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SUMMARY 
Mechanisms of cortical psychoses are approached by complementing big data-driven genetics and imaging with a putatively 

subverted neurovascular “reverse plumbing” by arteries. The “cortical spread” of grey matter loss in schizophrenia and the mid-
pericallosal “congestion” in fMRI of periodic catatonia - treatable electromagnetically along arteries - are interpreted in terms of 
the fastest interstitial outflow through the Cerebral IntraMural Reverse Arterial Flow-engine (CIMURAF, Treviranus 2018-19) 
draining “waste” via arterio-adventitial lymphatics to the neck. Such repetitively sliding segments of CIMURAF are wrung 
downstream by muscles likely steered by the neurovascular pterygopalatine ganglion. At the pericallosal artery, along its ideal long 
straight segment, this likely happens diverging from the mid-callosum towards the front and the back. In the case of a convergent
inversion a mid-callosal clash will result, which is observable in psychoses as a mid-callosal high-flow-spot simultaneously with
hyper-perfusions of branches and “backwatering” of pial vessels with reactive waste - till date interpreted psycho-mathematically. 
CIMURAF might also accelerate the perivascular intrusion of MCs by flushing autocrine signals (of which electro-magnetism moves
the dipoles) through a putative periadventitial counter-current. Psychoses plausible occur through tryptase-mediated attacks 
operated by mast cells against oligodendrocytes` cytoskeleton (Medic 2009) and probably via complement-4 (Schizophrenia WG, 
2014) against neurons. Usually MCs are essential long-lived “orchestrators” of homeostases and immune or barrier defences 
interacting with nerves, immunocytes, organs, and routes. MCs after somatic programming as to “destination & destiny” 
(Treviranus 2017a, 6.2., 2018) rapidly intrude also into the brain`s parenchyma, first within the lymphatics and then putatively by 
crossing-over to extraluminal arterial routes. MCs transverse the BBBs, while macrophages only trespass in “disease“ (Faraco et
al. 2017). Both can be “subverted” by a list of microbes (and putatively blown up by COVID-19 within walls). Enuresis and MCs’ 
reactions to clozapine add to the interactive support from (epi-)genetics and imaging.
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*  *  *  *  *  

INTRODUCTION

“This is the great error of our day (…): the 
physicians separate the soul from the body.” 

Plato 

Research on psychoses struggles to reconcile big 
data with macro-physiological mechanisms (Ruzzo & 
Geschwind 2016) and thus witnesses a “near complete 
absence of clearly associated biological changes.” 
(Dhindsa & Goldstein 2016). Here a convergent 
“tangible”, yet little tested, theory, involving the most 
rapid (neurovascular) interstitial fluid outflow within 
in the cerebral arterial walls (CIMURAF) and its 
external reverse acceleration of adventitial mast cells 
(Treviranus 2019a,p) is proposed as a main cause of 
cortical immuno-vascular dysfunction in the context of 
“psychoses”. Mast cells (MCs) are prototype neuro-
immune partners (Forsythe 2019), and emerge as ubi-
quitous players (Singh et al. 2016, Daniel 2019), also 
inside the brain (Neumann 1890, Olsson 1964, Dines 
& Powell 1997, Skaper et al. 2012, 2018, Gilfillan et 
al. 2011, Karagkouni et al. 2013, Silver & Curley 
2013). MCs guard the lymphatic and blood vessels 
(Kunder et al. 2012), and the BB-barrier (Theoharides 
1996), which they can pass, what macrophages in 
health cannot (Faraco et al. 2017). 

Yet MCs also act as assailants of oligodendrocytes 
(ODCs; Medic 2009) and probably of neurons. In SCZ 
ODCs indeed are diminished in layer 3 (BA9) and VI of 
(BA9) of the PFC by 20-25% and in WM (Vostrikov et 
al. 2018). 

Here some “real-biological” hypotheses are applied 
to the symmetrical mounting of cortical damage in SCZ 
(Sun et al. 2009) and the perfusion-related findings in 
periodic catatonia (perCat; Foucher et al. 2019). 

THE INTRAMURAL FLOW OF ARTERIES 

DRAINING BRAINS’S INTERSTITIUM  

TO ADVENTITIAL LYMPHATICS 

Arteries resurface in neuropsychiatry (Meynert 
1867/-68, Reynolds & Trimble 2009, iCross-Disorder 
Group 2019) and have joined psycho-neuro-immuno-
logy (Hanson & Gottesman 2005, Maes et al. 2000)
while feeding the cerebral 17-fold performing capilla-
ries (Wilhelm et al. 2016) falling ill in SCZ (Uranova 
et al. 2010, Delgado-Marín et al. 2019). Brain cells are 
– without buffering – dependent on vessels for heat 
and waste removal and the supply of energy, oxygen, 
water, and nutrition. The interstitial one among the extra-
cellular spaces separates brain cells by 1/5 of total brain 
volume and hereby distances adhesive and charged cells 
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by around 40 nm so that waste products may escape by 
diffusion (Kaur et al. 2020).  

Arteries` role here is reactivated through a model 
(Cerebral IntraMURal Reverse Flow; details: Treviranus 
2018p, 2019a,p) postulating their pervasive “aortic blue-
print” (whereby neuron-driven muscles only switch co-
axial tubes; see Figure 1) to realize brain´s quickest 
“Intramural PeriArterial Drainage (IPAD)” (Albargothy, 
2018) of interstitial fluid - between sliding peri-mus-
cular basement membranes. Besides histo-topological 
correspondences (Figure 1, 2) CIMURAF added the 
energetic drive from vascular smooth muscles (VSMCs) 
– now a part of IPAD; Aldea et al. 2019). Atrophy by 
being correlated in psychoses with the rarely far, but 
usual “one-hop” dys-functional connectivity support 
atrophy (somehow) to be driven by the latter (Shafiei 
2019) – or by another cause: While the “epicenter” here 
points to the cingulate, where both salience and DM-
networks border, it hereby also points to the long, 
straight pericallosal artery (pCallA), where CIMURAF 
should deploy accelerations. Conversely at the sub-
genual u-turn of the pCallA depressant MCs could “fly 
off the adventitial track», e.g. in depressant mastocyto-
sis (Boddaert et al. 2017). Here the neuronal massacre 
of depression occurs (Drevets et al. 2008), nullifying 
ECT (Liu et al. 2015, Qiu et al. 2018). 

The VSMCs only (repetitively) twist membraneous 
tubes co-axially in a segment which thereby is moved 
up stream (!) under neural command, hereby simul-
taneously creating and undoing pairs of slight hyper-
boloid “candy-cracker” stenoses (interiorly constraining 
the arterial wall enough to move fluid upstream within a 
sliding closed segmented “ring” loaded with “waste”-
clearing fluid to move between the membranes wrap-
ping the VSMCs, Figure 2, a segment which never-
theless has radially open shutters towards the peri-
vascular space creating a parallel flow overcoming less 
resistance). Since such accelerations of the segment (as 

in the guts` peristalsis) are thought to be directed by 
neurovascular commands (e. g. from PPG), intramural 
(intralaminar) pressure should build up and be relieved 
by the moving stenoses to an average. Segments moved 
by contrary commands instead should pressurize a sec-
tion between them more, and eventually transmit peaks 
to branches, which thus would be injected by “waste”, 
which could well transport various principles leading e. 
g. to degranulations from MC-guardians at the BBB. 
Conversely divergent moves of two segmented “rings” 
would cause a negatively pressured segment eventually 
suctioning from the wall of branches.  

Vascular, arterial factors at first sight seem to be 
non-contributing to psychoses (Keshavan & Kaneko 
2013) since they occur at similar rates in vascular and 
Alzheimer’s dementia, the latter worsening under blo-
cked drainage (Wang et al. 2019). Yet CADASIL a 
small vessel and subcortical stroke disorder with enlar-
ged perivascular Virchow-Robin spaces (VRS) with 
intact BBB (Rajani et al. 2019) tells otherwise, as it 
seems to be interpretable in terms of CIMURAF: The 
proposed sliding surfaces between the membranous 
wrapping of VSMCs of its “aortic blueprint” could act 
as a molecular grinding mill between these VSMCs (Liu 
et al. 2017), and such could cause the molecular fragmen-
tation of Notch-3 noted in CADASIL (Young et al. 2019). 
Notch-molecules replace MCs` canonical c-kit at every 
step of adhesion (Murata et al. 2019) and vascular remo-
deling (van Engeland et al. 2019). CIMURAF was the 
first model to propose a muscular suction driving force 
for the observed diffusive ECS solute transport - besides 
not qualified (Asgari et al. 2016) pulsation - and actually 
inverse trans-astrocyte flow (Treviranus 2019). CIMURAF 
also questions macro-electromagnetic therapies (Argyelan 
et al. 2019, McWirther et al. 2015), fluctuations influen-
cing fMRI (Wittaker et al. 2019) or outlasting ECT 
(Cabral-Calderin et al. 2016, Bächinger et al. 2017), as 
well as EEG-microstates (da Cruz et al. 2020). 

Figure 1. The „pervasive aortic blueprint“ of the CIMURAF-model allows to identify probable obliquely running 
vascular smooth muscle cells from transverse histological cuts of cerebral arteries attained by Human Cerebral Amyloid 
Angiopathy aggregating A  flowing between the basement membrane wrappings of the VSMCs (Keable et al. 2016). 
RUQ: Krsti  1984 
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Figure 2. The image from the leading intramural IPAD-model (Albargothy et al. 2018; Fig 1e; CCBY) “shows A
tracer (…) within the wall of the artery in a spiral or ladder-type distribution” - which by superimposing white rings 
seems more compatible with separate rings of tracer as CIMURAF would predict them to be created by sliding twisted 
segments (see insert) 

THE PERICALLOSAL ARTERY & 

INTRAMURAL ARTERIAL OUTFLOW 

The pCallA-complex next to (peri-)callosal regions 
supplies the anterior 2/3 of the medial and supero-
medial hemispherical surfaces. The corpus callosum 
(CCALL) in front is supplied by the pCallA, alias seg-
ments A2 to A5 of the anterior cerebral artery (ACA). 
While in 1/3 the pCallA ends on the precuneus, in 
nearly 2/3 the frontal supply is continuous with bran-
ches from the posterior cerebral artery (PCA) via the 
outer perisplenial circle (and an inner plexus cooling 
the fibres) fed in 88% by the occipital medial artery 
(Blaauw & Meiners 2020). 

The callosal drainage occurs via the internal cere-
bral veins (Kahilogullari et al. 2008, Wolfram-Gabel & 
Maillot 1992). The centerfold pCallA’s networks branch 
out laterally (Kakou et al. 2000) providing a topo-
logical alternative to psycho-mathematics. 

Subregions like the subgenual one of the anterior 
cingulate cortex (sgACC) (Touroutoglou & Dickerson, 
2019) constitute driving hubs of functional macro-
connectivity (FC). The posterior CC (pCC) provides 
internally-directed cognition within the DMN, while 
its dorsal part tunes the brain´s metastability and focus 
(Leech & Sharp 2014). 

The pCallA supplies the inter-hemispheric linker 
CCALL (Roland et al. 2017) and the gyrus cinguli re-
lated to effort and need (Heilbronner & Hayden 2016) 
averaging rewards (Aberg et al. 2020). In SCZ the WM 
of the CCALL shows early and lasting (cognition-
hampering; Ohoshi et al. 2019) micro- and only late, 
posterior macro-losses (Madigand et al. 2019) - as if 
by an early (maybe arterial) hit followed by progres-
sion (Thompson et al. 2009). 

The spectrum towards schizophrenia 

A cortical “spread of psychosis” emerges from lon-
gitudinal imaging of schizophrenia (SCZ; Velakoulis et 
al. 2006, Bellanis et al. 2010, Pantelis et al. 2003, 2005, 
Dietsche et al. 2017) through at times revealing sagit-
tally shifted windows of neuro-progression (Lewan-
dowski et al. 2020).

Besides cortical processes, such of the striatum are 
key to prodromata and SCZ (Hubl et al. 2017, McCu-
tcheon et al. 2019), while still adding the L-sided hyper-
perfusion of sensorimotor cortex to that of the putamen 
(Foucher et al. 2018). 

Not parkinsonism or dyskinesia, but other neuro-
motor anomalies like (maybe only arterially explainable) 
“soft signs” (NSS) are prevalent in SCZ and in homo-
genous proportion among patient’s relatives (sparing 
complex fine movements; Schäppi et al. 2018) – whilst 
predicting grey matter-losses (GM) in FEP. These un-
explained symptoms fluctuate independently (Bachmann 
& Schröder 2018). NSS do not correlate with cortico-
subcortical disbalance (Schröder et al. 1998), but with 
schizotypal traits (Galindo et al. 2016), whereby these 
manifest clearer cingulate than subcortical changes 
(Derome et al. 2020a,b). 

Periodic catatonia 

In up to 12% of SCZ the WKL-classification (Fou-
cher et al. 2020) distinguishes the in 27% familial perio-
dic catatonia (perCAT) as a notably qualitatively disor-
dered motricity with initially insufficient compromise of 
other systems. PerCAT shows a (in 5/6 also affective) 
bipolar dimensional, recurrent-progressive course (Cercle 
d`excellence 2020). Among segregated cortico-subcor-
tico-thalamo-cortical circuits (CSTCs) perCat seems to 
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spread from those to the lateral (LMA) and supplemen-
tary (SMA; Walther et al. 2017) motor areas (Haber & 
Calzavara 2008), to the one to ACC (destabilizing 
effort), and earlier to that to OFC (destabilizing mood), 
yet potential deficits of the caudal cingulate motor area 
of cingulate cortex (CgCx) match its core kinetic 
deviations including mutism.  

After averaging fMRT-signals during 6 tasks the 
remnants mirrored the, possibly vascular, “trait” (Foucher 
et al. 2018) as a high-flow-spot on the mid-medial CgCx 
with hyperperfusions on the L side in the same coronal 
segment: of the precentral gyrus, posterior Broca, and 
supplementary motor area (SMA) (Foucher et al. 2020). 
The Bernese perCat-similar patients replicated this with 
a slightly more anterior high-flow-spot plus again an 
orthogonal catatonia-correlated hyperperfusion of both 
SMA and L ventral premotor focus, “compensating” 
(Walther et al. 2017) for a disconnected 1st CSTC 
through ACC or rather 5th through SMA (Numbering 
backwards on Figure 3, Alexander et al. 1986). These 
high-flow-spots could result from “clashing” inversions 
of normally divergent CIMURAFs: both to the mid-
callosum (instead towards the front and rear ends).  

Patients with perCAT are relieved by a robotorized 
rTMS (Zorn et al. 2012) tracing an individual path 
(probably) along the MCA-branches (communicating 
over the top with those of the pCallA; Ugur 2005). On 
fMRT/PET-overlap images during Alzheimer’s halluci-
nations less perfusion and tissue of the R anterior in-
sula (as from a distal MCA-superior division disorder) 
again correlate with the L mid-cingulate gyrus (Blanc 
et al. 2014). 

The intriguing link between enuresis  

and severe mental disorder 

Cerebral micturition control (Griffiths 2015) refers 
to storage and voiding (Harvie et al. 2019), and the 
thalamus, active in both, relays bladder sensations from 
the brainstem’s PAG towards the prefrontal decider to 
void (Arya & Weissbart 2017): in childhood enuresis 
this path is disconnected on the L. Equally the L medial 
orbital superior frontal gyrus, in front of the knee of the 
CCALL – a hub amidst all other players like the CgCx 
above the “knee” - was less active (Zhu et al. 2019).  

The rate of (strongly hereditary) childhood enuresis 
in SCZ (as noted since Kraepelin) is twice that in si-
blings and thrice the basic prevalence (21% vs. 11% vs. 
7%), while implicating an (early spreaded) prolongation 
of prodromata by 2 years, and worse cognition. While 
cognition suffered only in the fluency tests, late mic-
turition control correlated per se with less GM. In SCZ 
this was most significant at a spot on the R superior 
frontal gyrus. In controls likely GM scars persist and a 
strong urge comes with a broad activation of the PFC 
manifesting a zone of GM loss again from the medial 
PFC down to the sgACC (Hyde et al. 2008). Late onset 
of enuresis in SCZ (36%) has been twice that in BPAD 
and predicted negative symptoms (Hollis 2003). 

All these areas (besides some lesser temporal and 
occipital ones) could be reached by a toxic intrusion 
along the pCallA and to the left MCA (since it supplies 
the routes of bladder interoception signals through ACC 
and insula). This unique developmental and also more 
actual and variegate “intoxication” could stem from 
adventitially intruding MCs, if they would ascend 
within the carotid sheath from the crossing of the 
lymphatic thoracic duct with the aortic arch – assuming 
that ascending lymphatics at that level would open up to 
expel the fluid column in order to hasten transport of 
epitopes to lymph nodes from some bladder or nail 
infection. Acute episodes of SCZ in non-adults do 
present with 20% UTIs versus 13% in MDD (e. g. 
Carson et al. 2017), and bladder infections can be latent 
(Gilbert et al. 2019). 

AN IMMUNO-LYMPHO-ARTERIAL 

FRAMEWORK OF CONCATENATED 

HYPOTHESES

The overall framework used evolves as follows:  
A. The perfusion patterns deranged in psychoses, as 
referred to the sagittal supply of the brain branching off 
laterally over the cortex from the pericallosal artery 
(pCallA), B. are put into relation with the intramural 
reverse CIMURAF maximally generated within the 
straight pCallA. C. The pseudo-peristaltic neurovascular 
steering by the pterygo-palatine ganglion (PPG) instructs, 
D. the CIMURAF to wring out - by “candy-cracker 
twists” - interstitial fluid towards arterio-adventitial 
lymph vessels (Droszs 2008, Xu 2007, Bocharov 1968), 
while the meningo-lymphatics reach the same carotid 
sheath (jugular) deep cervical lymph nodes along veins 
(Aspelund et al. 2015, Louveau et al. 2018, Pal et al. 
2020, Absinta 2017). E. A putative adventitial perivas-
cular flow parallel to CIMURAF (by open radial shut-
ters of such sliding wrung segments) would trigger 
known counter-flow movements of immunocytes like 
MCs (by flushing all but rear autocrine signals; Trevi-
ranus 2019b,p). F. Long-lived MCs - after chemico-
physical programming (Csaba 2014) at bodily barriers 
as to “destination & destiny” (6.2, Treviranus 2017b) – 
reach the brain via lympho-adventitio-arterial routes. G.

The MCs` “orchestration” of also cerebral agendas for 
metabolic, morphological, “Freudian” sexual, reproduc-
tive, stress-, and defense responses is often hidden - as 
in acupuncture (Jung et al. 2017). H. MCs modulate the 
complex double-layer-dural immune responses (Coles et 
al. 2017) and move along arteries, lymphatics, and cal-
varial channels (Cai et al. 2019). I. MCs invade the 
thalamus balancing sleep and the «cognitive complexity 
divide» (Treviranus 2017, 2018, Morrow & Fitzpatrick 
2017). J. MCs irritate the cortical surfaces escalating 
“epileptoïd” symptoms towards psychosis (Blumer et 
al. 2004, Bob et al. 2006) and, K. after descending via 
the arachnoid trabeculae (Engelhardt & Marchetti 2020).  
L. by their proteases (Douahier et al. 2014) attack 
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oligodendrocytes (ODCs) and probably also neurons 
coated with complement-4 (C4), as reflected by genetics 
(Schizophrenia WG, 2014). M. MCs as first defendants 
against unknown germs at barriers and nail folds (Ito et 
al. 2015) are targeted by their “subversions”.  

Mast cells: the reason for the might  

of clozapine? 

While Clozapine (CLZ) is uniquely effective at least 
in early SCZ and perCAT (Lin et al. 2016), e. g. by 
dampening thalamo-cortical glutamatergic transmission 
(Fukuyama et al. 2019), therapeutic consumers are threa-
tened by unwanted side-effects mostly from its meta-

bolites (which can be modulated e.g. by fluvoxamine; 
Polcwiartek & Nielsen 2016, Lu et al. 2018): weight 
gain, enuresis and obstipation are common (Every-Pal-
mer et al. 2017, Luche & Francois 2020), and myocar-
ditis or hematological can be rapidly lethal (Leung et al. 
2019, De Berardis et al. 2018). Unfortunately many 
attempts to work around these costs through variant 
molecules have been unfruitful, while its receptor-
profile and short stay on the D2-receptor are shared by 
various competitors (Nucifora et al. 2017). CLZ via the 
clathrin-mediated endocytosis prevents MC-activation 
via IL-37 and MrgX2 (Murakami et al. 2018) - and cell 
entry by COVID-19 - and inhibits the focal adhesion 
protein paxillin mediating MCs`cytoskeleton responses 

Table 1. Subversive (self-serving) manipulations of mast cells by pathogens 

Pathogen Mechanism Source (et al.) 

Dengue virus IgG-enhanced uptake Rathore & St John 2020 

COVID-19 ? IL-1-excess, HA, proteases Kritas 2020 

COVID-19 ? ? Cytokine storm Kunder 2011 

COVID-19 ? Pulmonary endothelitis Theoharides 2020 

COVID-19 ? MC sustain B-cell function Palm 2016 

COVID-19 – NO RISK? MCAS, mastocytosis Valent 2020 

MIS-C/Takotsubo MC-Etosis (Treviranus 2019) Riollano-Crus 2020  

HIV-1 CXCR4, CCR5, function, death Taub 2004 

HIV-1 Colonize MCs and switch to Tc Jiang 2015 

HHV-8 Kaposi sarcoma Angiogenic, MC-IgE-reaction Ayers 2018, Byakwaga 2020 

Cytomegalovirus (CMV) TRAIL-triggers apoptosis Smith 2013

Listeria monocytogenes Broad changes Jobbings 2013 

Bartonella spp., Brucella spp. Genome manipulation, LPS anti TRL4 Ben-Tekaya 2013 
Bartonella quintana LPS: Protects VSMCs from MC  

via Toll-like receptors 
den Dekker 2012  
Matera 2008 

Salmonella typhimurium SptP suppresses MCs Choi 2013 

Staphylococcus aureus Own uptake into MC Abel 2011 

Staphylococcus aureus  Invasion via VEGF , release SP, IL-33 Johnzon 2016

Group B Staphylococcus Provoked degranulation Gendrin 2015 

Chlamydia pneumoniae  In M s metabolic switch Itoh 2014 

Chlamydia pneumoniae MCs attack beta-cells Rodriguez 2015 

Chlamydia pneumoniae Metabolic switches Rodriguez 2015 

Mycobacterium tuberc. Tbc stops extracellular traps Campillo-Navarro 2018 

Mycobacterium tuberc. Tbc enters MC Muñoz 2009 

Mycobacterium tuberc. T7S protein, survival in M s Jin 2019 

Mycobacterium marinum Colonizes MCs Siad 2016 

Toxoplasma gondii Block IgE-response via PLC   Smith 2013 

Toxoplasma gondii Adenosine production Mahamed 2012 

Candida albicans  Temporal MC response Lopes 2015 

Candida albicans Protective uptake into MC Trevisan 2014 

Toxocara canis Increase of MC number Carlos 2011 

Parasitic worms ES-62 targets PKC Bell 2015 
MCs are the rapid initial opponents of most microbes – e. g. via extracellular traps (Möllerherm et al. 2016); 
whereafter – by e.g. potentiating IL-33 (Zhou et al. 2020) – they orchestrate adaptive immune responses (Toniato et al. 2017)  
not only against worms (Shimokawa et al. 2017) like the top SCZ-associated Toxocara canis (Arias et al. 2012, Carlos et al. 2011),
as antigen presenters and activators of distant lymph-nodes via cytokine-pellets (Kunder 2009).  
Thus MCs qualify as prime targets of “subversion” by microbes, which includes ligands of MC receptors,  
intrusive molecules, colonization and metabolic upset of MCs, and changes to their niches
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to IgE-signaling (Han et al. 2015). CLZ is indeed 
unique among antipsychotics for inhibiting MC-degra-
nulation (Seol et al. 2004), but also dopaminergic modu-
lation of innate immunity (Mackie et al. 2018). The 
response of SCZ to CLZ follows one of the few poly-
morphisms: that of protein G-protein subunit-beta 3 
(GNB3; Samanaite et al. 2020), which again is involved 
in various MC-related pathologies and in thermogenesis 
(Özdemir et al. 2017, Zhang et al. 2019). 

In lymphocytes of persons with SCZ epigenetic 
DNA-methylations (CpG) seem to be both anomalous in 
certain segments (Teroganova et al. 2016) and specifi-
cally changed by CLZ: a) particularly at genes involved 
in „cell substrate -” and “cell matrix-adhesion” allowing 
for integrin-centered migration along routes, while such 
related b) to CREB-binding protein (CREBBP) uniquely 
(among 29.134 CpG!) seemed to halve symptoms 
linearly after CLZ (Kinoshita et al. 2017). Only a weak, 
yet rare support resulted for CREBB from a parallel 
investigation and for GNB3 (and some transmitter-
related genes) from a meta-analysis (Gillespie 2019). 

Among countless processes (Pardo et al. 2017) 
CREBBP constrains B-cell response and MHC-class-II-
activation (Jiang et al. 2017). Importantly, since it 
acetylates the oncogen K-ras (Dixon et al. 2016), it 
likely inhibits the key MC-activating c-kit-receptor 
pathways (Khalaf et al. 2007). While kit supports the 
adhesion and survival of MCs, Notch only supports 
adhesion (Murata et al. 2014, 2019), the latter being low 
in SCZ and BPAD (Hoseth et al. 2018).  

Both weak effects on CREBB and GBN3 – awaiting 
replications – also match requirements of the “Desti-
nation & Destiny”-hypothesis (Treviranus 2013, 2019), 
which implies that MCs are programmed to advance 
along arteries (like kanban-tranfer charts along rail-
switches) through serial decisions at bifurcations accor-
ding to a set of adherence molecules “imprinted” at the 
start to match differential matrix partner molecules 
leading to cerebral destinations.  

Since MCs are likely to modulate CSTCs not only in 
the 1st medial loop to ACC (Treviranus 2017, 2018), an 
analogous action of MCs on the 2nd medial loop to the 
dorsolateral PFC (dlPFC; a functional area subserving 
4D-modeling, i.e. Thought) as a possible strong contri-
butor to SCZ could explain the effects of CLZ via MC-
stabilization, since it selectively reactivates dlPFC 
(Samanaite et al. 2020). 

Mast cells: How great agents become  

subverted by microbes? 

MCs like macrophages (Féger et al. 2002, Conti et 
al. 2019) become subversively targeted by pathogens 
(Table 1) and then - also via the lymphatics (Tsunoda 
2017) - do derange the brain (Girolamo et al. 2017, 
Severance & Yolken 2020, Radua et al. 2018). In 
Covid-19 persons with already subverted MCs could 
be most at risk, and a MC-stabilizer is a candidate drug 
(Theoharides 2020). 

CONCLUSIONS AND OUTLOOK 

The above imaginable mechanistic steps draw some 
interactive support and thus are hoped to deploy some 
traction towards more real-biological psychosis research. 
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