260

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 3, SEPTEMBER 2021

Assuring M2M Secure Transactions via
Blockchain and Smart Contracts

Nuno Leite, Alexandre Santos, and Nuno Lopes

Abstract—The need to ensure the confidentiality and integrity
of data generated in industrial systems and applications has been
increasingly highlighted over the years, due to the clear as well
as urgent requirements of not disclosing sensible proprietary
information, and ensuring that data is kept immutable since it is
generated. Based on these background requirements, this paper
discusses a system that promotes data privacy and immutability
in industrial weighing systems. In this sense, the proposed
solution includes a protocol definition for a secure IoT (Internet
of Things) communication and an architecture for a blockchain-
based platform that: i) automates the process of complying
with standardized weighing guidelines; and ii) increases data
traceability, promoting both its confidentiality and immutability.
Additionally, to demonstrate the proposed system’s compliance
with the established goals, a proof of concept was assembled, and
functional tests conducted. The main conclusions withdrawn from
the results obtained show that: i) the process of registering and
verifying weighing guidelines is properly automated by means of
Machine-to-Machine secure transactions; ii) the solution is able
to ensure that the data registered is authentic and iii) that it has
been transmitted without any eavesdropping, can not be erased
and is kept private.

Index Terms—Security, IoT, Blockchain, Smart Contracts,
Communications.

I. INTRODUCTION

The problem discussed in this paper is framed in the
landscape of industrial weighing systems. For the purpose
of this discussion, it is required to define the entities that
participate in this use case as well as the devices that are
operated by each of those entities. Essentially, the companies
promoting the development of this solution are responsible
for selling weighing solutions such as load cells , which are
weighing devices, and weighbridges, a physical bridge that
combines multiple load cells. These devices are sold to their
customers, which possess weighing stations, where multiple
weighbridges, which perform the actual weight measurements,
can exist. Additionally, each weighing station also owns a
device that controls the weight measurements in all its weigh-
bridges, which for the purpose of simplicity is going to be
called a SmartBox. When a weight measurement ends, the

Manuscript received February 11, 2021; revised July 1, 2021. Date of
publication August 24, 2021. Date of current version August 24, 2021. The
associate editor prof. Toni Perkovi¢ has been coordinating the review of this
manuscript and approved it for publication.

N.Leite and N.Lopes are with the Digital Transformation CoLab, located
at Campus de Azurém, Alameda da Universidade, 4800 - 058, Guimaries,
Portugal (e-mails: nunoleite31@gmail.com, nuno.lopes @dtx-colab.pt).

A.Santos is with the University of Minho, located at Campus de Gualtar,
4710-057, Braga, Portugal (e-mail: alex @di.uminho.pt).

Digital Object Identifier (DOI): 10.24138/jcomss-2021-0034

Original scientific article

SmartBox emits a sort of receipt for that weighing, which is
the main asset of this use case and can be referred to as a
weighing ticket.

The motivation for proposing this solution is mainly as-
sociated with the security of the aforementioned weighing
tickets, which must: i) be private for each customer; ii) remain
immutable after emission; and iii) be traceable, in order to
simplify further verification processes on weighing routes
(e.g. trucks that are measured from station to station and
should possess a predefined weight). Since currently, there is
absolutely no assurance on the three aforementioned points,
the solution discussed here has the intent to mitigate those
three flaws in the weighing system. From this motivation, the
main goals for this solution can be established, which are:
The development of a blockchain-based application capable
of immutably storing the weighing tickets generated at the
customers’ weighing stations; The implementation of a sup-
port platform, that exposes APIs (Application Programming
Interface) to enforce authentication & authorization throughout
the platform and, additionally, to provide rich querying of
weighing tickets, to facilitate and abstract communication
with the blockchain application, increasing traceability; And,
finally, the establishment of a secure protocol definition for
M2M (Machine to Machine) communications.

In order to present, describe and evaluate the solution that
is going to be built for the use case in study, the remaining of
this paper is structured as follows: Section II discusses the SOA
(State of the Art) on the relevant technologies as well as related
work that present different perspectives on the application
of such technologies; Section III presents and describes the
proposed solution, as well as the security & privacy lifecycle of
the weighing tickets; Section IV describes the experiment that
was assembled and the tests that were conducted to demon-
strate that the proposed solution is functionally compliant with
the established goals; And, finally, section V provides a small
summary on the paper, the main results obtained in it and the
prospects for future work.

II. RESEARCH BACKGROUND

In order to provide some background knowledge on the
work developed and presented in this paper, this section
explores the SoA regarding the technologies intrinsically asso-
ciated with the subject in study. Finally, it concludes by briefly
overvieweing related work that presents different perspectives
and solutions based on those technologies.

1845-6421/09/2021-0034 © 2021 CCIS

A507
Typewritten Text
Original scientific article

A507
Typewritten Text

A507
Typewritten Text

N. LEITE et al.: ASSURING M2M SECURE TRANSACTIONS VIA BLOCKCHAIN AND SMART CONTRACTS

A. State of the Art

In this section, the SoA for the predominant technologies
explored and used for the proposal of this solution is studied.
In overview, two topics are explored to serve as the base study
that ultimately generates the solution:

e IoT, the topic that is explored in order to establish the
protocol definition for the communication system;

e Blockchain and Smart Contracts, which is the base tech-
nology for the application running in the cloud platform.

1) Internet of Things: 10T is one of the trending and
growing topics of this millenium, due to the ever growing
necessity of connecting things in order to improve informa-
tion gathering as well as processes’ automation. It can be
defined as an Internet-enabled architecture that facilitates the
interconnection of devices with multiple technologies, fostered
by M2M communication protocols [1], [2]. The inherent
capability of IoT technologies to digitize the physical world,
i.e., communicating and generating the digital information that
represents the physical state of things make it one of the clear
enablers of Industry 4.0 [3].

Although the application of IoT in industrial systems and
applications provides numerous advantages, such as the aware-
ness of the physical state of devices and the scalability of in-
formation gathering processes, there are also some challenges
that need to be overcome in order to correctly apply it. Some
of these challenges can be defined and described as follows
(31, [4], [11, [5]:

« Heterogeneity - Many existent devices from many manu-
facturers, using different protocols and different stacks
make it difficult for seamless communication between
them;

o Restrained resources - Most devices operating in an IoT
system are restrained in their resources, which means
that deciding the way how they operate and communicate
becomes of the utmost importance;

o Energy efficiency - Typically IoT devices, especially the
ones belonging to industries, are required to withstand
long periods of time in operation, which is harder in
restrained devices;

o Security & Privacy - It is probably one of the biggest
challenges an IoT environment faces, to be able to
transmit data in a secure manner, abiding by standard-
ized information security properties, such as confiden-
tiality, immutability and authenticity. This challenge is,
of course, hardened by the fact that most of the devices
have low resources, thus having a hard time running
heavier secure communication protocols such as HTTPS
(HyperText Transfer Protocol Secure).

Having perceived the challenges that arise from the intent
to apply IoT in an industrial application, some communication
protocols that can mitigate them have to be studied. It must
first be recognized that, although IoT environments are usually
constrained in terms of resources, typical applications make
use of a device which is called an aggregator. This device
essentially collects all the data from the restrained devices,
applies the required processing and further transmits it to
where it needs to be [5], [6]. It is for this reason that, although

261

TABLE I
COMPARISON BETWEEN DIFFERENT IOT COMMUNICATION PROTOCOLS
[Attribute / Protocol i CoAP [MQTT |
Transport protocol UDP TCP
Communication type asynchronous asynchronous

publish-subscribe

request-response
polling
DTLS

Communication pattern publish-subscribe

event-driven
TLS

Communication paradigm
Security

HTTP (Hyper Text Transfer Protocol) is not quite suited for
restrained environments, it is also studied in this section, due
to the fact that it might proove useful to be used in the last
link of communication.

Although there are a number of protocols that have been
appearing over the years that are more or less suited to
operate in IoT environments, two of them can be especially
highlighted, which are CoAP (Constrained Application Pro-
tocol) and MQTT (Message Queuing Telemetry Transport)
[7]. These two protocols were built with IoT in mind and,
despite having some differences, they are very lightweight
protocols focused on low overhead and fast transmission. Table
I illustrates some of the characteristics of these two protocols
and, as it can be seen, although their goal is the same, they
greatly differ in how they do it. CoAP is an asynchronous
communication protocol that typically runs over UDP (User
Datagram Protocol) and communicates by polling other de-
vices, while MQTT is an asynchronous, event-driven protocol
that normally communicates over TCP (Transmission Control
Protocol). Additionally, since CoAP uses UDP for the transport
layer of communication, DTLS (Datagram Transport Layer
Security) can be used to ensure secure data transmission [8].
On the other hand, due to the fact that MQOTT uses TCP as its
transport protocol, TLS (Transport Layer Security) is typically
used for securing data transmission [9]. This essentially means
that MQTT introduces a slightly higher overhead than CoAP
due to its use of TCP and TLS [10], [11].

Finally, although MQTT only communicates via a publish-
subscribe mechanism, since it is event driven, which essen-
tially means that data is produced into a broker and whoever
needs that data will consume it from the broker, CoAP can
in some way communicate in both a typical request-response
mechanism as well as in a publish-subscribe one, although it
is not a typical publish-subscribe mechanism. What happens is
that CoAP allows to abstract the requester from the burden of
continuously polling the data emitter and, instead, allows the
requester to “watch” the data emitter. This basically means
that instead of the requester polling, the data emitter will
continuously produce the data generated into the requester
directly, without the requester asking for it [10], [11].

As was previously mentioned, although finding and using
a lightweight communication protocol is of the utmost impor-
tance to enhance and render more efficient the communication
between resource-restrained devices, HTTP is also a protocol
to bear in mind, since it is widely used in the WWW
(World Wide Web) due to its simplicity and resource-oriented
architecture. If in any communication link the devices that
communicate in it are resource-capable, then HTTP can, in

262

fact, be one of the solutions. HTTP is a synchronous protocol
that typically runs over TCP in a request-response pattern with
a long-polling paradigm and, it can be secured using TLS [12].

With the knowledge on the challenges that creating an IoT
communication system faces, as well as the communication
protocols that might mitigate, at least in part, some of those
challenges, this study can be used for the proposal of the
solution to the protocol definition.

2) Blockchain & Smart Contracts: With the introduction
of Bitcoin in 2008, as proposed in [13], along came a more
important concept, that of a distributed ledger that records
every transaction ever made in a system in an immutable
manner, the Blockchain. Throughout the years since it was
introduced, researchers and the industry started to realize the
immense potential of such a technology since its application
was not limited to electronic cash systems. Due to its intrinsic
characteristics of granting immutability and traceability of the
information managed by it, the applications for the technology
are immense.

Despite being a technology that grants, by design, data
immutability, it does not consider mechanisms for data con-
fidentiality, i.e., although data is immutable when stored in
a blockchain, it can be seen by anyone who belongs to the
network. For this reason, there are essentially two types of
blockchain, the public and the private/consortium ones [14].
While maintaining the immutability and traceability of the
data, a consortium blockchain possesses properties that are
essential, for example, for industrial systems, where only en-
tities with access to a certain system are able to communicate
with the blockchain network, since access to it is controlled
and transactions can be made private between certain nodes.

With the appearance of blockchain technology, another term
that already existed gained notoriety, Smart Contracts, a term
coined by Nick Szabo in the 1990s as a digital twin to the
already known physical contract between two or more entities,
which enforces a set of rules and conditions for the utilization
or transfer of a given asset [15]. In a simple, clear way, smart
contracts can be defined as a collection of functions and state
deployed on the blockchain network, that usually abide to three
properties:

o Auvailability - They execute on all nodes of the blockchain

to where they were deployed;

o Deterministic - Multiple executions of the same transac-

tion has to yield exactly the same result;

o Internal Operation - They typically only run in the

network and do not fetch data from external web services.

The last few years have seen an increase in the existence
of smart contract platforms, which provide tools to build and
deploy smart contract applications in the blockchain. Some
of those platforms focus on public blockchain networks, i.e.,
accessible to everyone, such as Ethereum [16], and others
focus on enterprise networks, where the access to the network
is controlled, such as Quorum [17] or Hyperledger Fabric [18].

Ethereum names itself as an open-source platform for de-
centralized applications, i.e., smart contract applications. Its
inner workings are that of a public blockchain, everyone has
access to it so long as they create an account. Essentially, this
platform allows the creation of smart contracts that manage

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 3, SEPTEMBER 2021

assets, which can be electronic cash or information/state
created by the developer. Smart contracts in Ethereum are
programmed using proprietary languages such as Solidity or
Vyper [19]. The code programmed in either of these languages
is then translated to bytecode using the EVM (Ethereum
Virtual Machine) [20], which provides an abstraction between
the code that will execute and the machine that will execute
it, fostering program portability.

Quorum is an Ethereum-based open-source platform for
decentralized applications in enterprise blockchains. This
means that, although all the tooling and frameworks used
by Ethereum are compatible with Quorum, the latter adds a
component which allows to introduce the concept of private
transactions. In its essence, what Quorum does is to introduce
a privacy manager, which is responsible for allowing a member
of the network to specify which members have access to
the contents of a given transaction, this way it protects the
confidentiality of the information. The immutability is still
granted, since all nodes still work together to ensure the
transactions’ validity, despite some of them not being able
to see the actual contents.

Hyperledger Fabric is a platform for enterprise blockchain-
based applications, providing access control and mechanisms
to ensure privacy of the data for strictly the entities that need to
see it. Aside from that, smart contracts in Hyperledger Fabric
can be viewed in two separate terms [18]:

o Smart Contract - defines the transaction logic that controls

the asset’s lifecycle;

o Chaincode - the packaged transaction logic in code that

is deployed to the blockchain network.

The terms smart contract and chaincode can be viewed
as the smart contract and bytecode in Ethereum or Quorum.
Smart contracts in Hyperledger Fabric can be implemented in
a variety of languages like, for example, Java or Javascript.

The main difference from Hyperledger Fabric to Ethereum
or Quorum is the way how the actual blockchain network
works, since the first one has an extremely modular ar-
chitecture allowing the developer to substitute some of the
components at their need.

B. Related Work

The joint application of IoT and blockchain technologies
has seen a significant increase in the last few years due to the
enormous potential that both of them have.

Table II describes some of the related work studied in the
preparation of the system proposed in this paper, including the
year of publications its authors, as well as the focus of each
of the articles.

The first three papers ([21], [22] and [23]) present more
foundational perspectives on blockchain and IoT systems.
Specifically:

o In [21] the authors study the possibilities and limita-
tions of smart contracts in current applications, while
exemplifying with a prototype for a system that manages
automated gasoline purchases;

o In [22], the author studies a new approach for access
management systems in IoT and, additionally, presents

N. LEITE et al.: ASSURING M2M SECURE TRANSACTIONS VIA BLOCKCHAIN AND SMART CONTRACTS

TABLE 11
RELATED WORK AND SURVEYS IN BLOCKCHAIN AND IOT INTEGRATION
[Year || Authors [Focus |
Possibilities and Limitations in smart
2018 Hanada et al. [21] contracts for M2M communications
Blockchain-based distributed
2018 Oscar Novo [22] access control for IoT
Proposal of an IoT and
2019 Gong et al. [23] blockchain fusion model
, A review of blockchain
2019 Alladi et al. [24] applications in Industrial IoT
2020 Kuperberg et al. [25] Prototype for a blockchain-enabled
railway control system

a prototype based on blockchain technology, concluding
that these types of blockchain-based access management
systems can be used in scalable IoT scenarios;

o Finally, in [23], the authors propose a structure for a
blockchain and IoT fusion model to enable and foster the
division of devices between high performant and resource
restrained. The main goal for this structure is to increase
efficiency and scalability.

In addition to these three more foundational perspectives on
the integration of blockchain and IoT, two additional papers
are presented to provide a wider review on applications of
these technologies and more pratical insights on their use.

In [24], the authors perform a wide review of several exis-
tent applications of blockchain in industrial IoT systems, such
as applications for smart cities, for the automotive industry or
even for the oil and gas industry.

Finally, in [25], the authors study the possibility of apply-
ing blockchain to railway control systems and, additionally,
present a prototype of such a system, which enables trains
to automatically find the best routes, safeguarding that choice
in an auditable manner, instead of relying in central control
offices or the actual drivers to perform that work.

III. PROPOSED SOLUTION

In this section, the proposed solution for both the com-
munication system as well as the cloud platform is shown
and discussed, including the design patterns that supported the
decision as well as the technologies that are going to be used.
The section begins with the protocol definition by illustrating
an example of a weighing station and how the devices that
exist in it can communicate. The section proceeds with the
illustration of the architecture of the cloud platform, coupled
with the explanation on each of the components that comprise
it. Finally, the security & privacy lifecycle of the weighing
tickets is discussed, i.e., how the components that take part of
the solution are able to ensure the required security properties.

A. Protocol Definition

The first step in defining the protocols that are going to
be used for communication is to, first and above all, clearly
define the ”links” of communication that exist, i.e., how many
entities communicate in the system and who communicates
with whom.

263

Cloud System

A

@

Weighing Station

Smart Box

LC1 LC3 LC6 LC7 LC1 LC3 LCB LC7
| | | — | I I I
Lc2 LC4 LC6 LCs Lc2 LC4 LC& LC8
Weighbridge 1 Weighbridge 2

Fig. 1. Overview of the communication system in the weighing stations

Figure 1 illustrates an overview of how a typical weighing
station is structured and what devices exist in it, as well
as the devices that communicate with each other. From the
figure, it can be noticed, as was previously mentioned, that
a typical weighing station possesses one SmartBox and more
than one weighbridge, which in turn are comprised by load
cells. This way, it can be seen that there are two “links” of
communication, 1 and 2, where 1 refers to the communication
between the load cells with the SmartBox and 2 refers to
the communication between the SmartBox with the cloud
platform.

Prior proceeding with the protocol definition, it is worth
remembering the characteristics of the devices which par-
ticipate in each ”link” of communication, since that deeply
influences the protocol that is required. There are essentially
three devices/entities communicating here: i) the load cells; ii)
the SmartBox; and iii) the cloud platform. Clearly, the cloud
platform, as its name suggests, is a platform running either in a
cloud provider or a proprietary server, thus it is expected a high
resource availability. The SmartBox is an aggregator device
which also applies compensation algorithms to the weighing
process and, additionally, displays all the information for the
operators in the stations and, thus, it is a device that cannot
be considered as resource-restrained. Finally, the load cells
are, in fact, resource restrained devices since their RAM
(Random Access Memory) rounds the tens of KB (Kilobytes)
and the CPU (Central Processing Unit) rounds the tens of MHz
(MegaHertz).

From the information previously retrieved, it is now more
clear that in communication link 1, a more lightweight proto-
col will be required so that it doesn’t negatively influence the
performance of the load cells and, in communication link 2
the protocol choice is not restrained in terms of resources.

Having recognized the structure of the communication sys-
tem that needs to be defined, it was chosen that communi-
cation link 2, i.e., communication between the SmartBox and
the cloud platform, would be made with HTTP over TLS,
commonly known as HTTPS. This protocol was chosen due
to the fact that there are no restraints in terms of resources in

264

the devices that use it in this case and thus, leveraging it to
communicate with the REST (Representational State Transfer)
APIs that are part of the cloud platform is simpler, since REST
and HTTP method formats deeply coincide.

Next, the definition of the protocol that is used in com-
munication link 1 is required and, as reviewed in section
II-A, the choice will lie between CoAP and MQTT. In this
particular use case there are really no performance concerns,
since the traffic that will have to be handled by the protocol is
significantly low (approximately three hundred transmissions
per weighbridge per day) and thus, either of the protocols will
be able to perfectly deal with that throughput. So, the choice
relied more on the architecture of the protocol as well as on
how to further simplify the communication system that was
going to be built. With that said, CoAP has an architecture in
terms of communication pattern extremely similar to HTTP
while, of course, greatly differing in message transmission
and headers which makes it much more lightweight. This
particular property that both hold make them suitable to
build a clean, simple and efficient communication system
which communicates in the same pattern from point to point.
Additionally, CoAP transmissions can be secured by using
DTLS, as previously mentioned.

Concluding, for the protocol definition of the IoT commu-
nication system, the solution designed proposes that:

1) The communication between the load cells with the
SmartBox is done by recurring to CoAP over DTLS;

2) The communication between the SmartBox with the
cloud platform is done by recurring to HTTP over TLS
(HTTPS).

B. Cloud Platform Architecture

Having described the communication system that will allow
the emission of weighing tickets to the cloud platform, it
stands to reason that now the actual components of this
platform must be defined in order to perceive how they,
coupled together, provide the functionality that is required.

Figure 2 illustrates the system architecture designed for the
platform in question. From this figure, it can be immediately
seen that it has four major components:

o The entity database, which essentially houses the data
models required to represent all entities that communicate
with the platform;

¢ The blockchain network, which is the network of nodes
that are associated with the organizations that participate
in the management of weighing tickets by executing smart
contracts;

o The weighing tickets API, which exposes in a clean and
simple REST API methods to manage weighing tickets,
including its registration and querying;

o The authentication & management API, which also ex-
poses its methods through a REST API to allow the
management of entities that participate in the system.

1) Entity Database: From the definition of the use case,
it is possible to conclude that the platform has to be able to
recognize and thus, model, three entities:

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 3, SEPTEMBER 2021

Blockchain
Network

i

read-only

Entity
Database

Services
WeighingTickets
API

[
Services
Authentication &
Management API

/Access comrol}<—>| Controllers

@7

| Controllers

Authorization
Control

| Abstractors

Routes

Fig. 2. Architecture of the cloud platform

Network

Customer 1

Customer 2

Q—»Organizaﬂon Q—» Node —» Smart Contract

Fig. 3. Schematics of the network’s structure

o Customer - the entity that buys the devices from the
weighing companies;

« Station - an entity that must belong to a customer, which
operates the devices bought by the customer, performing
the actual weighing processes;

o User - an entity that represents a customer. A customer
may have multiple users, since each one of them will
represent a different authenticated person.

2) Blockchain network & Smart contract: For this par-
ticular problem, the platform uses a Quorum network due
to its simplicity and the possibility of establishing private
transactions between different nodes of the network.

Figure 3 illustrates an example of how the network will
be structured in terms of the entities that participate in it.
Essentially a customer will be recognized as an organization
inside the network, i.e., an abstract entity that is comprised
by multiple nodes. Each node in an organization represents
a station and each station communicates with its own smart
contract. Additionally, every customer possesses an adminis-
trator node, which is essentially a node that is only associated
to the customer and not to any station. In section III-C the
importance of this structure will be further highlighted and
explained.

In addition to the structure of the actual network, this
component also comprises the definition of requirements of
the smart contract, the contract between customers and their
stations for the management of weighing tickets. In overview,
this smart contract can be defined as a program which lever-

N. LEITE et al.: ASSURING M2M SECURE TRANSACTIONS VIA BLOCKCHAIN AND SMART CONTRACTS

ages two data structures and a set of methods. The two data
structures it leverages are: i) the weighing ticket, which is
an object that precisely defines the attributes that comprise
a weighing ticket, including their data types and names; ii)
the set of weighing tickets, which holds every weighing ticket
registered by that contract.

Possessing these two data structures, the methods that
manipulate them can be defined and there are two major
requirements for them: i) to allow the registration of a new
weighing ticket; and ii) to allow the query of already registered
weighing tickets. While the first requirement relates only to the
implementation of one method in the smart contract, for the
second requirement an improvement was considered, which is
to allow the filtering of weighing tickets directly in the smart
contract. Taking into account that it is expected the continuous
growth of the number of weighing tickets registered and that,
when querying in a large universe of information, typically
the querying entity wishes to look for more specific pieces of
information, the smart contract should allow the filtering of
the results when queried, for all its attributes.

3) Authentication & Management API: As was previously
mentioned, this component is a REST API which serves two
main purposes:

« To manage the entities that exist in the system by allowing
one to register/update/
query/delete customers, users or stations;

« To provide the means for an user or a station to authenti-
cate themselves and, furthermore, to be able to have their
requests authorized both in this API and in the weighing
tickets APIL.

The registration of stations is a defining operation performed
in this API since it enforces the network structure defined in
Figure 3. When a station is registered, the smart contract is
deployed privately to the station’s node and to the customer’s
administrator node, which means that only the station’s node
and the customer’s node are able to interact with the smart
contract. This way, a customer will always participate in all
the smart contracts of its stations and each station will only
participate in its smart contract.

Finally, to increase security in the confidentiality of the
users’ credentials, the authentication and authorization process
introduces a token mechanism. Essentially, an user authenti-
cates itself with its credentials and then receives two unique
identifying tokens which he can use: i) the access token, which
is the token that is actually used to authorize requests, that has
a short lifespan; and ii) the refresh token, which is a token
that the user can use to refresh its access token, which also
has a limited lifespan, although greater than the access token.
This way, this mechanism prevents the user from having to
continuously authenticate themselves with their credentials in
each request.

4) Weighing Tickets API: As earlier defined, this API is
responsible for allowing entities to register or query weighing
tickets, by communicating with the smart contract associated
with that particular entity. The registration of weighing tickets
can only be done by stations, since only they can emit them
and the query of weighing tickets is limited to the users, due

265

to the fact that the stations’ devices do not have the need to
consult the information on a weighing ticket, only emit them.

To put it simply, when a station attempts to register a weigh-
ing ticket, the API collects the contract address associated with
it and submits a registration operation to the contract with
the information that it received. This transaction is private to
the smart contract, which means that only this station’s node
and the node associated with the customer that possesses the
station have access to the contents of the transaction.

The query of weighing tickets implemented allows com-
bined filtering, which means that the query issued can possess
multiple filters regarding the attributes of the weighing tickets,
such as the timestamp at when it was issued, the station it was
issued from or even the weighbridge it was issued from, among
others, in order to greatly facilitate the integration with other
systems. Additionally, it also allows the transformation of the
result by grouping the results by some attribute of the weighing
tickets, such as for example, grouping all returned weighing
tickets by the weighbridge by which they were emitted.

The components defined in this section that comprise the
proposed solution are essential to what is the lifecycle of se-
curity & privacy in the flow of information, i.e., the assurance
that the information is kept confidential and immutable since
it is emitted until it is stored, as will be explained in the next
section.

C. Security & Privacy Lifecycle

The purpose of this section is to describe how the com-
ponents that comprise the solution proposed in sections III-A
and III-B foster data security along the lifecycle of a weighing
ticket from the point it is created in the SmartBox until it is
permanently stored in the ledger.

Prior starting the description, it is essential to thoroughly
describe the lifecycle of the weighing ticket:

1) The weighing ticket is created in the SmartBox with the
weights received from the load cells;

2) The weighing ticket is transmitted from the SmartBox to
the platform, by calling the appropriate method in the
weighing tickets API;

3) The weighing ticket is processed in the weighing tickets
API and a transaction to register that ticket is issued to
the smart contract;

4) The weighing ticket is stored in the ledger.

The first step in the lifecycle, in terms of security, essentially
comprises the secure transmission of the weights from the load
cells to the SmartBox for weighing ticket building. As seen in
section III-A the transmission of these weights is done by
using CoAP as the application protocol over DTLS, which
ensures the authenticity of both the load cell devices as well
as the SmartBox , providing, additionally, confidentiality and
immutability in transit of the data transmitted between them.

After the transmission of the weights, the SmartBox builds
the weighing ticket by completing it with the remaining
information, such as the weighbridge it was measured in and
at what time the weights were measured for example and
then, transmits the weighing ticket to the cloud platform to be
registered. This transmission step is, as seen in section III-A,

266

done by using HTTP as the application protocol over TLS,
which ensures the authenticity of the SmartBox device and the
weighing tickets API and, in addition to that, also grants that
during the transmission, the information is kept confidential
and immutable. The authentication & management API also
plays an important role in this step, since it is obligatory for
a station to possess a valid access token to issue the request,
thus ensuring that the entity transmitting that weighing ticket,
at some point, authenticated successfully and is registered in
the platform.

When the weighing ticket is processed and about to be
registered in the ledger using the smart contract, the weighing
tickets API collects the address of the contract belonging to
that station and submits the weighing ticket only to the contract
in that address. It is in this step that the importance of the
structure of the network enforced in the registration of entities
is recognized, since as the contract for the station was deployed
privately to the station and the customer it is associated with,
three essential properties can be ensured, in addition to the
immutability of the data provided by blockchain technology:

« The information of a weighing ticket is only visible to the
station that emitted it and to the customer that possesses
that station;

« Stations from the same customer cannot see each others
weighing tickets;

o Entities from different organizations have no way of
consulting weighing tickets from other organizations.

In addition to the enforcement of the network structure, both
the authentication & management and weighing tickets APIs
play an important role in securing information vital for com-
munication with the smart contracts, by implementing a type
of encryption at rest mechanism. Whenever one of the APIs
stores blockchain-related information in the entities database
associated to a station or a customer, such as the address of the
contract or the URL (Uniform Resource Locator) to connect
to the node, they store it encrypted and authenticated. This
means that, when written to the database, the information is
confidential and any change in it can be detected through the
authentication code stored with it. So, if one of the APIs needs
to read that data, they have to first verify the authentication
code and only then, decrypt the data to obtain the original
information, through a key shared by both at boot-up.

Finally, after the weighing ticket is registered in the ledger,
the characteristics of blockchain technology and the way how
the smart contract is built ensure that the weighing ticket
remains immutable, since: i) a transaction cannot be altered
unless it is accepted in the networks’ consensus protocol,
which implies the permission of a significant number of nodes
in the network; and ii) the smart contract does not possess
methods to “legally” alter the contents of a weighing ticket.
So, since the original transaction cannot be changed and there
is no way of issuing a transaction for the smart contract to
alter the weighing ticket, it is stored as received permanently
in the ledger.

These four steps in the weighing ticket lifecycle clearly
highlight the importance that all the components defined in
the proposed solution have on the security & privacy of the

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 3, SEPTEMBER 2021

weighing tickets, allowing to provide an end-to-end secure
transmission and registration of them.

IV. PROOF OF CONCEPT

The purpose of this section is to provide a functional demon-
stration on some of the aspects of the solution, particularly
the ones related to the correct and secure transmission of
the weighing tickets as well as maintaining privacy between
different customers. Additionally, there is also an intent to
provide some illustration on the results obtained by consulting
existent weighing tickets.

A. Experiment Setup

In order to provide such functional demonstrations, an
experiment was set up to represent an example of the use case
in study that implements the flow of information required.

For the purpose of this experiment two different customers
were assumed, where each one of them possesses one weigh-
ing station. Each of those weighing stations are comprised by
two weighbridges and each weighbridge has four load cells.

The experiment was assembled using three devices, one
laptop and two raspberry pi. The laptop was responsible for
running the cloud platform, i.e., the blockchain network, the
weighing tickets API, the authentication & management API
and the entities database. In this experiment the blockchain
network is comprised by five nodes (one for the network
administrator, two for the customer administrators and two
for the weighing stations) coupled their respective privacy
managers, i.e., the components responsible for ensuring data
privacy when required.

Figure 4 illustrates the structure assumed for a weighing
station in the experiment. Each of the raspberry pi devices was
responsible for running the necessary components to simulate
the behaviour of one weighing station. Accordingly, each of
them ran:

o Eight load cell communicators, four per weighbridge, the
software components responsible for securely communi-
cating weights from the load cells to the SmartBox;

e One SmartBox communicator, the software component
responsible for securely communicating with the cloud
platform, either to register new weighing tickets or to
request authentication.

With the infrastructure used to run the experiment ready, the
purpose was now to simulate the emission and registration of
weighing tickets. To do this, an already existent dataset was
used which held 600 weighings, 300 per weighing station. The
elements in this dataset were split, put into the according sta-
tion’s SmartBox communicator and, additionally, the weights
were removed from the original weighing, placing them in
the load cell communicators so that they could be transmitted
by them. After this step of preparation the load cells were
made to transmit weights periodically, starting a continuous
transmission process of weighing tickets.

B. Results & Discussion

With the transmission of weighing tickets from the simu-
lated weighing stations in execution, what’s left to obtain is

N. LEITE et al.: ASSURING M2M SECURE TRANSACTIONS VIA BLOCKCHAIN AND SMART CONTRACTS

Station
SmartBox
Weighbridge 1 Weighbridge 2
LC1_1 LC2_1 LC1_2 Lc2 2
LC3_1 LC4_1 LC3_2 LC4_2

Fig. 4. Structure of a station in the experiment

"ticketID": "5f77341a31583672c4415725 5fad74fe75c459001915bb8d_1605203270305",
"transactionHash": "ex6bafad36807b9fadoeffdc545deb35815bbd277732cf976a76494914c5c@e44”

Fig. 5. Information saved on the SmartBox

some illustrations that allow to conclude that the functional
requirements were met. Essentially, what has to be functionally
demonstrated is the correct registration of weighing tickets, the
secure communication between the devices at the weighing
stations and finally the correct separation of data between
customers.

Figure 5 illustrates the object that is stored in the SmartBox
after a successful weighing ticket registration. There are two
parameters, one that uniquely identifies the weighing ticket
(ticketID) and another that uniquely identifies the transaction
that registered the weighing ticket in the ledger (transaction-
Hash). The presence of the transactionHash value demon-
strates that the transaction was issued and validated in the
blockchain network.

Although the aforementioned parameters assure that the
weighing ticket was, in fact, registered in the ledger, it also
has to be seen that its construction and transmission was
made in a secure manner by ensuring that: i) the weights
transmitted from the load cells to the SmartBox were secured;
And 1ii) that the transmission of the weighing ticket to the
API was also secured. This was done by placing a packet
sniffer, Wireshark, listening to the communication between the
devices and acquiring the packets that are transmitted, in order
to check if the data that was sent could be seen or not.

Figures 6 and 7 illustrate secure communication between
a SmartBox device with the weighing tickets API. The first
figure shows an excerpt of communication between both
devices, where a TLS exchange can be identified and the
second figure illustrates an example of a packet captured where
it can be clearly seen the existence of encrypted data, not
permitting the visualization of the original information.

Figures 8 and 9 illustrate secure communication between
load cell devices in a weighbridge with the associated Smart-
Box. In the first figure, an excerpt of communication between
them can be seen, where it is possible to identify a DTLS ex-
change between different load cell devices and the SmartBox.

267

Svi.3 309 [Client Hello

P 66 3000 —~ 33742 [ACK Se?:i Ack=244
Svi.3] 1561 [Server Hello, Change Cipher Spec
66 33747 ~ 38008 [ACK] Seq=244 Ack=1
66 33742 —~ 3000 [ACK] Seq=244 Ack=1.

TJLSvi.3 146 Change Cipher Spec, Application
LSv1.3 1274 [Application Data

=

97168 0
192.168.1.231
192.168.1.231 TCP
102.168.1.231

EHZ.lEE.i.ZE’S 192.168.1.231]

Fig. 6. Excerpt of communication between a SmartBox with the weighing
tickets API

Frame 166: 1274 bytes on wire (10192 bits), 1274 bytes captured (18192 bits) on inte|
Ethernet II, Src: da:0d:16:al:3f:ae (da:0d:16:al:3f:ae), Dst: IntelCor_2b:28:8e (20:
Internet Protocol Version 4, [src: 192.168.1.203, Dst: 192.168.1.231
Transmission Control Protocol, Src Porf: 7, DSt P J, Seq: 324, Ack: 1496,
~ TLSv1.3 Record Layer: Application Data Protocol: Application Data

Opaque Type: Application Data (23

Version: TLS 1.2 (0x@303)

Length: 1203

|Encrypted Application Data: a2322f6274d642TB6T52T1b76624927370218193ed5ale45.

20 79 18 2b 28 Be da Od 16 al 3f ae 03 00 45 00 y+(7 E
04 ec ec 87 40 00 40 06 c4 81 c@ a8 €1 cb c@ a8 o

01 e7 83 ce Ob b8 b3 28 e2 ad 0d 91 ff 69 80 18 (i
01 f5 47 56 00 00 01 01 08 Ga cd 5 63 94 Se 9F GV n
Ba c@ 17 03 03 04 b3 a2 32 2f 62 f4 d6 42 8 6F 2/b--B-a

52 f1 b7 66 24 92 73 70 21 81 93 ed 5a 1e 45 @F |R--f8 sp ! z
23 59 30 1e 79 97 db b2 1@ 9e 1b b4 aa b7 4e Be |#YO 'y

4a 64 9b 31 b0 7d T9 2f d4 ef af do 9c dO 79 ed |Jd-1-} /

24 bf eb ea b2 3e 13 77 d2 8d 2b a4 di c2 77 @b | > +

z<=m

Fig. 7. Example packet exchanged between a SmartBox with the weighing
tickets API

Bource Destination Protocol Length Info
[27.0.6.1 127.8.68.1 i 177 [Client Hello
[27.0.6.1 127.0.8.1 DTLSV1.2 177 [Client Hello
f27.0.0.1 127.0.0.1 DTLSv1.2 177 [Client Hello
f27.0.0.1 127.0.0.1 TLSV1.2) 177 [Client Hello
[27.0.9.1 127.0.0.1 TLSV. 2| 90
[127.0.6.1 127.9.6.1 TLSV1.2 197 Client Hello
f27.0.9.1 127.0.0.1 TLSVi. 7] 90
[27.0.6.1 127.0.6.1 TLSV1.2 197 Client Hello
[27.0.8.1 127.8.8.1 DTSV Z] 90 Eellu Verify Request
[27.0.6.1 127.8.8.1 DTLSV1.2) 90 Hello Verify Request
f27.0.0.1 127.0.0.1 DTLSv1.2 197 Client Hello
f27.0.0.1 127.0.0.1 DTLSv1.2 197 Client Hello
[p27.0.0.1 127.0.0.1 DTLSvI. 2] 893 [Server Hello, Certificate, Server
[127.0.6.1 127.9.6.1 DTLSV1.2 894 Server Hello, Certificate, Server
[127.0.8.1 127.0.6.1 DTLSV1.2 894 Server Hello, Certificate, Server
[27.0.6.1 127.0.6.1 DTLSV1.2 892 Server Hello, Certificate, Server
[27.0.8.1 127.8.8.1 DTLSV1.2 863 [Certificate, Client Key Exchange,
[27.0.6.1 127.8.8.1 DTLSV1.2 863 Certificate, Client Key Exchange,
[27.0.6.1 127.0.8.1 DTLSV1.2 863 |Certificate, Client Key Exchange,
f27.0.0.1 127.0.0.1 DTLSv1.2 863 [Certificate, Client Key
[27.0.0.1 127.0.0.1 DTLSVIZ 117 Change Cipher Spec, Encrypted Han
f27.0.0.1 127.0.0.1 DTLSV1.2 98 Application Data
[127.0.8.1 127.0.6.1 DTLSV1.2 121 Application Data
27.0.9.1 127.0.0.1 DTLSV1.2 117 Change Cipher Spec, Encrypted Han
[27.0.6.1 127.0.6.1 VI, 98 [Application Data
h27.0.0.1 127.0.8.1 DTLSV1.2 121

Fig. 8. Excerpt of communication between the load cells with a SmartBox

Frame 158: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface Lo
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: ©0:00:00_00:00:00 (0O:
Internet Protocol Version 4, Src: 127.0.6.1, Dst: 127.0.08.1
User Datagram Protocol, Src Port: 380833, [Dst Port: 8893
Patagram Transport Layer Security
~ DTLSv1.2 Record Layer: Application Data Protocol: Application Data

Content Type: Application Data (23)

Version: DTLS 1.2 (@xfefd)

Epoch: 1

Sequence Number: 1

Length:

Encrypted Application Data: f9ee9271e0485b2fe76b18e8038848610cThcIBa14d7b76d

0D 0B 6@ 00 OB 00 00 G O GB@ 0D OB 08 00 45 00 E
0D 54 4f 27 40 00 40 11 ed 67 77 09 00 01 7T 0O To/@@- g
G0 01 9b fd 22 bd 00 40 fe 53 17 fe fd 00 01 0O "e@ -5

00 0@ 6@ 00 01 G0 2b T9 ee 92 71 e9 48 5b 27 e7 + q-H[/
6b 18 e8 03 88 48 61 Oc fb cd 80 14 d7 b7 6d 8 |k Ha m
59 cB@ 59 8c e3 9e 2a bc 52 be ef 84 3d 7a d7 9a |Y-Y ' Rhoo=Z
4r 7 0

Fig. 9. Example packet exchanged between the load cells with a SmartBox

The second figure illustrates an example of a packet captured
in this communication where it can also be seen the indication
of DTLS being used and, of course, the existence of encrypted
data.

Having collected the aforementioned illustrations and en-
suring that the communication between all devices is secured,
the next and final step is to verify that the customers cannot
see other customers’ data, ensuring their weighing tickets are
kept private.

The first step in doing this is ensuring that a customer can

268

Body Cookies Headers (9) Test Results
Pretty Raw Preview Visualize JSON =
1A
2 "count": 3600,
3 "tickets": [
4 {
5 "ticketID": N
6 "terminalSerialNumber”: "',
7 "terminalRestartValue": "N .
8 "timestamp": "12-November-2020 17:47:58",
9 "scaleSerialNumber”: " NN .
18 "scaleStatus”: "I,
11 "scaleGross": @,
12 "scaleNet": @,
13 "cells": [
14 {
15 "cellSerialhumber”: " NEEEEEN"
16 ‘cellWeight": @

Fig. 10. Result of a customer requesting to see its weighing tickets

Body Coockies Headers (9) Test Results
Pretty Raw Preview Visualize JSON
1A
2 "count": @,
3 "tickets": []
4 [

Fig. 11. Result of one customer requesting to see other customer’s weighing
tickets

actually access its own weighing tickets. Figure 10 illustrates
the result received when a customer requests to see its weigh-
ing tickets. This result is obtained when issuing a request to
the weighing tickets API to collect the weighing tickets with
an authorization token that uniquely identifies the customer
performing the request.

While validating that a customer can access its own weigh-
ing tickets, it is also required to verify that one customer
cannot access other customer’s weighing tickets, thus ensuring
that they are kept private.

Figure 11 illustrates the result obtained when issuing the
same request made in figure 10, with a slight change. In
figure 11 the request is performed with an authorization token
belonging to one customer, while specifying a weighbridge
identifier that is associated with another customer and, as it
can be seen, nothing is returned, although it is known from
figure 10 that the customer possesses 300 weighing tickets.

With the illustrations previously shown it can be concluded
that, functionally, the solution that was proposed and de-
veloped complies with the security requirements that were
identified, since weighing tickets are transmitted securely
between all devices and, additionally, they are registered in the
ledger privately to the customer associated with the weighing
station.

V. CONCLUSION

In this paper, a novel solution for securing weighing re-
ceipts using blockchain technology was studied and proposed.
The paper first explores the state of the art regarding the

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 3, SEPTEMBER 2021

technologies necessary to design the solution, namely, IoT
for the communication between the devices that operate on
the weighing stations, and blockchain to immutably secure
weighing tickets once they are registered. After this research,
a solution is proposed which is comprised by a protocol
definition for an IoT communication system and a cloud
platform capable of: i) allowing the registration and query of
weighing tickets; ii) ensuring data privacy between different
customers; And iii) simplifying the communication with the
smart contract application through the use of REST APIs.

Having proposed the solution, the security & privacy lifecy-
cle of the weighing tickets is briefly but thoroughly explained
in order to detail the security properties that are ensured and
how they are ensured by the components that comprise the
solution.

Finally, a functional proof of concept is presented to illus-
trate and demonstrate that the functional requirements initially
defined are met by the solution that was developed.

A. Future Work

Although the project has reached a good maturity level,
there is still some work to conclude it. There are essentially
two major aspects which will be taken into account from now
on, which are:

o To foster a better integration of the cloud platform with
existing systems of the companies by, for example: 1)
adapting the authentication mechanism to an already
existent one; And ii) by offering a managed blockchain
solution to release the burden of network management,
which is high.

o To test the solution in a real environment instead of a
simulated one

These two last items are the essential aspects were the
work will be directed to in order to conclude and present the
final solution capable of being completely integrated with the
systems that already exist while, of course, providing all the
new functionality to securely transmit and manage weighing
tickets.

ACKNOWLEDGMENT

This work has been partly supported by national funds
through FCT—Fundacdo para a Ciéncia e Tecnologia within
the Project Scope: UID/CEC/00319/2020 and by the European
Structural and Investment Funds in the FEDER component,
through the Operational Competitiveness and International-
ization Programme (COMPETE 2020) [Project n° 039334;
Funding Reference: POCI-01-0247-FEDER-039334] and also
by NORTE-06-3559-FSE-000018, integrated in the invitation
NORTE-59-2018-41, aiming the Hiring of Highly Qualified
Human Resources, cofinanced by the Regional Operational
Programme of the North2020, thematic area of Competitive-
ness and Employment, through the European Social Fund
(ESF).

REFERENCES

[1] R.H. Weber, “Internet of Things - New security and privacy challenges,”
Computer Law and Security Review, vol. 26, no. 1, pp. 23-30, 2010.

N. LEITE et al.: ASSURING M2M SECURE TRANSACTIONS VIA BLOCKCHAIN AND SMART CONTRACTS 269

(2]

(3]

(4]

(31

(6]
(71
(8]

(91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys and Tuto-
rials, vol. 17, no. 4, pp. 2347-2376, 2015.

D. Bandyopadhyay and J. Sen, “Internet of things: Applications and
challenges in technology and standardization,” Wireless Personal Com-
munications, vol. 58, no. 1, pp. 49-69, 2011.

I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of Things:
Security vulnerabilities and challenges,” Proceedings - IEEE Symposium
on Computers and Communications, vol. 2016-Febru, no. July, pp. 180-
187, 2016.

I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani, “Internet of Things Architecture: Recent Ad-
vances, Taxonomy, Requirements, and Open Challenges,” IEEE Wireless
Communications, vol. 24, no. 3, pp. 10-16, 2017.

L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

S. Jaloudi, “Communication protocols of an industrial internet of things
environment: A comparative study,” Future Internet, vol. 11, no. 3, 2019.
IETF, “DTLS - Datagram Transport Layer Security,”
https://tools.ietf.org/html/rfc6347, [Online; Accessed 10 - December -
2020].

Internet Engineering Task Force, “TLS - Transport Layer Security,”
https://tools.ietf.org/html/rfc8446, [Online; Accessed 10 - December -
2020].

IETF, “The Constrained Application Protocol,” https://tools.ietf.org
/html/rfc7252, [Online; Accessed 10 - December - 2020].

OASIS, “MQTT - Message Queuing Telemetry Transport,” http://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html, [Online; Ac-
cessed 10 - December - 2020].

IETF, “Hypertext Transfer Protocol version 2,” https://tools.ietf.org/html/
rfc7540, [Online; Accessed 10 - December - 2020].

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Journal
for General Philosophy of Science, vol. 39, no. 1, 2008.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of
Blockchain Technology: Architecture, Consensus, and Future Trends,”
Proceedings - 2017 IEEE 6th International Congress on Big Data,
BigData Congress 2017, pp. 557-564, 2017.

Nick Szabo, “The Idea of Smart Contracts,” https://nakamotoinstitute.org
/the-idea-of-smart-contracts/, [Online; Accessed 11 - December - 2020].
Ethereum, “Proof of Stake - Ethereum,” https://docs.ethhub.io/ethereum-
roadmap/ethereum-2.0/proof-of-stake/, [Online; Accessed 11 - Decem-
ber - 2020].

Quorum, “Quorum - The proven blockchain for business,”
https://www.goquorum.com/, [Online; Accessed 11 - December -
2020].

Hyperledger Fabric, “Smart contracts and chaincode,”

https://hyperledger-fabric.readthedocs.io/en/release- 1 .4/smartcontract
/smartcontract.html, [Online; Accessed 11 - December - 2020].
Ethereum, “Developer Resources,” https://ethereum.org/developers/gett
ing-started, [Online; Accessed 11 - December - 2020].

The Ethereum Foundation, “The Ethereum Virtual Machine,”
https://ethereum.org/en/developers/docs/evm/, [Online; Accessed
11 - December - 2020].

Y. Hanada, L. Hsiao, and P. Levis, “Smart contracts for machine-to-
machine communication: Possibilities and limitations,” in 2018 IEEE
International Conference on Internet of Things and Intelligence System
(IOTAIS), 2018, pp. 130-136.

O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184-1195, 2018.

X. Gong, E. Liu, and R. Wang, “Blockchain-based iot application using
smart contracts: Case study of m2m autonomous trading,” in 2020 5th
International Conference on Computer and Communication Systems
(ICCCS), 2020, pp. 781-785.

T. Alladi, V. Chamola, R. M. Parizi, and K.-K. R. Choo, “Blockchain
applications for industry 4.0 and industrial iot: A review,” IEEE Access,
vol. 7, pp. 176935-176951, 2019.

M. Kuperberg, D. Kindler, and S. Jeschke, “Are smart contracts and
blockchains suitable for decentralized railway control?” 2019.

Nuno A. L. Leite is a final year student of the

Integrated Masters in Informatics Engineering at the
(| University of Minho, and a Research Technician
in the Software & Information Systems department
at the Digital Transformation CoLab. His research
interests are currently focused towards information
security, particularly in novel blockchain applica-
tions, as well as software engineering.

Alexandre J. T. Santos is Associate Professor at the
Informatics Department, University of Minho, and
Senior Researcher at Centro Algoritmi. He received
his PhD in Computer Communications from the
University of Minho in 1996. He is in the lead of
the Computer Communications and Pervasive Media
(CCPM) research group and has several partici-
pations in European and other international R&D
projects. He has authored more than eighty scientific
papers at international refereed Journals and Con-
ferences and has served as Journal Editor and TPC
member for several IEEE, ACM and IFIP sponsored events. Recognized as
an IEEE Senior Member (SM’10) and member of the IEEE CS and IEEE
VTS Society.

Nuno Lopes is the Chief Technology Officer (CTO)
of the National Lab on Digital Transformation in
Portugal and professor on a part-time basis at
the University of Minho. He has two Postdoctoral
courses, one on Computer Science at the University
of Coimbra and another on Electronic Governance at
the United Nations University. Previously, he worked
at the United Nations University, where he founded
and coordinated the research line on Smart Cities.
During his working life, he has been involved in
several national, European and international projects,
such as Electronic Governance for Context-Specific Public Service Delivery,
Knowledge Society Policy Handbook, Policy Monitoring on Digital Technol-
ogy for Inclusive Education, Intelligent Computing for Internet and Services,
Internet of Things for Disabled People, Smart Defense and Smart Cities for
Sustainable Development. Editor of the Springer Book on “Smart Governance
for Cities: Perspectives and Experiences”, Editor of the IGI Global Book on
“Developing Knowledge Societies for Distinct Country Contexts”, co-author
of the United Nations Report on Smart Sustainable Cities for Developing
Countries and of the UNESCO Handbook on Knowledge Societies.

