,xj2+1]⟩

r2+1
H

=
1

(q − 1)!4
1

v4N
gα(N)−2q

q−2∑
r=0

r!2(Cq−1
r )4

N−1∑
i1,i2,j1,j2=0

(2q − 2− 2r)!

×
〈
1⊗q−1−r
[xi1

,xi1+1]
⊗̃1⊗q−1−r

[xj1
,xj1+1]

, 1⊗q−1−r
[xi2

,xi2+1]
⊗̃1⊗q−1−r

[xj2
,xj2+1]

〉
H⊗2(q−r−l)

× ⟨1[xi1 ,xi1+1], 1[xj1 ,xj1+1]⟩
r+1
H ⟨1[xi2 ,xi2+1], 1[xj2 ,xj2+1]⟩

r+1
H .

We will use the fact that (see [14])〈
1⊗q−1−r
[xi1

,xi1+1]
⊗̃1⊗q−1−r

[xj1
,xj1+1]

, 1⊗q−1−r
[xi2

,xi2+1]
⊗̃1⊗q−1−r

[xj2
,xj2+1]

〉
H⊗2(q−r−l)

=
∑

α+β=q−1−r

C(r, q, α, β)
〈
1[xi1 ,xi1+1], 1[xj1 ,xj1+1]

〉α
H

×
〈
1[xi1

,xi1+1], 1[xj2
,xj2+1]

〉β
H

〈
1[xi2

,xi2+1], 1[xj1
,xj1+1]

〉β
H

×
〈
1[xi2 ,xi2+1], 1[xj2 ,xj2+1]

〉α
H
;

here C(·) is a generic constant that does not depend on N . This implies

E(S2
2,N ) =

1

(q − 1)!4
1

v4N
gα(N)−2q

q−2∑
r=0

r!2(Cq−1
r )4(2q − 2− 2r)!

×
∑

α+β=q−1−r

C(r, q, α, β)aN (r, q, α, β),

where

aN (r, q, α, β) :=

N−1∑
i1,i2,j1,j2=0

〈
1[xi1 ,xi1+1], 1[xj1 ,xj1+1]

〉α
H

〈
1[xi1 ,xi1+1], 1[xj2 ,xj2+1]

〉β
H

×
〈
1[xi2 ,xi2+1], 1[xj1 ,xj1+1]

〉β
H

〈
1[xi2 ,xi2+1], 1[xj2 ,xj2+1]

〉α
H

× ⟨1[xi1 ,xi1+1], 1[xj1 ,xj1+1]⟩
r+1
H ⟨1[xi2 ,xi2+1], 1[xj2 ,xj2+1]⟩

r+1
H

=

N−1∑
i1,i2,j1,j2=0

rβN (|j1 − i2|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|j2 − i1|).
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At this point we need to study the limit behavior of E(S2
2,N ) in three different

cases:

Case 1: α+2 > 0. Taking into account the behavior of gα(N) and v2N (Lemma
1 and Lemma 3), we get

E(S2
2,N ) ∼ CN2q−2

q−2∑
r=0

r!2(Cq−1
r )4(2q − 2− 2r)!

×
∑

α+β=q−1−r

C(r, q, α, β)aN (r, q, α, β).

(11)

Therefore, we need to study the rate of convergence of the following expression:

N2q−2aN (r, q, α, β)

= N2q−2
N−1∑

i1,i2,j1,j2=0

rβN (|j1 − i2|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|j2 − i1|).

We decompose aN (r, q, α, β) as∑
i1,i2,j1,j2

=
∑

i1=i2=j1=j2

+
∑

i1=i2=j1 ̸=j2

+
∑

i1=i2 ̸=j1 ̸=j2

+
∑

i1,i2,j1,j2 distinct

.

Therefore, we can write

E(S2
2,N ) = S2,1,N + S2,2,N + S2,3,N + S2,4,N . (12)

We will prove that each term in (12) is majorized by C 1
N .

S2,1,N = CN2q−2
N−1∑
i=0

r2qN (0) ∼ CN2q−2
N−1∑
i=0

(N−1)2q ≤ C
1

N
,

Since we have different bounds for hN (k) for −2 < α < 0 and α ≥ 0, we will handle
these separately.

S2,2,N =CN2q−2
N−1∑

i,j=0;i>j

rqN (0)rqN (i− j)

≤CNq−1 1

Nq(2+α/2)

N−1∑
k=1

hqN (k).

If −2 < α < 0, for N large enough and for ε ≥ 0 such that ϵ < −α/2, we have

hN (k) ≤

{
CN2ε if k ≤ [N1+α

2 +ε],

Ce−N2ε

N−α if k ≥ [N1+α
2 +ε] + 1.
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Then for ε close to 0 and N close to ∞,

S2,2,N ≤CNq−1 1

Nq(2+α/2)

[N1+α/2+ϵ]∑
k=1

N2qε +

N−1∑
[N1+α/2+ε]+1

e−qN2ε

N−qα


≤CNq 1

Nq(2+α/2)

[N1+α/2+ϵ]∑
k=1

N2qϵ−2ϵ

≤C 1

N (q−1)(2+α/2)+ϵ(1−2q)
≤ C

1

N
,

by choosing a very small ϵ. By a similar technique we can handle the term j1 = i2 ̸=
i1 ̸= j2. Therefore,

S2,3,N

= CN2q−2
∑

i1=i2 ̸=j1 ̸=j2

rβN (|j1 − i2|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|j2 − i1|)

= CN2q−2
∑

i>j>k

rβN (i− j)rα+r+1
N (i− j)rα+r+1

N (i− k)rβN (j − k)

≤ CN2q−2 1

N (2+α/2)2q

∑
i>j>k

hβN (i− j)hα+r+1
N (i− j)hα+r+1

N (i− k)hβN (j − k).

Again, for α+2 > 0, the dominant part of hN is the one between 1 and [N1+α/2+ϵ],
this implies

S2,3,N ≤ C
1

Nq(2+α)−2(1+α)−12ϵ
,

for every ϵ > 0, such that ϵ < −α/2. So, by taking ϵ close to zero we can bound the

term for every q ≥ 2 by
1

N
. For the last term in the case α+ 2 > 0, we have

S2,4,N

= CN2q−2
∑

i1,i2,j1,j2 distinct

rβN (|j1 − i2|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|j2 − i1|)

≤ CN2q−2
∑

i1,i2,j1,j2 distinct

rβN (|i2 − j1|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|i1 − j2|)

≤ CN2q−2
∑

i2>i1>j1>j2

rβN (i2 − j1)r
α+r+1
N (i1 − j1)r

α+r+1
N (i2 − j2)r

β
N (i1 − j2)

≤ CN2q−2 1

N (2+α/2)2q

∑
i2>i1>j1>j2

hβN (i2 − j1)h
α+r+1
N (i1 − j1)h

α+r+1
N (i2 − j2)h

β
N (i1 − j2).

As before, we can get

S2,4,N ≤ CN2q−2 1

N (2+α/2)2q
N4(1+α/2+ϵ)N8qϵ ≤ C

1

N
.
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For the case α ≥ 0, we will use the bound

rN (k) ≤ C
1

N2+α/2

and (11), consequently

E(S2
2,N ) ≤ CN2q−2N−2q(2+α/2)N4 ≤ N2−2q(1+α/2) ≤ C

1

N
.

Case 2: α+ 2 < 0. From Proposition 2 in [8], we have that

rN (k) ≤ Ce−N−2−α

if k ≥ 2

and
rN (0) ∼ CNα/2, rN (1) ∼ CNα/2.

Taking into account (11) and the behavior of gα(N) and v2N (Lemma 1 and Lemma
3), we obtain

E(S2
2,N )

∼ C
1

N2
N−αq

N−1∑
i1,i2,j1,j2=0

rβN (|i2 − j1|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|i1 − j2|)

≤ C
1

N2
N−αq

∑
k

(Nα/2)2q ≤ C
1

N
.

Case 3: α+ 2 = 0. For this case the proof of Proposition 3 in [8] implies that

rN (k) ≤ C
1

N
e−

(k−1)2

2 ,

for every k ≥ 1, hence

E(S2
2,N )

∼ CN2q−2
N−1∑

i1,i2,j1,j2=0

rβN (|j1 − i2|)rα+r+1
N (|i1 − j1|)rα+r+1

N (|i2 − j2|)rβN (|i1 − j2|)

≤ C
1

N2

∑
i1>j1>i2>j2

e
β(j1−i2−1)2

2 e
(α+r+1)(i1−j1−1)2

2 e
(α+r+1)(i2−j2−1)2

2 e
β(i1−j2−1)2

2 .

Now taking a = j1 − i2 − 1, b = i1 − j1 − 1, c = i2 − j2 − 1 and using the bound
e−x2 ≤ 1, we get

E(S2
2,N ) ≤ C

1

N

N∑
a,b,c=1

e
β(j1−i2−1)2

2 e
(α+r+1)(i1−j1−1)2

2 e
(α+r+1)(i2−j2−1)2

2 ≤ C
1

N
. (13)

Finally, the result is achieved from (10) to (13).
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5. Almost sure central limit theorem (ASCLT)

Here, we establish and prove our result concerning the ASCLT for Hermite variations
as to the solution to the heat equation with moving time. Let us begin with the
following definition.

Definition 1. Let (GN )N≥1 be a sequence of real valued random variables defined
on a common probability space (Ω, F, P ). The sequence (GN )N≥1 satisfies an al-
most sure central limit theorem (ASCLT), if, almost surely, for every bounded and
continuous function φ : R → R, we have

1

logN

N∑
i=1

φ(Gi)

i
→ E(φ(Z)), as N → ∞,

where Z is an N(0, 1) random variable.

In order to prove the main result of this section, since we work with multiple
stochastic integrals, we use the following theorem:

Theorem 3 (see [1]). Fix q ≥ 2, and let (FN )N≥1 be a sequence of random variables

defined by FN := (Iq(fN ))N≥1 with fN ∈ H⊙q, such that for all N ≥ 1, E(F 2
N ) =

q!∥fN∥2H⊗q = 1 and ∥fN ⊗r fN∥2H⊗2(q−r) goes to zero as N goes to ∞, for every

r = 1, . . . , q − 1. Then, FN
Law−−−−→

N→∞
Z ∼ N (0, 1). Moreover, if the following two

conditions are satisfied:

(H1)
∑
N≥2

1

N log2N

N∑
l=1

1

l
∥fN ⊗r fN∥2H⊗2(q−r) <∞, for every 1 ≤ r ≤ q − 1,

(H2)
∑
N≥2

1

N log3N

N∑
m,l=1

E(FmFl)

ml
<∞,

then (FN )N≥1 satisfies an ASCLT.

The previous theorem allows us to provide the following result.

Theorem 4. The sequence FN given by (8) with q ≥ 2 satisfies the ASCLT as
N → ∞.

Proof. In order to prove Theorem 4, we need to check hypotheses (H1) and (H2)
in Theorem 3 since by Theorem 2 we know that the sequence (FN )N≥1 satisfies a
CLT. By relation (8), we have that FN = Iq(fN ), with

fN =
1

vN

1

q!
gα(N)−q/2

N−1∑
i=0

1⊗q
[xi,xi+1]

.
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Now, using the definition of contraction of order r, we obtain

fl ⊗r fl

=
1

v2l

1

q!2

l−1∑
j,k=0

gα(l)
−q1⊗q

[j/l,(j+1)/l] ⊗r 1
⊗q
[k/l,(k+1)/l]

=
1

v2l

1

q!2

l−1∑
j,k=0

gα(l)
−q
〈
1⊗r
[j/l,(j+1)/l], 1

⊗r
[k/l,(k+1)/l]

〉
H⊗r

1
⊗(q−r)
[j/l,(j+1)/l] ⊗ 1

⊗(q−r)
[k/l,(k+1)/l].

Therefore,

∥fl ⊗r fl∥2H⊗2(q−r)

=
1

v4l

1

q!4

l−1∑
j,k,l,m=0

[
gα(l)

−2q
〈
1⊗r
[j/l,(j+1)/l], 1

⊗r
[k/l,(k+1)/l]

〉
H⊗r

×
〈
1⊗r
[l/l,(l+1)/l], 1

⊗r
[m/l,(m+1)/l]

〉
H⊗r

×
〈
1
⊗(q−r)
[j/l,(j+1)/l]⊗̃1

⊗(q−r)
[k/l,(k+1)/l], 1

⊗(q−r)
[l/l,(l+1)/l]⊗̃1

⊗(q−r)
[m/l,(m+1)/l]

〉
H⊗2(q−r)

]
.

Computations similar to the ones in the last section allow us to get

∥fl ⊗r fl∥2H⊗2(q−r)

=
1

(q)!4
1

v4l
gα(l)

−2q

q−2∑
r=0

r!2(Cq−1
r )4(2(q − r))!

×
∑

α,β≥0;α+β=q−r

∑
γ,δ≥0;γ+δ=q−r

C(r, q, α, β, γ, δ)zN (r, q, α, β, γ, δ),

where

zN (r, q, α, β, γ, δ)

=

N−1∑
i1,i2,j1,j2=0

〈
1[j1/N,(j1+1)/N ], 1[i2/N,(i2+1)/N ]

〉β
H

×
〈
1[i1/N,(i1+1)/N ], 1[j1/N,(j1+1)/N ]

〉α
H

× ⟨1[i1/N,(i1+1)/N ], 1[j1/N,(j1+1)/N ]⟩rH⟨1[i2/N,(i2+1)/N ], 1[j2/N,(j2+1)/N ]⟩rH
×
〈
1[i1/N,(i1+1)/N ], 1[j2/N,(j2+1)/N ]

〉β
H

〈
1[i2/N,(i2+1)/N ], 1[j2/N,(j2+1)/N ]

〉α
H

=

N−1∑
i1,i2,j1,j2=0

rβN (|j1 − i2|)rα+r
N (|i1 − j1|)rα+r

N (|i2 − j2|)rβN (|j2 − i1|).

Following arguments similar to those in the previous section, we can obtain

∥fl ⊗r fl∥2H⊗2(q−r) ≤
C

l
.
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This implies

∑
N≥2

1

N log2N

N∑
l=1

1

l
∥fl ⊗r fl∥2H⊗2(q−r) ≤C

∑
N≥2

1

N log2N

∞∑
l=1

1

l2

≤C
∑
N≥2

1

N log2N
;

consequently, condition (H1) is satisfied.

With respect to (H2), we have

E(FmFl) =
1

vm

1

vl

1

q!
gα(m)−q/2gα(l)

−q/2
m−1∑
i=0

l−1∑
j=0

⟨1[i/m,i+1/m], 1[j/l,j+1/l]⟩qH.

Assuming that l < m and following the lines of lemmas 1 and 2, for every α, we
can get

E(FmFl) ≤ C

√
l

m
.

According to Remark 3.3 in [1], this last inequality implies condition (H2), and
the proof is complete.

Remark 1. The tools from Malliavin calculus and Stein’s method (see [10, 11, 12])
applied in this article can be used for other SPDEs where the Green function is
known (see [7, 16, 20], among others).
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