
TEHNIČKI GLASNIK 15, 3(2021), 371-380 371

ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) Preliminary communication
https://doi.org/10.31803/tg-20210207102610

Design and Implementation of a Web-Based Application for Code Smells Repository

Lida Bamizadeh*, Binod Kumar, Ajay Kumar, Shailaja Shirwaikar

Abstract: Pitfalls in software development process can be prevented by learning from other people's mistakes. Software practitioners and researchers document lessons learned
and the knowledge about best practices is spread over literature. Presence of code smells does not indicate that software won’t work, but it will reveal deeper problems and rising
risk of failure in future. Software metrics are applied to detect code smells whereas refactoring can remove code smells, improve code quality and make it simpler and cleaner.
Detection tools facilitate management of code smells. Knowledge about code smells and related concepts can assist the software maintenance process. Exploratory analysis of
code smells carried out in this paper, covers collecting data about code smells, identifying related concepts, categorizing and organizing this knowledge into a code smell repository,
which can be made available to software developers. A detailed literature survey is carried out to identify code smells and related concepts. An initial list of 22 code smells proposed
in 1999 has grown over the years into 65 code smells. The relationship between code smells, software metrics, refactoring methods and detection tools available in literature is
also documented. Templates are designed that capture knowledge about code smells and related concepts. A code smell repository is designed and implemented to maintain all
the information gathered about code smells and related concepts and is made available to software practitioners. All the knowledge about code smells found in literature is
collected, organized and made accessible.

Keywords: code repository; code smell; detection tool; refactoring; software metric

1 INTRODUCTION

Software quality goes to ruin over time because of

various reasons such as software ageing, improper design,
unsuitable requirement analysis and inappropriate coding
practices. Code smell is an indication of some obstacles in
the code that shows something is wrong in some parts of code
or system design [1]. Bad smell occurrence has a drastic
influence on the quality of code. It makes system more
complex, less comprehensible and causes maintainability
problems [2, 3]. Bad smells are usually not bugs; however,
researchers have proposed that a huge number of bad smells
connect with bugs and maintainability issues [4-7]. Bad
smells don’t currently inhibit the functioning of code. But,
they detect clear signs in design which may lead to slowing
down development or growing the probability of bugs or
software rot because of long term decays. In 1990, Kent Beck
proposed that refactoring can modify source code to improve
its quality. Refactoring is a systematic process of improving
source code without creating new functionality that can
change a disorder into spotless code and uncomplicated
design [8]. Code smell detection can be effectively carried
out by using appropriate software metrics [9]. Software
metric is a measurement indicator for the latent attributes
possessed by software system or software development
process [4, 10, 11]. These detection approaches interpret
code metrics which are evoked from a particular system
element by applying a set of threshold filter rules [12]. The
main target of this strategy is providing a mechanism for
engineers that give permission to them to work on a more
abstract level that conceptually is closer to real goals in using
metrics. Furthermore, several tools have been developed for
detection of code smells and improve the code quality during
software development [13]. Software tools support
developers by automatic or semi-automatic detection of bad
smells. Tools focus on the entities which most likely present
code smells [14].

This paper proposes an exploratory study of code smells.
Literature survey shows that there are plenty of code smells

with corresponding detection methods using software
metrics. Also, there is a large set of tools that support code
smells detection. Moreover, there are well defined
Refactoring methods that can be used to remove code smells.
There is a need to organize this knowledge into a Code smells
repository so that it is readily available to developers and
practitioners.

The contribution of this paper is organized as follows:
section 2 describes background and related work.
Exploratory analysis of code smells is explained in section 3.
Organizing the code smell knowledge is presented in section
4 which is followed by conclusion in section 5.

2 BACKGROUND AND RELATED WORKS

Several scientists such as Opdyke et al. [15] showed that

some situations in source code may need refactoring. The
process of changing a software system in this manner that
external behaviour does not change but improves its internal
structure is called refactoring. It can improve the design of a
software process and reduce its complexity. After
refactoring, software systems are easier to comprehend and
maintain. Webster [16] and Brown et al. [17] discovered
some code smells such as Blob, Spaghetti Code, etc. [18].
Later, Kent Beck and Martin Fowler [19] called those
situations, which may need refactoring as the bad smells. An
initial list of code smells was proposed by them which was
indicative of something incorrect in the system code. They
introduced a list of 22 code smells without categorizing them
and claimed that there is not a set of precise metrics which
can be specified to recognise the need of refactoring. Thus,
bad smells are kind of cooperation amongst the ambiguous
programming and precise source code metrics. Fowler
presented a group of refactoring with step wise comments on
how each smell can be removed. He did not give the
particular characteristics, detecting techniques and
refactoring process. Van Emden and Moonen [20] proposed
the first formalization of code smells. They revealed the
undesirable effect of bad smells on the software product.

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

372 TECHNICAL JOURNAL 15, 3(2021), 371-380

They suggested an automatic detection and visualization of
code smell, with a methodology for reducing the impact of
code smells on java source code. "Jcosmo" was the name of
resulted work in code smell browser. Later, they had other
survey and discovered that presence of smells has maximum
influence on quality of software [18]. Kerievsky [21]
presented more refactoring. Also, he introduced some new
code smells such as Conditional Complexity, Combinatorial
Explosion and Indecent Exposure in his refactoring book.
Mantyla [22] presented Divergent Change as concealed
smell. This smell cannot be detected by a simple look at the
code or by tools. Also, detecting process need good
understanding of the code and having experience for
implementing the changes to the source code. Then, in 2003,
he [23] introduced more smells. In addition, he discovered a
classification of 22 code smells into seven units where every
individual unit reveals a similar impression [23, 13]. Li and
Shatnawi [24] examined the association among class error
probability and code smells for three different levels such as
High (Blocker and Critical), Medium (Major), and Low
(Normal and Minor). They described that refactoring of a
class improves the architectural quality as well as decreases
the probability of the class errors when system is released.
Also, in 2008 they [25] extended their study about
relationship between software metrics, code smells and class
error probability. Fontana et al. [26] proposed a comparative
study of code smells which are detected by various
refactoring tools and their support of semi-automatic
refactoring. Ouni et al. [27] defined a search based
refactoring strategy for maintaining domain semantic of a
code when refactoring is decided/ implemented
automatically. They discussed that refactoring may be
syntactically correct and have right behaviour but model
incorrectly the domain semantics. Palomba et al. [28]
surveyed observations of developers about bad smells. They
mentioned that there is a gap between theory and practice.
Their survey promised insights about bad smells which are
not yet explored sufficiently. Pinto and Kamei [29] examined
StackOverflow’s data for exploring obstacles for approval of
code smell detection tools. They prepared a list of problems
that revealed the adoption/usability problems, which users
explained about StackOverflow. Tufano et al. [30] surveyed
hundreds of projects to explore the problems of bad smells.
They discovered the reason for bad smells in the code. Kaur
and Dhiman [31] had a detailed survey on Search-Based
Tools and Techniques to Identify Bad Code Smells in Object-
Oriented Systems. Authors point out lack of a standard
benchmark system for comparing outcomes of existing’s
code smell detection strategies. Fontana et al. [32] believed
that code smells and architectural smells are not same. They
suggested developers to more focus on hazardous
architectural smells. Reis et al. [33] performed a Systematic

Literature Review (SLR) on the state-of-the-art methods and
tools applied for code smells detection and visualization.
Their results showed that the most repeatedly applied
detection methods are based on search-based techniques,
which mainly apply ML algorithms. Martins et al. [34]
presented a survey on harmfulness of co-occurrences of code
smells and its influences on Internal Quality Attributes. The
elimination of code smells co-occurrences reduce complexity
of the system. Kaur [35] published a Systematic Literature
Review on Empirical Analysis of the Relationship between
Code Smells and Software Quality Attributes. Researcher
observed that most used data sets for studies are small in size
and written in Java programming language. Also, most
impact of code smells is on external quality attributes. Al-
Shaaby et al. [36] recently presented a systematic literature
review with reference to bad smell detection using machine
learning techniques. Their research outcomes showed that
God Class and Long Method, Feature Envy, and Data Class
are the most occurring detected code smells and Java
programing and Weka have most used by researchers.

3 EXPLORATORY ANALYSIS OF CODE SMELLS

Exploratory Analysis of code smells involves collecting

data about code smells, identifying related concepts,
categorizing and organizing this knowledge into a code smell
repository so that it can be made readily available to software
developers and practitioners.

3.1 Collection of Data about Code Smells

Kent Beck as the originator of extreme programming

revealed the importance of design quality through the
developing software in 1990s and made popular the usage of
word code smell. This word grew into a universal term in
coding when it was introduced in the book Refactoring:
Improving the Design of Existing Code by Martin Fowler, a
famous software scientist which propagated the practice of
refactoring. An initial list of 22 code smells was introduced
by Kent Beck and Martin Fowler in 1999 as situations
revealing of something improper in the system code. Initial
list has grown over the years and knowledge about a large set
of code smells is spread out across the literature. For the
exploratory study, 65 code smells are gathered from the
existing literature as shown in Tab. 1. Name of Code smells
are a part of designer’s language vocabulary. Sometimes
newbies designers don’t certainly know code smell’s
particular definitions and simply use them out of familiarity.
Researcher has prepared uncomplicated short definitions via
Tab. 1 to assist designers and other researchers to identify
promising motivations for solving code smell problems.

Table 1 Code Smells and Their Brief Definitions

No Name Definition
1 Duplicate Code Presence of same code structure at more than one place.
2 Long Method (Function) Method is too long in the sense of the functionalities executed by it.
3 Large Class Class has large number of instance variables and attempts to organize many works.
4 Long Parameter List List of parameters is very lengthy.
5 Divergent Change Single class requires many changes in the code for the various objectives.
6 Shotgun Surgery Single change applies to several different classes of code simultaneously.
7 Feature Envy Method looks to be more concerned in other class than it is real occupied.

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

TEHNIČKI GLASNIK 15, 3(2021), 371-380 373

8 Data Clumps Same set of data items often appear together in different places.
9 Primitive Obsession Instead of small objects, extreme use of primitive data types.
10 Switch Statements Equal switch statements scattered across the code in the several places.
11 Lazy Element An element which is not doing sufficient work.
12 Lazy Class (Freeloader) A class which is not doing sufficient work.
13 Data Class Class is container for data used by other classes and cannot work independently in own data.
14 Excessively Large (long) Identifier Identifier length is very large and makes disambiguation in the software architecture.
15 Excessively Small (short) Identifier Identifier length is very small and does not reveal its function obviously.
16 Contrived complexity Design pattern is overcomplicated where a simpler design could be used.
17 Complex conditionals Large conditional logic blocks, especially blocks that tend to grow larger or change considerably over time.

18 Temporary fields They acquire their values, are required by objects under certain situations, and are empty outside of these
situations.

19 Refused Bequest Child class does not use derivative functionality of the superclass to happen inheritance rejection.
20 Middle man When a class performs only delegating work to another class.
21 God (Blob) Class Class has tendency to localize the intelligence of the system and trying to do much.

22 Alternative Classes with Different
Interfaces Two different classes perform similar functions with different method signatures.

23 Parallel Inheritance Hierarchies Two parallel class hierarchies stand and each of these hierarchies must to be extended.
24 Message Chains When in the code, there are a series of calls resembling a->b()->c()->d()
25 Comments When a method is full of descriptive comments.
26 Dead Code The code which has been used earlier, but is not presently used.

27 Brain Class Class centralize system functionality but does not use considerable data of foreign classes and is more
cohesive.

28 Brain Method Brain Methods centralize the functionality of a class.
29 Extensive (Dispersed) Coupling A single operation calls one or few methods from extreme number of provider classes.
30 Intensive Coupling A method calls many other operations in the system from one or a few classes.

31 Tradition Breaker Inherited class hardly concentrates inherited services which are unrelated on inherited functionality by base
class.

32 Spaghetti Code A class without structure executes long and complex methods, connects among them without parameters
using global variables.

33 Speculative Generality An abstract class that is unused, but will be used in the system in coming system releases.

34 Inappropriate Intimacy Two classes exhibiting high coupling between them or one class consumes the internal fields and methods of
another class.

35 Complex Class Classes having high complexity.
36 Class Data Should Be Private (CDSBP) A class exposes its attributes and violates the principle of data hiding.
37 Instanceof Having a chain of "instanceof" operators in the same block of code.
38 Typecast The process of explicitly converting an object from one class type into another.
39 Missing Template Method Two different components have major similarities, but do not use an interface.

40 Cyclic (Circular) Dependencies Two or more subsystems are involved in one cycle and this is contravention of Acyclic Dependencies
Principle.

41 Blob Operation Huge and complex operation have a tendency to centralize too much of the functionality of a class or module.
42 Sibling Duplication An equivalent functionality described by two or more siblings in an inheritance hierarchy.
43 Internal Duplication Duplication among portions of the one class or module.
44 External Duplication Duplication among unrelated capsules of the system.
45 Distorted Hierarchy Uncommonly narrow and deep Inheritance hierarchy. A popular value for this depth is six.
46 Unstable Dependencies Dependencies between subsystems in a design are not in direction of the stability of subsystems.
47 Schizophrenic Class A class includes separate sets of public methods that are used by separate groups of client classes.
48 Incomplete Class Library Library hasn’t prepared the features or has declined to implement them.

49 Stable Abstraction Breaker
(SAPBreakers) A subsystem is not as abstract as it is stable.

50 Mysterious (Uncommunicative) Name A mysterious name of functions, modules, variables and classes does not lead into its intent well enough.
51 Mutable data Unexpected consequences and bugs can be produce after changing the data.
52 Global data Everyone from everywhere can modify global data and this is a problem of it.
53 Similar subclasses There is a bunch of almost similar subclasses of a class.

54 Inconsistent Names A group of standard terminology should choose and then, use it among the methods.
Example: Open () ► Close ().

55 Combinatorial Explosion Lots of code does almost the same thing, but with tiny variations in data or behaviour.
56 Type Embedded in Name Placing types in method names.
57 Oddball Solution Two similar problems in one system, and one problem solves one way and other solves other way.
58 Indecent Exposure When methods or classes unnecessarily expose their internals.
59 Solution Sprawl Code and/or data used in execution of a responsibility becomes sprawled through several classes.
60 Excessive return of data A function or method which returns more than what each of its callers requires.
61 Excessively long (God) line of code When a line of code is too long.

62 Functional Decomposition Writing highly procedural and non-object oriented code in an object oriented language. It happens while a
class is considered with the intent of performing a single function.

63 Deficient encapsulation Declare availability of one or more members of an abstraction is more permissive than actually necessary.
64 God Method Method gets more functionality until it becomes out of control and difficult to maintain and extend.
65 Type checking Presented for Selecting a variation of an algorithm that should be executed based on the value of an attribute.

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

374 TECHNICAL JOURNAL 15, 3(2021), 371-380

3.2 Identifying Related Concepts

Code smells are some symptoms in the source code that

probably indicates a deeper problem in software system.
Detection of code smells is challenging for practitioners and
developers. Different viewpoints conduct to the application
of several detection metrics, detection tools and refactoring
actions [14]. Software metrics are a standard measurement
by using performance value named threshold to assess the
maintainability of the software systems and to distinguish
code smells. Tools are another way of code smells detection.
A variety of detection tools have been developed for
detection of bad smells based on different approaches and
specific parameters for detecting particular smells.
Refactoring is an organized procedure for improving source
code without making new functionalities that change code to
clean code with a simple design. Fig. 1 depicts that code
smells are the centre of study along with the related concepts
that are software metrics, detection tools and refactoring
actions.

Figure 1 Concepts related to code smells

Following subsections are used for describing these

related concepts in further detail.

3.2.1 Detection Tools

There are several tools and IDE (integrated development
environment) available for detecting of code smells [37].
Code smells are suggested as an attempt by programmers to
reform their software. When programmers are writing their
code, bad smells go unnoticed. Therefore, detection tools are
developed to make programmers aware about the existence
of bad smells in their code and to aid them recognize the
reason of those bad smells. Several code smell detection tools
are available but it is difficult to enumerate all of them and
define exactly which bad smells they are able to detect.
Therefore, a short introduction is provided to some of the
well-known tools.
a) infusion: inFusion is the modern and commercial
development of iPlasma and detects 22 code smells.
Refactoring is not available but it is linked to the code. [13,
14, 26, 38]
b) iPlasma: iPlasma is for quality assessment of object-
oriented systems, supports all steps of analysis. Refactoring
and link to code are not available. [26, 38]
c) JDeodorant: JDeodorant automatically recognizes code
smells and is able to determine proper sequence of
refactoring. Also, it is linked to code. [11, 13, 14, 38]

d) JSpIRIT: JSpIRIT supports java codes to recognize and
arrange code smells. Automated refactoring and link to code
are not available. [14, 26, 38, 39]
e) PMD: PMD supports programs and searches for faults.
Refactoring is not available and detection technique is based
on software metrics. [13, 14, 26, 38]
f) Checkstyle: Checkstyle is similar to PMD for using
software metrics and thresholds for detection of bad smells.
Automatic refactoring is not available and it is linked to the
code. [13, 26, 38]
g) Stench Blossom: Stench Blossom gives a visualization
environment to show the programmers a high-level outlook
of the bad smells in their code. Automated refactoring is not
available but there is direct link to code. [13, 26, 38]
h) DÉCOR: DÉCOR automatically permits the
specification and detection of bad smells. Refactoring is
available as well as code links. [13, 26, 38]
i) inCode: inCode is commercial and based on inFusion for
detecting of bad smells that supports programmers for
writing code in programming environment. [13, 40]

Table 2 Code Smells and Detection Tools That Detect Them

No Code Smell

Tools

C
he

ck
st

yl
e

D
ÉC

O
R

in
Fu

si
on

iP
la

sm
a

JD
eo

do
ra

nt

PM
D

St
en

ch
 B

lo
ss

om

Js
pi

rit

in
C

od
e

1 Brain Class
2 Brain Method …

…

…

…

…

…

…

…

…

…

…

28 Dispersed Coupling

Tab. 2 shows relationship between code smells and
detection tools. According to the table, iPlasma scores
maximum points on detection of code smells with 17
detected code smells. It can be interpreted that iPlasma is a
functional tool compared to other tools and should be
selected by developers as it covers the detection of larger set
of code smells. There are only 28 code smells that are
detected by one or other of these 9 detection tools.

3.2.2 Software Metrics

Software Quality Metrics refer to measurement of

software attributes related to software quality during
software development process. Many software metrics are
available to systems realized in various paradigms like
Objects Oriented Programming (OOP). Finding factors of
software quality and planning them into quantitative
measures is a critical issue in sustainable success of an end
product. Software metric has involved a lot of consideration
between researchers and developers in last one decade [41].
Computer science experts are placing all their struggles in
measuring quantitative information from software
component. Therefore, software metrics are often classified
into some types [42]. It is depending on different lookouts.
Shepperd and Ince [43] proposed a classification of two
metrics: traditional metrics and object-oriented metrics.

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

TEHNIČKI GLASNIK 15, 3(2021), 371-380 375

Later, Saker [44] suggested a category of software metrics
established upon subject and paradigm. In his category
software metrics divided to project based metrics and design
based metrics. Fenton and Bieman [45] offered different
category that it was two dimensional classifications and
divided to project metrics (product, process or resources) and
the level of visibility that can be internal or external metrics
[42]. Also, by other researchers it was divided into basic and
additional metrics, objective or subjective, project
classification, and static and dynamic. For assessment of
quality of software systems, it is significant to define
thresholds for software metrics [46]. Software metrics are
deliberated for bad smell detection in source code. Existing
bad smells in source code shows inacceptable architecture
design of software that makes it severe to maintain in future.
Software measurement is a process that represents software
product or process characteristic to a numeric value [45]. The
results are compared with a set of standards that are defined
by individuals or organizations and a software quality is
concluded [47]. Software metrics can be used to each phase
of software development process such as requirements,
design, implementation, testing and evaluation, maintenance
and use for evaluating of quality of software. Tab. 3 shows
49 software metrics used for detection of code smells with
abbreviation and a short definition. All code smells in Tab. 1
do not have metrics to detect.

Table 3 Software Metrics, Their Abbreviations and Brief Definitions
No Metrics Abbreviation Definition

1 Number of Lines of
code LOC Counting of lines of source

code.

2
McCabe Cyclomatic

Complexity per
module

VG

It measures complexity of
source code using number of
linearly independent paths of

a program. …

…

…

…

49 Number of concerns
per component NCC Number of concerns per

component

Each code smell can be detected by one or more metrics.

For instance, Feature Envy can be detected by three metrics
[13].

In programming, objects are used as a structure for
keeping together data and operations which process that data.
Feature Envy indicates Methods that look to be more
concerned in other classes than its real occupied. Feature
Envy methods access a variety of data of foreign classes. This
may possibly is because of misplacing methods and they
should move to another class. Data and operations should be
close as feasible. This proximity can help to improve the
cohesion and ripple effects reduction. Detection of Feature
Envy considers counting the number of data members that
used by method outside of its own class. Detection technique
follows below steps:
1) Method uses more than few attributes of other classes

and this measures by ATFD (Access To Foreign Data)
metric.

2) Method uses more attributes from other classes compare
as its own class and this measure by LAA (Locality of
Attribute Accesses) metric.

3) The used foreign attributes are from a few outside classes
and this measure by FDP (Foreign Data Providers)
metric. This step considers because, if method uses
foreign attributes of one or two outside classes it is
feature envy smell but if method uses foreign attributes
of more outside classes this is Brain Class smell.
Therefore, for separation of this two smells researchers
consider third condition.

In additional, researchers consider counting of all

dependencies of the method, either inside its own class or
outside its own class, and they use FDP metric because if
method uses a few attributes from foreign classes, method
can move easily to foreign classes and dispersion of classes
will decrease. Also, foreign class includes less functionality
and Feature Envy method has high complexity and size.

Feature Envy can be detected by the Eq. (1) and Fig. 2.

Figure 2 Detection technique for Feature Envy [13, 48].

1
3

FDP FEW ATFD FEW LAA≤ ∧ > ∧ < (1)

where FEW takes the value of 5 [13, 48].

On the other hand, Large Class can be detected only by
LOC [13].

Tab. 4 illustrates the relationship between some code
smells and their code smell detection metrics.

Table 4 Code Smells and Software Metrics Used in Detection Them

N
o

Code Smells
No 1 … 19 20 21 22

Metrics

G
od

 C
la

ss

…

G
od

 M
et

ho
d

In
ap

pr
op

ria
te

In

tim
ac

y

D
iv

er
ge

nt

ch
an

ge

Sh
ot

gu
n

su
rg

er
y

1 LOC …
2 VG …

…

…

… … … … … …
36 CM …
38 NCC …

3.2.3 Refactoring Actions

As reported by Fowler, code smells can be removed by

refactoring. Refactoring develops the design of existing code
of software system by modification of internal structure
without affecting its external structure. The main target of
refactoring action is improving software design quality and
developing quality features like understandability, flexibility,
and reusability. Refactoring is not developing the design of
the software system through its initial step of design, but

ATFD > FEW

FDP ≤ FEW

LAA < 1/3

AND Feature Envy

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

376 TECHNICAL JOURNAL 15, 3(2021), 371-380

developing its design through the maintenance phase [7].
Tab. 5 shows refactoring actions name and definition. In
addition, Tab. 6 describes relationship between code smells
and corresponding refactoring actions.

Table 5 List of Refactoring Methods

No Refactoring
Action Name Definition

1 Add Parameter
If there is not available enough data to execute
particular actions for a method, then make a
new parameter to pass the essential data.

2 Inline Method

If body of a method is clearer rather than the
method itself, then replace calls to the method
with the method’s content and remove the
method itself.

… … …

87 Unify Interfaces
with Adapter

Clients cooperate with two classes, but one of
them has a preferred interface. Then, these
interfaces unify with an adapter.

Table 6 Code Smells with Corresponding Refactoring Actions

No Code Smells Refactoring Actions

1 Long Method

Extract Method, Replace Temp with Query,
Replace Method with Method Object,

Substitute Algorithm, Decompose Conditional,
Introduce Parameter Object, Preserve Whole

Object, Replace Parameter with Explicit
Methods, Replace Conditional Logic with

Strategy, Replace Conditional Dispatcher with
Command, Compose Method, Move

Accumulation to Collecting Parameter, Move
Accumulation to Visitor …

…

…

27 Indecent
Exposure Encapsulate Classes with Factory

28 Solution Sprawl Move Creation Knowledge to Factory

3.3 Categorization of Code Smells and Related Concepts

Categorization is grouping objects according to their

similarities and common features or relationship between all
members in the group. It is an essential process for cognition
of things. Categorization organises knowledge and improves
understandability as element inherits categorical attributes.
Fig. 3 shows as an overall view of categorization of code
smells and related concepts.

Each of these categories is explored further in detail in
following subsections.

3.3.1 Categorization of Code Smells

Mantyla [23] proposed a classification of code smells

because; some of the code smells are closely related. Each
category has an appropriate name which is according to
relationship between the bad smells in each category. This
classification is provided to better understanding of smells
and to identify relationship between them. Over the years, the
initial categorization is slightly changed by researchers. As
follows in Tab. 7, classification of bad smells with their
definition is explained [23, 49, 50].

In literature 22 code smells are classified. Researcher
tried to find out the classification of all code smells that are
covered in Tab. 1, and Tab. 8 shows categorization of each
code smell.

Figure 3 Categorization of code smells and related concepts

Table 7 Code Smells Categories with Their Definitions

No Category Definition

1 Bloaters It reveals one part of code that has grown so
large and cannot be successfully handled.

2
Object-

Orientation
Abusers

It reveals incorrect or incomplete use of object-
oriented concepts.

3 Change
Preventers

If changing in one place of code requires many
changes in other places too.

4 Dispensables
Display something unnecessary in the code
whose absence would make the code more
effective.

5 Couplers
Lead to excessive coupling among classes or
indicate what happens if coupling replaced by
excessive delegation.

6 Other Smells These smells do not fit in any of the above
classification.

Table 8 Category-Wise Distribution of Code Smells

No Classification Code Smells Total

1 Bloaters

Long Method, Large Class, Primitive
Obsession, Long Parameter List, Data
Clumps, Complex conditionals, Blob
Operation, Excessively long line of code,

8

2
Object-
Orientation
Abusers

Switch Statements, Temporary Fields,
Refused Bequest, Alternative Classes with
Different Interfaces, Parallel Inheritance
Hierarchies, God Class, Brain Class, Brain
Method, Tradition Breaker, Spaghetti
Code, Complex Class, Class Data Should
Be Private, Typecast, Cyclic
Dependencies, Distorted Hierarchy,
Unstable Dependencies, Schizophrenic
Class, Stable Abstraction Breaker,
Functional Decomposition, God Method,
Indecent Exposure, Solution Sprawl,
Deficient encapsulation, Type checking

24

3 Change
Preventers Divergent Change, Shotgun Surgery 2

4 Dispensables

Duplicate Code, Lazy Class, Data Class,
Dead Code, Speculative Generality, Lazy
Element, Contrived complexity,
Comments, Instanceof, Sibling
Duplication, Internal Duplication, External
Duplication, Similar subclasses, Excessive
return of data

14

5 Couplers
Feature Envy, Inappropriate Intimacy,
Message Chains, Middle Man, Intensive
Coupling, Extensive Coupling,

6

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

TEHNIČKI GLASNIK 15, 3(2021), 371-380 377

6 Other Smells

Missing Template Method, Incomplete
Class Library, mysterious name, Mutable
data, Global data, Inconsistent Names,
Combinatorial Explosion, Type Embedded
in Name, Oddball Solution, Excessively
Large Identifier, Excessively Small
Identifier

11

3.3.2 Categorization of Tools

Various detection tools are able to execute automatic
code inspection. Smell detection tools are categorized either
as plug-in or as stand-alone application [13]. These tools
adopt a little different approaches for detecting code smells.
The Eclipse framework is a common integrated advance
environment, planned to assist tools that can be used to
develop applications and tools or to handle all varieties of
documents. A small plug-in loader is placed at the core of
Eclipse and entire extra functionalities are performed by
plugins [51]. A standalone tool performs locally on the
device and doesn't need anything else to be functional.
Standalone tools have continuity and interpretation
disadvantages. For development of code detection, tool
requires a visual integration into the IDE (Integrated
development environment). A standalone tool cannot
understand which part of code is edited by programmer,
therefore continuity cannot be achieved.

Table 9 Detection Tools with Category and Supported Languages
No Tool Type Languages
1 inFusion Standalone Application Java, C, C++
2 iPlasma Standalone Application C++, Java
3 JDeodorant Eclipse Plug-in Java

4 JSpIRIT Eclipse Plug-in or
Standalone Application Java

5 PMD Eclipse Plug-in or
Standalone Application

Java, C, C++ and
others

6 Checkstyle Eclipse Plug-in Java

7 Stench
Blossom Eclipse Plug-in Java

8 DÉCOR Standalone Application Java

9 inCode Eclipse Plug-in or
Standalone Java, C, C++ and

On the other hand, a smell detector plugin shows

continuously whether any code smells have been realized
without forcing the programmer to leave his IDE. After
finding a smell, tool can easily shows the existence of the
smell and a suggestion how to remove it. This performance
underlines the usability factor. Thus, Smell detection tools
with integrated IDEs are more effective compared to stand-
alone detection tools. Tab. 9 shows categorization of covered
detection tools, and also languages supported by each of
them.

3.3.3 Categorization of Software Metric

Every bad smell involves a particular kind of system
element like classes or methods which can be appraised by
its inner and external characteristics. Metrics can use in file-
level, class-level, component-level, method-level, process-
level and quantitative values-level metrics [52]. In this

exploration study, Software metrics are categorized as class
level and method level metrics. Class level metrics measure
features of class as well as information on the collaboration
among classes. Class level metrics that measure class
communications give information for design the system more
than code. Some of the class level metrics determine division
of labour between methods while others determine the
amount of code affect in other classes with changing a special
class. The best situation is changes in one class have
minimum changes in other classes. When a high level
dependency is between classes, they should locate in same
package. Method level metrics are one of the most useful
metrics. One of the ideal guidelines of programming is that
each method should execute a single clear distinct function
because a long part of code is difficult to understand [53, 54].
Tab. 10 shows categorization of covered software metrics in
Tab. 3.

Table 10 Software Metric’s Categorization

No Metrics
Categorization Software Metrics Total

1 Class Level

LOC, WMC, DIT, CC, CBO, LCOM,
TCC, NOM, NOA, NOC, RFC, NOAM,
NBM, WOC, NOPbA, NProtM, BUR,
BOvR, AMW, NOPvA, NOProtA,
NOPvM, NOPbM, NOProtM, NLOCC,
CDE, DAC, LCC, IVMC, NOFF,
NOFM, LOMC, NOVC, CHC, DOCM,
NCC

36

2 Method Level VG, PAR, MLOC, LAA, MNL, NOAV,
NODM, CP, HM, UP, ATFD, FDP, CM 13

3.3.4 Categorization of Refactoring Actions

Various refactoring actions are available that some
researchers have divided them into 6 categories as follows
[50].
1) Composing methods: Most of the refactoring is
concerned with accurately composing methods because
extremely long methods are root cause of all destructive
qualities. Therefore, this group restructures methods,
eliminates code duplication, and provides better future
improvements.
2) Moving features between objects: Moving
functionality between classes, building new classes, and
hiding performance features from public access is supported
by these refactoring actions.
3) Organizing data: This group assists data management,
replacing primitives with rich class functionality and helps to
solve class associations that construct classes more portable
and reusable.
4) Simplifying conditional expressions: Preventing
conditionals from getting more and more complicated in their
logic over time is facilitated by this group of refactoring
actions.
5) Simplifying method calls: This group streamlines the
interfaces for collaboration between classes and creates
method calls uncomplicated and more obvious to understand.
6) Dealing with generalizations: Moving functionality
across the class inheritance hierarchy, building new classes
and interfaces, and substituting inheritance with delegation

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

378 TECHNICAL JOURNAL 15, 3(2021), 371-380

and vice versa or anything related to abstraction is handled
by this group of actions. Researcher tried to classify all
refactoring actions in Tab. 5 and shows each code smell
belongs to which categorization in Tab. 11.

Table 11 Refactoring Action’s Categorization
Categorization
of Refactoring Refactoring Actions Total

Composing
methods

Extract Method, Inline Method, Extract
Variable, Inline Temp, Replace Temp with
Query, Split Temporary Variable, Remove
Assignments to Parameters, Replace Method
with Method Object, Substitute Algorithm,
Compose Method, Replace Implicit Tree with
Composite

11

…

…

…

Dealing with
generalizations

Pull Up Field, Pull Up Method, Pull Up
Constructor Body, Push Down Field, Push
Down Method, Extract Subclass, Extract
Superclass, Extract Interface, Collapse
Hierarchy, Form Template Method, Replace
Inheritance with Delegation, Replace
Delegation with Inheritance, Chain
Constructors, Extract Composite, Introduce
Polymorphic Creation with Factory Method

15

4 ORGANIZING THE CODE SMELL KNOWLEDGE

One of the most important objectives of code smell

exploratory study is organisation of knowledge of code
smells. Designing of a code smell repository improves
software process, decreases the research gaps and prepares
structural sources to developers. Organising the code smell
knowledge is showed in follows steps.

4.1 Designing Code Smell Template

Designing code smell template is according to

relationships between code smells, software metrics,
detection tools and refactoring actions. A code smell
template is designed and an instance of it is presented.

Code smell Template
Name: name of special code smell
Alias: This is an alternate name for Code Smell
Definition: Definition of special code smell
Links: The list of databases that information about special code smell is
available
Category: The name of category that special code smell belongs to
Detection Tools: The name of tools that can detect special code smell
Software Metrics: The name of metrics that can detect special code
smell
Refactoring Actions: The name of refactoring techniques that are able to
remove special code smell

4.2 Designing Code Smell Database Schema

Based on designed code smell template a schema is

designed for describing of its structure. A code smell
database schema characterizes the tables and corresponding
fields contained in a database. It displays as a list of tables
that every table contains a sub list of fields beside the related
data type. Code smell database schema includes main tables
such as code smell table, metric table, tool table, refactoring
table and relational tables between the main tables.

Example of Code smell Template
Name: Lazy Class
Alias: Freeloader
Definition: A class which is not doing sufficient work
Links: https://refactoring.guru/smells/lazy-class, Martin, F. (1999).
Refactoring: improving the design of existing code. Pearson Education
India.
Category: Dispensables
Detection Tools: DÉCOR, PMD
Software Metrics: LOC, VG, WMC, DIT, CBO, NOM, NOA
Refactoring Actions: Inline Class, Collapse Hierarchy, Inline Singleton

Figure 4 Web page showing Code smell Listing

4.3 Designing Code Smell Database Schema

Based on designed code smell template a schema is

designed for describing of its structure. A code smell
database schema characterizes the tables and corresponding
fields contained in a database. It displays as a list of tables
that every table contains a sub list of fields beside the related
data type. Code smell database schema includes main tables
such as code smell table, metric table, tool table, refactoring
table and relational tables between the main tables.

4.4 Making the Knowledge Accessible on Cloud Platform

Code smell knowledge collected from different sources,

is organized and made accessible on cloud platform. A new
code smell web application is designed using Angular,
Material Design, Node Js, Express JS and MongoDB for
organization of code smell knowledge. Angular is an
application design framework and development platform for

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

TEHNIČKI GLASNIK 15, 3(2021), 371-380 379

creating efficient and sophisticated mobile and desktop
single-page applications. Some screenshots of code smell
web application are given in Fig. 4.

The application is available on Heroku cloud platform at
https://serene-tundra-28026.herokuapp.com and is under
construction. All the tables from 1 to 11 with details are
available in the site.

5 CONCLUSION

Code smell topic requires to be understood in depth. The

objective of this exploratory study is to explore the code
smell problem and its related concepts. A code smell
repository is designed and code smell knowledge is arranged
systematically. It is accessible on cloud platform. It enables
developers and practitioners to set up a powerful foundation
for exploring their idea about code smells. Also, this study
can help other researchers to preserve a lot of time and
resources. In the future, researcher plans to enhance the code
smell repository by adding formulas and threshold values.
Further this repository can be used to analyse the relationship
between code smells and related concepts for identifying a
minimal set of metrics, tools or refactoring actions to detect
maximum set of code smells. Data mining techniques such as
association rule mining can be used for finding representative
software metrics for each code smell category. Clustering can
be used to get a new way of categorizing code smells. Code
smell repository and techniques of extracting insights from it
can be made available to developers and practitioners.

6 REFERENCES

[1] Kaur, A. & Singh, S. (2018). Detecting Software Bad Smells

from Software Design Patterns using Machine Learning
Algorithms. International Journal of Applied Engineering
Research, 13(11), 10005-10010.

[2] Singh, G. & Chopra, V. (2013). Design and implementation of
testing tool for code smell rectification using c-mean algorithm.
International Journal of Advanced Research in Computer
Science, 4(9).

[3] Guggulothu, T. (2019). Code Smell Detection using Multilabel
Classification Approach. arXiv preprint arXiv:1902.03222.

[4] Lanza, M. & Marinescu, R. (2007). Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and
improve the design of object-oriented systems. Springer
Science & Business Media.

[5] Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009).
The evolution and impact of code smells: A case study of two
open source systems. The 3rd IEEE International Symposium
on Empirical Software Engineering and Measurement, 390-
400. https://doi.org/10.1109/ESEM.2009.5314231

[6] Mannan, U. A., Ahmed, I., Almurshed, R. A. M., Dig, D., &
Jensen, C. (2016). Understanding code smells in Android
applications. IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft 2016), 225-
236. https://doi.org/10.1145/2897073.2897094

[7] Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

[8] Wangberg, R. (2010). A Literature Review on Code Smells and
Refactoring. Master's thesis. Department of Informatics,
University of Oslo, Norway.

[9] Humayoun, S. R., Hasan, S. M., Al Tarawneh, R., & Ebert, A.
(2018). Visualizing software hierarchy and metrics over

releases. Proceedings of the 2018 International Conference on
Advanced Visual Interfaces, 1-5.
https://doi.org/10.1145/3206505.3206548

[10] Srinivasan, K. P. (2015). Unique Fundamentals of Software
Measurement and Software Metrics in Software Engineering.
International Journal of Computer Science & Information
Technology (IJCSIT), 7(4). https://doi.org/10.5121/ijcsit.2015.7403

[11] Eisty, N. U., Thiruvathukal, G. K., & Carver, J. C. (2018). A
survey of software metric use in research software
development. The 14th IEEE International Conference on e-
Science (e-Science 2018), 212-222.
https://doi.org/10.1109/eScience.2018.00036

[12] Do Vale, G. A. & Figueiredo, E. M. L. (2015). A method to
derive metric thresholds for software product lines. The 29th
IEEE Brazilian Symposium on Software Engineering, 110-119.
https://doi.org/10.1109/SBES.2015.9

[13] Fontana, F. A., Braione, P., & Zanoni, M. (2012). Automatic
detection of bad smells in code: An experimental assessment.
Journal of Object Technology, 11(2), 5-1.
https://doi.org/10.5381/jot.2012.11.2.a5

[14] Paiva, T., Damasceno, A., Figueiredo, E., & Sant’Anna, C.
(2017). On the evaluation of code smells and detection tools.
Journal of Software Engineering Research and Development,
5(1), 7. https://doi.org/10.1186/s40411-017-0041-1

[15] Fowler, M. (2003). EtymologyOfRefactoring.
https://martinfowler.com/bliki/EtymologyOfRefactoring.html
(accessed 16 October 2020).

[16] Webster, B. F. (1995). Pitfalls of object-oriented development.
M and T books.

[17] Brown, W. J., Malveau, R. C., Brown, W. H., & McCormick,
W. H. III, & Mowbray, T. J. (1998). AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley, 336
pages.

[18] Singh, S., & Kaur, S. (2018). A systematic literature review:
Refactoring for disclosing code smells in object oriented
software. Ain Shams Engineering Journal, 9(4), 2129-2151.
https://doi.org/10.1016/j.asej.2017.03.002

[19] Fowler, M. & Beck, K. (2019). Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 418 pages.

[20] Van Emden, E., & Moonen, L. (2002). Java quality assurance
by detecting code smells. Proceedings of the Ninth IEEE
Working Conference on Reverse Engineering, 97-106.
https://doi.org/10.1109/WCRE.2002.1173068

[21] Kerievsky, J. (2005). Refactoring to patterns. Pearson
Deutschland GmbH.
https://doi.org/10.1007/978-3-540-27777-4_54

[22] Mäntylä, M. (2002). Experiences on applying refactoring.
Software Engineering Seminar, 1-32.

[23] Mantyla, M. (2003). Bad smells in software-a taxonomy and an
empirical study. Helsinki University of Technology.

[24] Li, W. & Shatnawi, R. (2007). An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution. Journal of Systems and Software,
80(7), 1120-1128. https://doi.org/10.1016/j.jss.2006.10.018

[25] Shatnawi, R. & Li, W. (2008). The effectiveness of software
metrics in identifying error-prone classes in post-release
software evolution process. Journal of Systems and Software,
81(11), 1868-1882. https://doi.org/10.1016/j.jss.2007.12.794

[26] Fontana, F. A., Mariani, E., Mornioli, A., Sormani, R., &
Tonello, A. (2011). An experience report on using code smells
detection tools. The Fourth IEEE International Conference on
Software Testing, Verification and Validation Workshops, 450-
457. https://doi.org/10.1109/ICSTW.2011.12

[27] Ouni, A., Kessentini, M., Sahraoui, H., & Hamdi, M. S. (2012).
Search-based refactoring: Towards semantics preservation.
The 28th IEEE International Conference on Software
Maintenance (ICSM 2012), 347-356.

Lida Bamizadeh, et al.: Design and Implementation of a Web-Based Application for Code Smells Repository

380 TECHNICAL JOURNAL 15, 3(2021), 371-380

https://doi.org/10.1109/ICSM.2012.6405292
[28] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., & De Lucia,

A. (2014). Do They Really Smell Bad? A Study on Developers'
Perception of Bad Code Smells. Proceedings of the 30th
International Conference on Software Maintenance and
Evolution (ICSME 2014), 101-110.
https://doi.org/10.1109/ICSME.2014.32

[29] Pinto, G. H. & Kamei, F. 2013. What programmers say about
refactoring tools? An empirical investigation of stack overflow.
Proceedings of the 2013 ACM Workshop on Refactoring Tools,
33-36. https://doi.org/10.1145/2541348.2541357

[30] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M.,
De Lucia, A., & Poshyvanyk, D. (2015). When and why your
code starts to smell bad. The 37th IEEE/ACM International
Conference on Software Engineering, Vol. 1, 403-414.
https://doi.org/10.1109/ICSE.2015.59

[31] Kaur, A. & Dhiman, G. (2019). A review on search-based tools
and techniques to identify bad code smells in object-oriented
systems. Harmony search and nature inspired optimization
algorithms, Springer, Singapore, 909-921.
https://doi.org/10.1007/978-981-13-0761-4_86

[32] Fontana, F. A., Lenarduzzi, V., Roveda, R., & Taibi, D. (2019).
Are architectural smells independent from code smells? An
empirical study. Journal of Systems and Software, 154, 139-
156. https://doi.org/10.1016/j.jss.2019.04.066

[33] Reis, J. P. D., Carneiro, G. D. F., & Anslow, C. (2020). Code
smells detection and visualization: A systematic literature
review. arXiv preprint arXiv:2012.08842

[34] Martins, J., Bezerra, C., Uchôa, A., & Garcia, A. (2020,
October). Are code smell co-occurrences harmful to internal
quality attributes? A mixed-method study. Proceedings of the
34th Brazilian Symposium on Software Engineering, 52-61.
https://doi.org/10.1145/3422392.3422419

[35] Kaur, A. (2020). A systematic literature review on empirical
analysis of the relationship between code smells and software
quality attributes. Archives of Computational Methods in
Engineering, 27(4), 1267-1296.
https://doi.org/10.1007/s11831-019-09348-6

[36] Al-Shaaby, A., Aljamaan, H., & Alshayeb, M. (2020). Bad
Smell Detection Using Machine Learning Techniques: A
Systematic Literature Review. Arabian Journal for Science
and Engineering, 45(4), 2341-2369.
https://doi.org/10.1007/s13369-019-04311-w

[37] Alkharabsheh, K., Crespo, Y., Manso, E., & Taboada, J. A.
(2019). Software Design Smell Detection: a systematic
mapping study. Software Quality Journal, 27(3), 1069-1148.
https://doi.org/10.1007/s11219-018-9424-8

[38] Lake, A. & Cook, C. (1994). Use of factor analysis to develop
OOP software complexity metrics. Proceedings of the 6th
Annual Oregon Workshop on Software Metrics, Silver Falls,
Oregon.

[39] Vidal, S., Berra, I., Zulliani, S., Marcos, C., & Pace, J. A. D.
(2018). Assessing the refactoring of brain methods. ACM
Transactions on Software Engineering and Methodology
(TOSEM 2018), 27(1), 1-43. https://doi.org/10.1145/3191314

[40] Fontana, F. A., Mangiacavalli, M., Pochiero, D., & Zanoni, M.
(2015). On experimenting refactoring tools to remove code
smells. Scientific Workshop Proceedings of the XP2015, 1-8.
https://doi.org/10.1145/2764979.2764986

[41] Srinivasan, K. P. & Devi, T. (2014). A complete and
comprehensive metrics suite for object-oriented design quality
assessment. International Journal of Software Engineering and
Its Applications, 8(2), 173-188.

[42] Alshayeb, M., Shaaban, Y., & Al-Ghamdi, J. (2018). SPMDL:
software product metrics definition language. Journal of Data
and Information Quality (JDIQ), 9(4), 1-30.
https://doi.org/10.1145/3185049

[43] Shepperd, M. & Ince, D. (1993). Derivation and validation of
software metrics. Oxford University Press, Inc.

[44] Sarker, M. (2005). An overview of object oriented design
metrics. From Department of Computer Science, Umeå
University, Sweden.

[45] Fenton, N. & Bieman, J. (2014). Software metrics: a rigorous
and practical approach. CRC press.
https://doi.org/10.1201/b17461

[46] Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E.,
Cirilo, E., & Kastner, C. (2018). Evaluating domain-specific
metric thresholds: an empirical study. The IEEE/ACM
International Conference on Technical Debt (TechDebt 2018),
41-50. https://doi.org/10.1145/3194164.3194173

[47] Núñez-Varela, A., Perez-Gonzalez, H. G., Cuevas-Tello, J. C.,
& Soubervielle-Montalvo, C. (2013). A methodology for
obtaining universal software code metrics. Procedia
Technology, 7, 336-343.
https://doi.org/10.1016/j.protcy.2013.04.042

[48] Lanza, M. & Marinescu, R. (2007). Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and
improve the design of object-oriented systems. Springer
Science & Business Media.

[49] Saranya, G. (2017). Code smell detection and prioritization of
refactoring operations to enhance software maintainability.
Faculty of Science and Humanities, Anna University.

[50] Refactoring.guru. (n.d.b). Refactoring Techniques.
https://refactoring.guru/refactoring/techniques (accessed 16
October 2020)

[51] Slinger, S. (2005). Code smell detection in Eclipse. Delft
University of Technology.

[52] Singh, M. & Salaria, D. S. (2013). Software defect prediction
tool based on neural network. International Journal of
Computer Applications, 70(22).
https://doi.org/10.5120/12200-8368

[53] Virtual Machinery. (n.d.a). Object-Oriented Software Metrics
- Class Level Metrics. Refactoring.
http://www.virtualmachinery.com/jhawkmetricsclass.htm#:~:t
ext=of%20Methods%20Called%20in%20class,Fan%20In%2
0and%20Fan%20Out (accessed 16 October 2020)

[54] Virtual Machinery. (n.d.b). Object-Oriented Software Metrics
- Method Level Metrics. Refactoring.
http://www.virtualmachinery.com/jhawkmetricsmethod.htm#:
~:text=We%20can%20start%20at%20the,as%20a%20measur
e%20of%20productivity.&text=This%20is%20a%20measure
%20of,through%20a%20piece%20of%20code (accessed 16
October 2020)

Authors’ contacts:

Lida Bamizadeh, research scholar (Corresponding author)
Department of Computer Science, Savitribai Phule Pune University,
Ganeshkhind Rd, Ganeshkhind, Pune, Maharashtra 411007, India
9503039485, lida_bamizadeh@yahoo.com

Binod Kumar
JSPM’s Rajarshi Shahu College of Engineering (MCA Dept.),
Tathawade, Pimpri-Chinchwad, Maharashtra 411033, India
9665548971, binod.istar.1970@gmail.com

Ajay Kumar
JSPM Jayawant, Technical Campus,
Tathawade, Pimpri-Chinchwad, Maharashtra 411033, India
7972095030, ajay19_61@rediffmail.com

Shailaja Shirwaikar
Department of Computer Science, Savitribai Phule Pune University,
Ganeshkhind Rd, Ganeshkhind, Pune, Maharashtra 411007, India
7066046154, scshirwaikar@gmail.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

