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DISCRETE-TIME SYSTEM CONDITIONAL OPTIMISATION IN THE 
PARAMETER SPACE VIA THE FULL TRANSFER FUNCTION 

MATRIX 

Summary 

Dynamic systems operate under the simultaneous influence of both the initial conditions 
and the input vector. There is neither physical nor mathematical justification for ignoring the 
initial conditions, e.g., in the control optimisation. This paper gives a response to the 
following question: Is a set of controller parameters which is optimal for the operation of a 
control system under zero initial conditions also optimal for its operation under non-zero 
initial conditions? 

The paper presents a new approach to the design of a classical proportional-difference-
sum (PDS) controller for a plant in a closed loop control system. The system relative stability 
with respect to a desired damping coefficient is accomplished. The minimal value of the 
performance index in the form of the sum of squared errors is the optimality criterion. Unlike 
the classical approach, the output error used in the performance index is influenced by all 
actions performed on the system at the same time. 

Key words: discrete-time control systems, three parameters synthesis, relative stability, 
full transfer function matrix, conditional stabilisation and optimisation 

1. Introduction 
Usually, the region of pole location has been determined by using the demanded 

damping coefficient or/and settling time. Pioneering work on the problem in the parameter 
plane was conducted by Vishnegradski [1], Neymark [2] and D. Mitrović, who developed a 
method of graphical analysis for the synthesis of two free parameters in a closed loop, both 
continuous-time and discrete-time, control system [3, 4, 5]. Later, this method was widely 
cited in the literature and referred to as Mitrovic’s method. The first two coefficients in the 
system characteristic polynomial were the two free parameters. 

Mitrovic’s method was generalized firstly by Šiljak who permitted any two 
characteristic polynomial coefficients to be adjustable parameters [6], and soon afterwards, 
quite independently, Šiljak [7] and Grujić [8] considered some characteristic polynomial 
coefficients to be linearly dependent on two adjustable parameters. Furthermore, Šiljak treated 
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linear dependency of all characteristic polynomial coefficients on two unknown parameters 
[9, 10], which actually evolved into an algebraic method. All these approaches had their 
drawbacks. They did not consider the position of zeros of the system transfer function, which 
also influences the quality of the system behaviour. 

The disadvantage was overcome by Šiljak in [7], where he established the concept of 
conditional optimisation in the parameter plane. He did it by introducing one extra criterion 
for the system, in addition to its relative stability, which is the minimal value of the 
performance index in the form of the integral of squared errors. Its optimisation is achieved 
through an appropriate choice of two adjustable parameters. This was designated as the 
conditional parameter optimisation. In that way, the system was relatively stable with the 
desired damping coefficient or/and settling time, and had the finer transient state behaviour 
regarding, e.g., overshoot. 

Grujić went further in [11, 12] to permit all coefficients of a system transfer function 
(denominator and numerator polynomial coefficients) to be dependent linearly on two 
unknown adjustable parameters. He combined the conditional optimisation with another 
aspect proposed by Rakić [13], i.e. the system impulse response through the numerical values 
calculation of its transfer function residues. Compatible recurrent formulas have been 
developed for mapping from the s-complex plane in the parameter plane, the calculation of 
transfer function residues, and the calculation of the performance index by means of the 
residues. The formulas were very simplified and suitable for computer calculation compared 
to the ones previously used. 

On the other side, approximately in the same period of the last century, in a quite 
different way, Kalman made great progress in the discrete-time linear systems optimisation 
[14, 15]. He developed a matrix synthesis method of the controller algorithm: 

( ) ( ), ,m nk k   u Kx K   

by means of Pontryagin’s maximum principle and Bellman’s continuous dynamic 
programming, without constraints to the number of the matrix gain K coefficients, that is, the 
number of controls and state variables. His great contribution is that his method is matrix 
synthesis of all controller coefficients at the same time. The famous Kalman’s discrete 
regulator has resulted from the procedure, which encouraged many researchers to continue 
research in that direction. Kalman used the optimality criterion in the form of the sum of two 
quadratic forms:  

       T T

0
.x x u u

k
J k Q k k R k





     

The first form with the symmetric positive semi-definite matrix Q, Q=QT≥0 expresses 
the process quality and the other form with the symmetric positive definite matrix R, R=RT>0 
expresses the energy consumption by the control to be performed. The main issue regarding 
matrices Q and R is their proper selection. 

Over the decades and to the present day, plant control by using the classical control 
algorithm is still up-to-date and researchers are dealing with it all the time. Many of the 
researchers focused on determining the stabilizing proportional-integral-derivative (PID) gain 
region in the parameter space. For example, Xu et al. [16] treated a digital system on the basis 
of previously obtained results for continuous-time systems; Keel et al. [17] considered a 
digital system, grouping its characteristic roots inside an inner circle of unit one and in this 
regard the smallest possible circle which leads to the almost deadbeat control; Tantaris et al. 
[18] dealt with three-parameter first-order discrete-time controllers; Li et al. [19] discussed 
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continuous-time systems knowing only frequency response of the plant and its characteristic 
root number located strictly in the right half of the complex plane; Matušů [20] used Tan’s 
and Kronecker’s methods for a continuous-time system and then picked one parameter sample 
by means of not a novel but a known method. Similarly, other authors found the stability 
domain in the parameter space: Gryazina and Polyak [21] found it for both continuous-time 
and discrete-time system in the state space form; Gryazina and Polyak in [22] decomposed the 
domain in the parameter plane for a continuous-time system in the state space form, in root 
sign invariant regions; Gryazina et al. [23] described the state of the art, starting in the past 
from Vishnegradsky to Neymark to the present for the continuous-time (scalar and 
multivariable) system parameter synthesis with recent extensions and new results related to 
the stability domain in the parameter space, and considering the aspect of uncertainty, 
robustness, H∞ criterion etc.; Kipnis and Nigmatulin [24] treated the trinomial discrete 
equation with two delays, and established a criterion for testing Lyapunov stability depending 
on parameter values, as well as generalization of the Lyapunov stability concept by using the 
new r-stability concept. Some authors considered optimal PID controller tuning: Padula and 
Visioli [25] used standard and fractional order PID controllers and performance index in the 
form of the integral of absolute error; Barbosa and Jesus [26] considered a fractional order 
PID controller and metaheuristic tuning algorithm Cuckoo Search (inspired by the behaviour 
of living beings in nature), whereas the performance index was in the form of the integral of 
the sum, weighted time multiplied absolute error and also weighted squared control. 

The results based on all mentioned approaches, except Kalman’s, were obtained under 
decades-long controversy between the stability concept and the classical system transfer 
function. The system stability is by definition the dynamical property of a system in the free 
working mode under all zero inputs and arbitrary unknown initial conditions. The transfer 
function is defined for the system in the forced working regime under non-zero input and all 
zero initial conditions. This controversy has been recently solved by introducing and 
developing the full transfer function matrix [27, 28, 29]. The conditional optimisation 
synthesis procedure is carried out herein by using the characteristic polynomial of the full 
transfer function matrix and not of the classical one. More precisely, it is the characteristic 
polynomial of the row nondegenerate full transfer function matrix, which is only adequate and 
appropriate to be used for the objective test of the system stability and optimisation. 

In order to design a controller to cope with real working conditions, we use a new form 
of the performance index. It is the sum of the squared errors that occurred in the most general 
and realistic circumstances, under all actions performed on the system at the same time: the 
external nonzero inputs and nonzero initial conditions. 

Why to opt for the conditional optimisation and not for the Kalman regulator? Both 
approaches have their advantages and disadvantages. A significant progress in the proposed 
new conditional optimisation is that it is now complete, the number of parameters is enlarged 
to three, and the controller is dynamic whereas the Kalman regulator is static. Besides, the 
control algorithm is given in terms of measurable physical output variables rather than as the 
function of unmeasurable mathematical state variables, used in the Kalman regulator. 
Moreover, the Kalman regulator does not consider the disturbance input. To get the matrix 
gain K for the Kalman regulator, it is necessary to solve the matrix nonlinear Riccati equation, 
which is, despite the present age of digital computers, an aggravating circumstance. 
Furthermore, related to the Kalman regulator, the right choice of matrices Q and R is 
necessary. When the state variables are not measurable, then estimation procedures are to be 
applied. Kalman’s method does not yield relative stability, whereas conditional optimisation 
does. Also, the Kalman regulator is inapplicable to the input-output systems in the following 
sense: generally a pure mathematical state variable choice algorithm is used, without any 
physical sense, to pass from the input-output equation to the state space equations. Then, 
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system state x(k) contains in itself control u(k) as its input, that is, x=x(u); further, Kalman’s 
control algorithm u=-Kx yields u=-Kx(u)=f(u) that makes no sense. Kalman’s optimality 
criterion contains two parts, one concerns the process quality and another the energy 
consumption, which necessarily results in a compromise between the two requirements. Our 
dynamic controller optimality criterion vs Kalman’s criterion fully concerns the process 
quality, which leads to a higher degree of process quality than in Kalman’s case. 

Again, the question is: why to opt for the conditional optimisation in the “outdated 
complex domain” and not for some other among many modern state space methods? The 
answer is similar as with the Kalman regulator. When the system input-output discrete 
equation includes the right-hand-side time shifted items, the only way to pass to the state 
space equation is to use the pure mathematical state variable choice algorithm without any 
physical sense. Then, system state x(k) contains in itself system input u(k), i.e. control, which 
is meaningless. The conclusion is that in such a case the state-space methods are not 
applicable. 

The paper deals with discrete-time systems only because of the contemporary practice, 
where the systems are almost exclusively controlled by digital computers. 

Illustrative examples are given to show the difference in the system behaviour when the 
system is designed in the classical and in the proposed novel way. The differences are 
detected by simulations and practical experiment. 

2. Problem statement 

2.1 Plant 
The linear time-invariant discrete-time of a most general single-input single-output 

(SISO) plant is considered. It is described by its input-output equation  
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where kאℕ0, y(k+j)אℝ is the plant output at time k+j, ׊j=0,1,2,ڮ,ν, uP(k+j)אℝ is the plant 
input at time k+j, ׊j=0,1,2,ڮ,μ, μ≤ν; ajPאℝ, ׊j=0,1,2,ڮ,ν, and bjPאℝ, ׊j=0,1,2,ڮ,μ, are real 
numbers. Equation (1) is generated through the Lyapunov’s coordinate transformation 
process, that is, y = Y-Yd is the plant output deviation from the desired output Yd, and  
uP=UP-UPN is the plant input deviation from the nominal input UPN. 

The compact form of Equation (1) is as follows [27, 28, 29]:  
    ,A y B uν μ μν
P P P  (2) 

where A ( )ν ,P and B ( )μ ,P are the extended coefficient matrices:  
     
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P P νP P P μPP Pa a a b b b       

and yν and μ
Pu  are the extended output and input vectors:  
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2.2 Controller 
The most general classical linear discrete-time time-invariant controller is considered, 

whose input-output equation in the difference form is, [30]:  

           
1

1
0
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i k
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 


      Δ Δ Δ  (3) 

From Equation (3) different special cases arise. For example: 

2.2.1 The zero order proportional-sum (PS) controller 

   1 11 1,A u BC C   (4) 
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2.2.2 The first order proportional-difference-sum (PDS) controller 
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2.3 Problem definition 
The aim of this paper is, in the first step, to synthesize the unknown adjustable system 

parameters with respect to the desired damping coefficient using the algebraic method in a 
qualitatively new way. The system relative stability is achieved by using only an adequate and 
appropriate system characteristic polynomial in the sense already described. This is different 
from the appropriate classical procedure where the characteristic polynomial of the transfer 
function matrix G(z) is used, which is not correct in general. 

In the second step, unknown parameters should be selected from an acceptable set 
according to an additional criterion, i.e. the value of the performance index in the form of the 
sum of squared errors is to be minimal. The performance index is a new developed index 
because the used error, in the most general and realistic circumstances, is caused by the 
influence of all actions performed on the system, external non-zero inputs and non-zero initial 
conditions at the same time. 

3. Major results 
In this section the solution to the problem posed in the section Problem definition is 

provided. 

3.1 Relative stability 
Formally, the procedure of synthesising adjustable and unknown parameters to get 

relative stability is similar to the classical procedure known from literature [10, 12], but 
essentially, it is different because of using the system characteristic equation, that is, the 
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characteristic equation of the system row nondegenerate full transfer function matrix. We 
know from the literature [10, 12] that, 

     
     
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For three unknown parameters we have, 
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Solving Equations (6), we obtain: 
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The solution of Equations (7) is not unique because there are three adjustable unknown 
parameters α, β, and γ, and only two equations. Equations (7) may be solved with respect to 
any two parameters, e.g., α and β, so that they are the functions not only of ρz and ζz but also 
of the third free parameter γ. In that case, the solution is as follows: 
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 (9) 

It means that any value of the free parameter γ may be chosen, and after that the 
procedure continues as in the previous case when there are only two adjustable unknown 
parameters. 

Now, we can map the loci of constant value damping coefficient ζ from the s-complex 
plane into the αβ parameter plane like a curve, or into the αβγ parameter space like a surface. 
In doing so, the numerical value of natural frequency ωn is changed with a certain step. When 
using Expressions (9), each time a numerical value of the parameter γ should be selected, with 
a certain numerical step. 

3.2 Performance index 
The proposed form of performance index I is the sum of the squared output errors: 

       2

0
, ,

k

k
I ε k ε k r k y k




    (10) 

where error ε(k) occurred under the influence of all actions performed on the system, external 
non-zero input and non-zero initial conditions, at the same time. It is more natural and 
realistic in practice than error ε(k) that has been used in the literature so far is influenced only 
by non-zero input but for all zero initial conditions. The proposed optimisation procedure is 
completely new. 

The full block diagram [27] of the system is shown in Fig. 1. 
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Fig. 1  Full block diagram of the overall closed loop system with unity feedback 

From the block diagram, it is easy to obtain: 
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From (11) the equivalent full block diagram of the system follows, as shown in Fig. 2. 

 
Fig. 2  Equivalent full block diagram of the system 

4. Simulation example 
In this section, a mathematical example illustrates the presented results. 
Let us consider a plant: 
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The plant is controlled by a first order PDS controller: 
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The overall closed loop system is described in the compact form by: 
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4.1 Full transfer function matrix 
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4.2 Relative stability 
The full transfer function matrix is row nondegenerate, which implies that the system 

characteristic equation reads as follows: 
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In order to get loci in the αβγ parameter space of the constant damping coefficient, we 
choose the constant value of ζ, 0≤ζ=const.≤1, change the values of the natural frequency ωn 
with a numerical step, ωn >0, and use expressions (9) where: 
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 (15a) 
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4.3 Performance index 
Plant Equation (13) leads to: 
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Controller Equation (14) yields: 
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Using Equation (12) and Expressions (16), (17) we obtain: 
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By means of Expressions (10) and (18) the performance index values were calculated 
for 29,700 points, using the initial conditions: u(0)=0, u(1)=0.2, y(0)=2, y(1)=1.9, r(0)=1, 
r(1)=1, d(0)=0, but only the minimal values were applied to the constant damping coefficient 
surface, as shown in Fig. 3. 

 
Fig. 3  Constant damping coefficient surface with the minimal performance index values applied to it for both 

cases, zero and non-zero initial conditions 

The set of the optimal values of parameters α, β, γ, which gives the optimal minimal 
value of the performance index Imin_nonzero=87.5437 is as follows: αopt_nonzero=2.3751, 
βopt_nonzero=2.2484, γopt_nonzero=1.1. In order to indicate a difference between the novel approach 
and the classical one, the performance index values were also calculated using all zero initial 
conditions and for 29,700 points. 

4.4 Discussion of the simulation results  
The question is what kind of comparison between the classical conditional optimisation 

theory and the developed and proposed new optimisation theory would make sense. The 
developed and proposed new conditional optimisation theory implies non-zero initial 
conditions. Optimal values of adjustable unknown parameters are obtained assuming the 
initial conditions are non-zero and they are dependent on initial conditions. The system unit 
step response marked blue in Fig. 4 is obtained by the new theory optimal parameters which 
are valid only for the concrete initial conditions used. The classical conditional optimisation 
theory implies zero initial conditions. Optimal values of adjustable unknown parameters are 
obtained assuming the initial conditions are zero and they are treated as universally optimal 
for any working regime and any initial conditions. However, if the system unit step response 
obtained by the classical theory optimal parameters (marked green (c) in Fig. 4) starts from 
zero initial conditions, the response is quite correct because these are initial conditions in 
relation to which the optimal parameters are designed. 

TRANSACTIONS OF FAMENA XLV-3 (2021) 55



L. Gruyitch, Z. Bučevac, Discrete-Time System Conditional Optimisation in the 
R. Jovanović, V. Zarić Parameter Space via the Full Transfer Function Matrix 

 
Fig. 4  System unit step responses for cases of non-zero (new theory) and zero (classical theory) initial 

conditions 

An enlarged segment of Fig. 4 for 0 100k   is shown in Fig. 5. 

 
Fig. 5  Augmented part of Fig. 4 

5. Experimental example 
The proposed design procedure has been applied and tested experimentally on a DC 

servo motor with a gearbox and load. For the case that the system can be accurately modelled 
without considering the major nonlinear effects (speed dependent friction, dead zone and 
backlash), a linear model of the DC motor can be given as: 

( ) ( ) ( ).g m t g

m

η η k K
Jθ t Bθ t U t

R
    (19) 
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For the nominal plant parameters J=0.0021 kgm2, B=0.084 Nms/rad, Rm=2.6 Ω, 
kt=0.0077 Nm/A, ηm=0.69, ηg=0.9 and Kg=70, choosing y=θ and uP=U, a discrete-time IO 
model of the system for the sampling time T=0.01 sec is: 

           
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 (20) 

Let the plant (20) be controlled by a zero order PS controller: 
   
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The overall closed loop system is described in the compact form by: 
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The full transfer function matrix is obtained as in the simulation example (section 4.1) 
and the system characteristic polynomial is: 

   
 
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In order to obtain the loci in the αβ parameter plane of the constant damping coefficient, 
we repeat the same procedure as in the simulation example (section 4.2). 
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5.1 Performance index 
As steady state error εs of the system is equal to zero, εs=0, for the control algorithm that 

contains the S (sum) action, we use expression (10) to determine the performance index. Plant 
Equation (20) leads to: 
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 
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  (22) 

Controller Equation (21) yields: 
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  

 (23) 

Using Equation (12) and Expressions (22), (23), we obtain Expression for E(z) in the 
same way as in the simulation example. Using the non-zero initial conditions: u(0)=0.1, 
y(0)=0.2, y(1)=0.226, r(0)=0, the performance index values were calculated for 2,033 points, 
but only some of them were applied to the constant damping coefficient curve, as shown in 
Fig. 6.  

 
Fig. 6  Constant damping coefficient curve with some performance index values applied to it for non-zero initial 

conditions (new theory case) 

The sample of the optimal values of parameters α, β, which gives the optimal minimal 
value of the performance index Imin_nonzero=2.0025, is as follows: αopt_nonzero=13.9371, 
βopt_nonzero=60.0520. To highlight the difference between the new and the classical approach, 
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the performance index values were also calculated using the zero initial conditions and for 
2,033 points as shown in Fig. 7. 

 
Fig. 7  Constant damping coefficient curve with some performance index values applied to it for zero initial 

conditions (classical theory case) 

5.2 Discussion of the simulation and experimental results  
The system simulated 0.6 step responses for both cases (non-zero and zero initial 

conditions, that is, for the new theory and for the classical theory, respectively) are shown in 
Fig. 8. 

 
Fig. 8  Simulated 0.6 step responses with new theory optimal parameters (blue - starting from non-zero initial 
conditions) and classical theory optimal parameters (red - starting from non-zero initial conditions and green - 

starting from zero initial conditions) 
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The system experimental 0.6 step responses for the cases of non zero (new theory) and 
zero (classical theory) initial conditions are shown in Fig. 9. 

 
Fig. 9  Experimental 0.6 step responses with new theory optimal parameters (blue - starting from non-zero initial 

conditions) and classical theory optimal parameters (red - starting from non-zero initial conditions and green - 
starting from zero initial conditions) 

The “green” response is similar to the “red” one, which is not good enough, however, 
this is not due to concepts of the conditional optimisation (new and classical). It is the 
consequence of the following: the simulations were carried out on the basis of the linear 
model, while the experiment was carried out, of course, on the system itself, which is non-
linear in nature; the nonlinear effects (static + Coulomb friction) are mostly present when the 
system starts from the zero initial conditions, and the energy of control is still small and it 
takes time for this energy to accumulate on the basis of the S control algorithm action. 

6. Conclusion 
In the paper, the new conditional optimisation procedure for linear discrete-time 

systems is developed and introduced, which is the only adequate and appropriate procedure 
compared to the classical one. The optimisation is made in the parameter space of three 
unknown and adjustable parameters, unlike the classical optimisation which was done in the 
parameter plane of two parameters. The procedure is based on the solution [27, 29] of the 
major controversies between the classical transfer function matrix and the system stability 
investigation using this matrix. This controversy has been recently solved by developing and 
introducing the full transfer function matrix [27, 29] so that during the system conditional 
optimisation the characteristic polynomial of the full transfer function matrix is used and not 
of the classical transfer function. More precisely, it is the characteristic polynomial of the so-
called row nondegenerate full transfer function matrix, the same one as used for the only 
adequate and appropriate testing of the system stability. Also, a new, compact calculus [27, 
29] is used, without which determining the full transfer function matrix is impossible. 

Fully compatible with the use of the full transfer function matrix, a new form of the 
performance index is introduced, the sum of squared errors occurred in the most general and 
realistic situation under all actions performed on the system at the same time, the non-zero 
external inputs and non-zero initial conditions. 
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Illustrative examples are given to show the difference in the system behaviour, when it 
is designed in the classical and the proposed novel way. The differences are detected by 
carrying out simulations and a practical experiment. Each time when the system is designed in 
the classical way and starts from non-zero initial conditions, its response is much worse than 
when the system is designed in a new way and starts from non-zero initial conditions too, or 
when the system is designed in the classical way and starts from zero initial conditions. 

The answer to the question posed at the beginning is the following: the set of the 
controller parameters optimal for the control system behaviour under all zero initial 
conditions is not optimal for its operation under non-zero initial conditions. Figures 3, 6 and 7 
illustrate this concluding statement. 

Considering the solution to the problem just for discrete-time systems makes place for 
the application of a high quality microprocessor compensator in the systems. 
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