
  

Abstract—Lately, the investigation of multi-hop relays is 

increased in both, academia and engineering practice. Multi-hop 

relay is introduced to enable data transmission between base 

station and mobile user dividing great distance into two or more 

segments to improve link quality. This improvement is specially 

expressed in environments under deep fading and shadow, where 

coverage is significantly increased using multi-hop relays. Here, 

wireless three-hop relay environment with line-of-sight was 

observed. Output signal from such system is defined as a product 

of three arbitrary, independent, but not necessarily identically 

distributed Rician random variables (RVs). For such system, some 

important performance of the first and second order were 

analyzed and graphically presented. The impact of Rician factor 

and signal powers on performance quantities was shown. Derived 

and displayed first order performance are: probability density 

function (PDF), cumulative distribution function (CDF), outage 

probability (Pout), moments, amount of fading (AoF) and channel 

capacity. Then, the following second order characteristics of 

wireless three-hop relay communication system working in Rician 

multipath fading environment were covered: level crossing rate 

(LCR) and average fade duration (AFD). These results have big 

application in wireless relay communications with a pronounced 

line-of-sight, where Rician model is used to describe fading. 
 

Index Terms—Performance analysis, Rician fading, Three-hop 

relay system. 

I. INTRODUCTION 

ELAYING is a promising improvement of current radio 

technologies. It is expected that relay technologies have  
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higher cell coverage and capacity over the next generation 

wireless broadband radio access networks on an economical 

way. The organizations for standards development makes 

efforts to incorporate relay technologies into new standards. As 

these systems are newer, many open issues should be solved 

[1]. 

The conventional networks mostly use single-hop 

technology, where the end devices are connected through a 

direct link. There are different relaying architectures. Between 

them are multi-hop relays. They can provide additional capacity 

when fixed relays are inaccessible or insufficient. Using of 

multi-hop topologies in smart city applications enables energy-

efficient connections [2]-[6].  

Because of that, it is interesting to investigate multi-hop, 

especially two-hop and three-hop, topologies by evaluating 

their performance [7]-[12]. Here, performance of the first and 

second order of wireless three-hop relay environment with line-

of-sight will be  considered. Observed first order performance 

are: probability density function (PDF), cumulative distribution 

function (CDF), outage probability (Pout), moments, amount of 

fading (AoF), channel capacity (CC), average symbol error 

probability (ASEP) or average bit error probability (ABEP) [4], 

[5], [10]- [13]. The level crossing rate (LCR) and the average 

outage duration (AOD) or average fade duration (AFD) are 

essential second order characteristics serving for deep analysis 

of the behavior of the fading environment [3], [14]. 

Radio signals arrive in antennas by two or more paths what 

causing significant variations of received signal amplitude and 

phase over time or space. This occurrence is multipath fading 

[15]. The short-term fading of the received envelope in can be 

described by dint of Rayleigh, Rician, Nakagami-m, Weibull, 

Hoyt [16], [17], and other more general distributions [18]-[24]. 

Rayleigh distribution is usually used for modeling signal 

amplitude in urban areas; Rician distribution is suitable for sub-

urban areas which contain the line-of-sight (LOS) component; 

further, Weibull distribution shows good matching with  to 

measured data from fading environment, while Nakagami-m 

distribution shows exellent stacking in wide range of fading 

environments, what is proven experimentally as well as for 

indoor and outdoor radio channels [17].
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This paper is organized as follows. After Introduction, in the 

section II the related papers are enumerated and system model 

presented. In the section III, the first order performance of 

wireless three-hop relay environment with line-of-sight are 

performed: PDF, CDF, Pout, moments, AoF, CC. The second 

order performance of this configuration, LCR and AFD, are 

illustrated in the section IV. For the product of three Rician RVs 

the graphs for all performance are presented to emphasize the 

parameter influence. The section V highlights possible 

applications of performed performance. The conclusion closes 

this work in section VI, and final are acknowledgment and list 

of references, as it is usual. 

II. RELATED PAPERS AND SYSTEM MODEL 

The Pout, CC and ASEP are derived for amplify-and-forward 

multihop relay network in the presence of Rayleigh fading in 

[5]. The second order statistical parameters, namely LCR and 

AFD of the amplify-and-forward multihop Rayleigh fading 

channel are presented in [3]. The channel is modelled as a 

product of N fading amplitudes. Such case where Nakagami-m 

fading is present in the channel is analyzed in [4], where some 

expressions for Pout are derived.  

The amount of fading, as a simple measure for showing the 

performance of a diversity system, is discussed in [25]. In this 

paper, an approximations and bounds for AoF are provided. 

Also, a manner for derivation of the exact AoF calculations for 

transmit antenna selection on Rayleigh fading channels in 

Multiple Input Multiple Output (MIMO) systems is presented. 

The paper [26] analyzes an environment with independent and 

identically distributed (i.i.d.) double fading wich includes line-

of-sight (LOS), typically presents in keyhole MIMO systems. 

The considerations of three-hop relay systems is not  

represented so much in available literature. One of them is done 

in [21], where a product of three arbitrary, independent and 

n.i.d. α-µ random variables (RVs) is observed. Closed-form 

expressions for PDF, CDF, moments, AoP and Pout are 

derived. The results are useful for MIMO links, multi-hop 

systems, radar communications, and cascaded communications. 

Our group of authors considered first and second order 

performance of wireless three-hop relay channel under the 

influence of  Rayleigh fading in [8]. The performance 

investigation of the output signal from a three-hop wireless 

relay system in the presence of Nakagami-m fading, presented 

as a product of three Nakagami-m RVs,  is given in [9].  

After analysis of non LOS fading conditions, modeled by 

Rayleigh and Nakagami distributions for three-hop wireless 

relay systems, we consider such scenario with Rician 

distribution for fading, which models LOS environment. First, 

in [10], PDF and first two moments are obtained. AoF is 

performed based on these moments. The LCR is derived in [11]. 

In [12], CDF and Pout are determined. Further, based on 

previously determined LCR and Pout, AFD is obtained and 

graphicaly shown. In this paper, the third moment will 

supplement derivation of moments, and channel capacity will 

be found. 

 

 

The CC per unit bandwidth for two different adjustment 

policies over κ-μ fading channels with maximal ratio combinig 

(MRC) diversity were considered in [27]. Channel capacity of 

the macrodiversity selection combinig (SC) receiver consisting 

of two dual branch SC microdiversity receivers, in the presence 

of κ-μ fading and correlated slow gamma fading is determined 

in [28]. 

Channel capacity of MRC over exponentially correlated 

Nakagami-m fading channels for optimal power and rate 

adaptation policy is discussed in [29]. Later, capacity of dual 

branch MRC system over correlated Nakagami-m fading 

channels is presented as a review in [13]. Also, uncorrelated 

Nakagami-m fading channels are observed as well for m=1, 

which is special case of Rayleigh fading channel. 

Knowing of the second-order performance of fading 

environment (LCR AFD) helps to understand and mitigate the 

impact of fading. AFD determines the average length of error 

bursts in fading environment. So, if AFD is relatively large, 

long data blocks will be significantly affected by the channel 

fades than short blocks. Also, a knowledge of these 

performance is important for many applications such as: correct 

choice of the frame length for coded packetized systems, design 

of (non)interleaved coding methods, optimal size of interleaver, 

estimation of communication protocols, choosing the buffer 

depth for adaptive modulation schemes. 

With fast increasing of wireless communication, there is an 

extensive growth in the demand of radio frequency through 

electromagnetic spectrum allocation. In this regard, cognitive 

radio is a potential technology helping to overcome the request 

in radio frequency. In [30], relaying protocol over a Weibull 

fading channels in cognitive radio is used to improve the 

efficiency and to minimize the bit error rate during 

transmission. The numerical results showed that multi-hop has 

better performance compared to single-hop relaying protocol. 

It is known that performance of free‐space optics (FSO) links 

are very depending on scintillation effects caused by the 

atmospheric turbulences. An accepted approach to 

counterbalance the expected spoilage due to scintillation is to 

use multi‐hop relays. This concept greatly increases the 

mathematical complexity of the models for describing the 

system performance. Because of that, the most often is used a 

dual‐hop link in order to simplify the performance analysis. In 

[31], mathematical derivations for the evaluation of the outage 

probability and the average bit error rate were made by 

assuming typical turbulence models.  

Although the mathematical complexity of the models for 

describing N-hop relays increases with growth of N, and many 

authors choose to analyze dual-hop relays, we tackled with 

derivation in closed forms some performance of three-hop 

relays here. Such a three-hop relay system is illustrated in Fig. 

1 [6]. The system consists of the source who sends the 

information to the destination using two consecutive relays, 

which can be of AF or DF type. The relays help reliable 

transmission of the information to the destination. The relays 

are necessary when network nodes suffer heavy shadowing; 

distance between terminals is big, and also for the case with 

limited power resources [32].
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Fig. 1. Three-hop relay system [6]. 

III. THE FIRST ORDER PERFORMANCE OF WIRELESS THREE-

HOP RELAY ENVIRONMENT WITH LINE-OF-SIGHT  

For analysis of three-hop wireless relay system from Fig. 1, 

it is necessary to determine the first-order performance of the 

product of three Rician random variables. 

A. PDF of Product of Three Rician Random Variables 

In mobile communication systems, when a Line of Sight 

(LoS) component exists between the transmitter and the 

receiver, the received signal can be presented as the sum of a 

complex exponential and a narrowband Gaussian process. The 

first one is known as the LoS component and the other is diffuse 

component. The ratio of the powers of the LoS component to 

the diffuse component is the κ factor, which measures the 

relative strength of the LoS component and shows a measure of 

link quality [33]. 

The most important role in the performance of the wireless 

systems has the communication link quality. The link quality 

knowledge gives the possibility to the system to characterize the 

channel and accommodate to the current transmission 

conditions.  

In the observed case, the time varying envelopes xi of the 

received signals are present in all three hops and hence 

described by a Rician distribution given by [34]: 
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where κi are parameters of Rician distribution at i-th hop, called 

Rician factors of RVs xi and Ωi are mean powers of RVs xi. 

Therefore, Rician factor is defined as a ratio of the signal power 

of dominant component of the signal and powers of the 

scattered components and represents a measure of the severity 

of the fading. When Rician factor κ→0, the distribution 

becomes Rayleigh distribution and this is most severe Rayleigh  

fading. The case when κ →∞ indicates a case that there is no 

fading in a propagation channel. κ factor estimation is critical 

for many wireless applications, as link budget calculations, 

precoding, adaptive modulation, and others [35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RV x is defined as the product of three independent Rician 

RVs: 1 2 3x x x x=   .                                        

PDF of product of three Rician RVs, obtained in [10, eq. (7)], 

is presented in Appendix as (A6): 

( )
( ) ( )

( )

1

1

1

1 1 1

2
11 0 1

2 1 1 1

e !

j

x

j

p x
j



  

=

+ + 
=  

  
  

( ) ( )

( )

2

2

2

2 2 2

2
22 0 2

2 1 1 1

e !

j

j j


  

=

+ + 
  

  
  

( ) ( )

( )

1

3

1

3 3 3

2
33 0 3

2 1 1 1

e !

j

j j


  

=

 + +
     

  

1 31 2 1 2 21 2 2
2 3 2 3

0 0

j jj j
dx dx x x

 

− − +− − +

   

2
3

3

32
2

2

2

2

321

1

1

111

12
xx

xx

x

j
ex



+
−



+
−













+
−

+




.           

 
 

Fig. 2. PDF of product of three Rician RVs for different values of the signal 

powers for 1=2=3=1 [10]. 

 

In Fig. 2, PDF of product of three Rician RVs is graphically 

presented versus this product x for different values of signal 

average powers Ωi at relay sections (hops) and Rician factors 
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κi=1, i=1,2,3 by using mathematical software Matlab. One can 

see from this picture that PDF increases for low x, reaches 

maximum and then start to decrease for bigger values of the 

product x for all values of the signal powers Ωi. It is noticeable 

that small values of x affect more to the PDF. 
 

B. CDF of Product of Three Rician Random Variables 

Cumulative distribution function (CDF) of product of three 

Rician RVs is obtained in [12, Eq. (4)]: 
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C. Outage probability of Product of Three Rician Random 

Variables 

The outage probability is an important performance measure 

of communication systems working in fading environment. 

Pout is defined as the probability that information rate is below 

the predifined threshold th, actually, Pout is the probability that 

an outage is occurred within a given time period: 

( )
0

th

out xP p t dt



=  .            (3) 

Here, px(x) is the signal PDF and th is the system protection 

ratio which depend on the type of used modulation and the 

characteristics of receiver [36]. 

When (2) is put in (3), Pout becomes: 

( )out x thP F=  .         (4) 

Some graphs for Pout for this system are shown in Figs. 3 

and 4 for some parameters values [12]. It is obvious that 

performance is improved with increasing of Rician factors i. 

Besides, bigger values of fading powers Ωi reduce the Pout and 

improve system performance. 

 

 

Fig. 3. Outage probability of product of three Rician RVs versus signal 

envelope x for different values of Rician factor i and signal power Ωi=1 [12]. 

 

 
Fig. 4. Pout of product of three Rician RVs depending on signal envelope for 

various values of signal power Ωi and Rician factor i=1 [12]. 

 

D. Moments of Product of Three Rician Random Variables 

Usually, the PDF of a variable gives its complete picture, but 

sometimes, only a partial description is necessary or possible. 

This is provided by statistical average values. They play an 

essential role in the description of the RV. These statistical 

average values are, in fact, moments. For statistical analysis the 

most interesting are the first few moments of RV and joint 

moments (the correlation and the covariance), between any pair 

of RVs in a multidimensional set of RVs [37]. 

The expected value, also known as the mean value of the 

product of three Rician RVs x is defined by the formula [37]: 
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0
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= =  .           (5) 

Here, E is the statistical expectation operator. Since px(x)dx 

is the probability of RV x being in the infinitesimal strip dx, mx 

is interpreted as the weighted average of x. So, each weight is 

the probability of occurrence of the specific value x. This is 

called the first moment of a RV. For our product of three RVs 

it is given and solved in closed form in [10, Eq. (9)]: 
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The first moment for the product of three Rician RVs is 

graphically presented in Fig. 5 [10]. One can see from Fig. 5 

that the first moment is higher for higher values of Ωi. Also, the 

first moment, m1, increases with increasing of  till maximum, 

when m1 start to decline. 

The second moment is also very important. It is known as the 

mean-squared value or variance or the signal's average power 

of the RV and is determined in [10] for the product of three 

Rician RVs as: 
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The positive square root of the variance is the standard 

deviation. When speaking about wireless communication, we 

are talking about signal’s average power. The parameters 

influence to the second moment of product of three Rician RVs 

is shown here in Figs. 6 and 7 [10].  

The second moment, or variance, grows with increasing of 

power Ω. For bigger Ω and Rician factor , m2 is declining. 

 
Fig. 5. Dependence of first moment of the product of three Rician RVs on 

Rician factor  for a few values of signal powers Ωi [10]. 

 

 
 

Fig. 6.  The second moment of product of three Rician RVs depending on Rician 

factor  for variable signal power Ωi [10]. 

 
Fig. 7.  The second moment of product of three Rician RVs depending on signal 

power Ω for different values of Rician factor i [10]. 

 

The next considered moment is the normalized third central 

moment, called the skewness. It is a measure of limitedness of 

the distribution or the asymmetry of the probability distribution 

of a real-valued RV about its mean value.  

The skewness can have positive or negative value, or even be 

undefined. The third moment for symmetric distribution, if is 

defined, is equal to zero. If the distribution is skewed to the left, 

it has negative value of skewness and vice versa, the distribution 
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which is skewed to the right has positive value of skewness. 

The third moment, m3, is defined by the formula: 
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The final shape of this moment is performed as previous 

ones: 
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Graphs for the third moment of product of three Rician RVs 

versus signal power Ω and Rician factor  are plotted in Figs. 8 

and 9. It is visible that the third moment decreases slightly with 

higher values of the Rician factor .  

From Fig. 9 is evident that third moment increases with 

increasing of Ω, reaches a maximum and begins to slowly 

decline. 

In Fig. 10, the first three moments of product of three Rician 

RVs, are shown versus signal power Ω. All three moments 

increase with an increase of Ω and quickly reach saturation. 

 

 
Fig. 8.  The third moment of product of three Rician RVs versus Rician factor 

 for different values of the signal power Ωi. 

 

 
Fig. 9.  The third moment of product of three Rician RVs depending on the 

signal power Ω with Rician factor i as the parameter of curves. 

 

 
Fig. 10.  The moments of product of three Rician RVs versus signal power Ω. 

 

 

General, n-th moment is defined by [37, Eq. (3.26)]. n-th 

moment of product of three Rician RVs, x, is derived in [10, Eq. 

(11)] as: 
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E. Amount of Fading of Product of Three Rician RVs 

The amount of fading is an indicator of severity of fading for 

observed environment. For a defined distribution of received 

signal power, the AoF is defined as a ratio of the variance of 

received energy to the square of the mean of received energy 

[38, Eq. (1)], [17, eq. (2.5)]: 

   ( )
2

2 2/AoF Var x E x=      (11) 

where E{·} and Var{·} designate the statistical average and 

variance, in a row.  

The moments of fading distribution are directly used for 

calculating the AoF. So, it is a simple manner to quantify fading 

[39, Eq. (9)]: 
2

2 1/ 1AoF m m= −  .            (12) 

The AoF values are in the range [0, 2]. For environment with 

line-of-sight, the fading channel is close to an additive white 

Gaussian noise (AWGN) channel.  

If AoF=0, this is “no fading” environment; AoF=1 

corresponds to a SISO Rayleigh fading channel; AF = 1/m in a 

generalized Nakagami-m fading channel, and finally, AoF= 2 

for one-sided Gaussian distribution, what is the most severe 

fading. 

In Fig. 11, AoF of product of three Rician RVs is presented 

versus Rician factor  for some different values of Ωi. 

 
Fig. 11.  The amount of fading of product of three Rician RVs versus Rician 

factor  for changeable signal powers Ωi [10]. 

 
Fig. 12.  AoF of product of three Rician RVs depending on signal power Ω for 

different values of Rician factors i [10]. 

 

In the next, Fig. 12, AoF is plotted depending on mean 

powers Ω for a few values of Rician factors i. It is possible to 

notice from this graphs that AoF increases with increasing of Ω 

for bigger Ω. For higher values of i and small Ω, AoF has low 

values, but the case is completely different for bigger Ω. There, 

AoF has higher values for higher Rician factor . 

F. Channel Capacity of Product of Three Rician Random 

Variables 

In information theory, channel capacity (CC) is the upper 

bound on the rate at which information can be reliably 

transmitted over a communication channel. The CC of a given 

channel is the highest information rate that can be achieved with 

arbitrarily small error probability. It is expressed in units of 

information per unit time. The term of CC was key for the 

development of modern wireless communication systems and 

achieving performance close to the promised limits. 

Assuming the transmitting power of the system is constant, 

and optimal rate adaptation (ORA) technique it has been 

applied at the transmitter, the channel capacity can be expressed 

as [40]: 

( ) ( )dxxpxBC x
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+=
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2 1log       (13) 

 

where B denotes channel bandwith expressed in Hz. 

When we have derived expression for the PDF, we can easy 

calculate the channel capacity at the output of the relay system. 

The maximum data rate can be reached after the chanel is given 

in the unit of bits per second.  

By substituting expression (1) in (13), we obtain the 

normalized CC as: 
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The channel capacity graphs are presented in Fig. 13 and 14. 

The Fig. 13 gives dependence of CC from Rician factor . One 

can notice from this figure that CC increases for small versus of 

Rician factor . Then, CC acheives maximal value and starts to 

decrease, with a rapid approach to zero.   
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Fig. 13. Normalized channel capacity, C/B, of product of three Rician RVs 

versus Rician factor , where Ω changes. 

 

 
Fig. 14. C/B for product of three Rician RVs depending on power  and 

changeable Rician factor.  

 

The Fig. 14 shows the CC versus signal power Ω for different 

values of Rician factor i. It can be spotted that low x affect 

more to the CC. For that values, CC grows fast, reaches 

maximum, and begins to decline. 

IV. THE SECOND ORDER PERFORMANCE OF WIRELESS 

THREE-HOP RELAY ENVIRONMENT WITH LINE-OF-SIGHT 

Level crossing rate and average fade duration are very 

important features of the second-order for wireless channels. 

They provide useful data of the dynamic behavior of wireless 

fading environment. 

A. Level Crossing Rate of Product of Three Rician RVs 

LCR is one of the most important second-order performance 

measures of wireless communication systems. It is applicable 

in modelling and design of communication systems as well as 

throughput analysis, optimization of interleave size and 

designing of error correcting codes. 

The LCR is defined as the expected rate at which a fading 

envelope crosses defined level in the downward, or updown, 

direction and is expressed in crossings per second [41]. The 

LCR of RV informs how often the envelope crosses a given 

threshold x [42].  

It is necessary to find an expression for the joint probability 

density function (JPDF) of x and x , signed ( )xxp xx . 

Applaying the Rice’s formula [34, Eq. (2.106)], the LCR can be 

calculated [16] as: 
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xxx d xx p xN x
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=  .       (15) 

LCR of output of three-hop relay system, actually of product 

of three Rician RVs is already derived in [11, eq. (20)]: 
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The  last integral is solved using Laplace approximation 

theorem for solving the two-fold integrals [43], and presented 

in [11] through equations (22)-(29). 

The Figs. 15 and 16 further more represent  normalized LCR 

of product of three Rician RVs versus this product x with 

variable Rician factor i and average power i.  

LCR increases with increasing of Rician signal power. The 

influence of signal power on the LCR is more significant for 

bigger values of Rician factor i. LCR increases with increasing 

of Ωi for all signal values. 

The impact of signal value on the LCR is larger for bigger 

values of the signal with different Ωi. It is important to say that 

system is with better performance for low LCR. 

 

 

 

Fig. 15. LCR normalized by fm depending on signal envelope x for a few values 

of Rician factor i and signal power Ω=1 [11].  
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Fig. 16.  LCR normalized by fm versus signal envelope x for various values of 

signal powers Ωi [11]. 

B. Average Fade Duration of Product of Three Rician RVs 

AFD informs about duration of staying a power below a 

given threshold. It is obtained help the LCR [41]. So, AFD is 

defined by [44, eq. (9)]: 

  

  

Fig. 17.  AFD normalized by fm depending on signal envelope x for variable 

Rician factor i and signal powers Ωi=1 [12]. 

 

 
Fig. 18.  Normalized AFD  versus signal envelope x for =1 and different 

values of signal powers Ωi [12].  
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where AFD is the ratio of CDF of x given by (2) and solved 

LCR from (16) [45]. 

The normalized AFD (Txfm) of product of three Rician RVs 

is shown in Figs. 17 and 18 as a function of the envelope x. It 

can be seen from Fig. 17 that AFD has lower values for higher 

values of i and lower envelope x. Also, the AFD increases for 

all signal envelopes and small Ωi. The impact of Ωi is presented 

in Fig. 18. From this figure is visible that the impact of Ω i is 

bigger for higher x. 

V. AN APPLICATION 

Whereas Rician distribution describes fading for radio 

propagation where the line of sight component and many 

random weaker signal components are present, Rayleigh 

distribution models multipath fading where LOS signal 

component is not present. Because of that, Rayleigh distribution 

can be analyzed as a special case of general concept of Rician 

fading. Rayleigh fading becomes from Rician when Rician 

factor κ is zero. Because of that, all analyzed performance of 

product of three Rician RVs can be used for evaluation the 

performance of product of three Rayleigh RVs, also for 

performance of product of two Rayleigh RVs and Rician RV, 

and CDF of product of two Rician RVs and Rayleigh RV. These 

results can be used in performance analysis of wireless relay 

systems with three hops (sections) in the presence of multipath 

fading:  

1) when Rician fading is present in all three hops (sections), 

and 0i  , i=1,2,3,  

2) when Rayleigh fading is present in all three hops 

(κ1=κ2=κ3=0),  

3) when Rayleigh fading is at  two hops and Rician at one 

(κ1=κ2=0, 3 0  ), and  

4) when Rayleigh fading is present at one and Rician fading 

at two hops (κ1=0, 2 0  , 3 0   ).  

5) A case with κ →∞ present the scenario when fading is not 

present at any hop. 

The parameter selection illustrates possible shapes of curves 

for resulting distribution. 

VI. CONCLUSION 

 In this article, the expressions for PDF, CDF, outage 

probability, moments, amount of fading, channel capacity, LCR 

and AFD of the product of three Rician RVs are performed. 

This model of RV corresponds to output signal from three-hop 

relay wireless system mainly in suburban areas, with a 

pronounced line-of-sight, which is described by Rician 

distribution. A number of graphics are presented to show the 

impact of fading parameters. Conventional networks are usually 

single-hop, with the end devices connected by a direct link, 

which may cause large path loss. This fact motivates the use of 

multi-hop topologies to enable energy-efficient connectivity in 

smart city applications. Because of that, we presented in our 

papers three-hop cases for different fading distributions. Next 
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investigations will be tied to multi-hop environments in the 

presence of fading described by newer, general distributions, 

such as: α-µ, κ-µ, η-µ, α-κ-µ, α-η-κ-µ, and others. 

APPENDIX 

Random variable x is defined as the product of three 

independent RVs, all with Rician distribution: 

1 2 3x x x x=   .         (A1) 

Then, based on (A1), x1 is: 
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Conditional PDF of x is: 
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After some substitutions, conditional PDF is: 
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Then, PDF is obtained by averaging in the form: 
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