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Summary 

The trimaran vessel rolls strongly at low forward speed and may capsize in high sea 

conditions due to chaos and loss of stability, which is not usually considered in conventional 

limit-based criteria. In order to perfect the method of measuring roll performance of trimaran, 

a set of nonlinear roll motion stability analysis method based on Lyapunov and Melnikov theory 

was established. The nonlinear roll motion equation was constructed by CFD and high-order 

polynomial fitting method. The wave force threshold of rolling chaos in regular waves is 

calculated by Gauss-Legendre numerical integration method. The limited significant wave 

height of rolling chaos in random sea conditions is deduced by the phase space transfer rate, 

and the complex effect of wind load is superposed in the calculation. The influence of trimaran 

configuration on the roll system is analyzed through the state differentiation of homoclinic and 

heteroclinic orbit in phase portrait. The calculation of the maximum Lyapunov exponent further 

verified the applicability of Melnikov method, and the topological structure change of gradual 

failure of the rolling system is analyzed by the erosion of safe basin. The complex changes of 

the nonlinear damping coefficient and the nonlinear restoring moment coefficient caused by the 

change of the transverse lay-outs between the main hull and side hull have a significant 

influence on chaos and stability, and the existence of wind load has a certain weakening effect 

on the stability and symmetry of the system. The conclusion also further indicates the 

importance of the lay-outs to the dynamic stability of the trimaran vessel, which is significant 

for its seakeeping design. 

Key words: Trimaran; Nonlinear rolling stability; Transverse Lay-outs; Melnikov 

function; Lyapunov exponent; Phase space transfer rate 

1. Introduction 

In Naval Architecture, “Stability” has a wide meaning, which usually involves static and 

dynamic stability, and its fundamentals have wider implications for the design and operation of 

ships [1]. In recent years, with the continuous development of second-generation stability, the 

research on dynamic stability has been increasing for mono-hull ships. However, the method 
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of limiting bounds is still used for the calibration of roll motion in the design of the trimaran 

vessel, and it is necessary to study its dynamic rolling stability.  

Rolling system can be considered as a softening duffing system, and the stability is a 

nonlinear dynamic problem [2-3]. In the field of dynamic rolling stability, there are two main 

approaches, for regular wave and irregular wave, it can be divided into deterministic method 

and stochastic method. The rolling stability of the deterministic system refers to the roll motion 

in regular waves, and the coefficients in the system are considered to be fixed，and the methods 

mainly include catastrophe theory, Floquet theory, Melnikov function, fractal dimension, 

Kolmogorov entropy and safe basin [4-6]. Virgin [7-9] studied an oscillator by the method of 

harmonic balance and then the nonlinear roll motion stability of vessel in regular waves and its 

chaotic phenomena were studied, and he pointed out that ships usually went through a chaotic 

stage before capsizing, and he gave a method to predict this chaotic motion.  

In 1963, Melnikov proposed a method to measure the distance between stable and 

unstable manifolds after splitting while studying the perturbation of homoclinic and heteroclinic 

orbits of conservative systems. Holmes and Greenspan discussed the averaging and chaotic 

motions and homoclinic bifurcation of some oscillator by Melnikov method [10-11], and 

Thompson [12] applied Melnikov method to study ship capsizing for the first time in 1987. 

Later on, it gradually became the most mainstream method. Falzarano et al. [13] introduced the 

Melnikov method into the study of ship motion and analyzed the homoclinic bifurcation and 

heteroclinic bifurcation. Nayfeh and Balachandran [14] studied the dynamic stability of various 

quantitative nonlinear systems systematically by Melnikov method and Lyapunov exponent. In 

recent years, Maki studied a non-Hamiltonian exact heteroclinic orbit by Melnikov integral 

formula [15]. Wan [16] used Melnikov method to study the stability of roll motion under the 

condition of large damping. Surendran et al. [17] used Melnikov method to study roll motion 

stability of a RORO ship.  

The sea that ships actually sail is composed of random waves, which are usually called 

irregular waves in the study of seakeeping. For linear motion system, random waves are usually 

assumed to be stationary random processes of all states of ergodic when predicting the motion 

performance in irregular waves based on spectral analysis method. However, this method is not 

applicable to the strong-nonlinear roll motion. With the development of stochastic theory, some 

scholars applied the method of probability and statistics theory and transform the problem into 

the solution of FPK(Fokker-Planck-Kolmogorov) equation to satisfy Markov process [18]. The 

probability density is obtained by solving FPK equation, and then the stability of roll motion 

can be judged. Nekrasov and Haddara first used the Markov process to study ship roll motion, 

but only limited to white noise excitation and small or medium amplitude roll motion [19-20]. 

Roberts [21] used the mean equation to reduce the FPK equation from two dimensions to one 

dimension, and at the same time considered the nonlinear roll damping and nonlinear restoring 

moment to overcome the limitation of white noise excitation. Subsequently, he carried out a lot 

of improved work [22-23], and he perfected the theoretical basis for solving the stability of roll 

motion under irregular sea conditions based on FPK equation, which was widely used by 

scholars in the future.  

Chai used the path integral method to study the effect of the white noise processed by the 

high-order filter on the roll stability [24-25]. Maki used non-gaussian probability density 

function to study the capsizing probability in irregular beam seas [26]. Ren used the path 

integral method to study the first passage of the nonlinear rolling motion of a mono-hull ship 

in random sea conditions under ice load [27]. However, the limitations of Markov process, such 

as gaussian white noise assumption and nonlinear intensity, lead to some deficiencies in the 

prediction accuracy and practical application. The random Melnikov theory is gradually 

developed by referring to Melnikov function in deterministic methods. Based on the random 
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Melnikov process, Li studied the rolling motion stability of a mono-hull ship in random sea 

conditions and analyzed the influence of parameters on the safe basin [28]. Frey and Jiang first 

proposed to judge the stability of random rolling based on the random Melnikov theory through 

the phase space transfer rate, and he defined the phase space transfer rate as the area from the 

safe domain to the unsafe domain within a unit period [29-30]. Subsequently, it has been widely 

used in the study of random roll stability of ships, but mainly concentrated on mono-hull ships. 

Liu studied the phase - space transfer rate of random wave ship nonlinear rolling under green 

water [31]. Zhang studied the change of phase space transfer rate with wave direction and 

forward speed [32]. 

At present, there are few studies on the roll stability of multi-hulled ships, such as trimaran 

vessel, in either regular wave or random sea conditions. The trimaran vessel, as a popular multi-

hull ship type in the last two decades, its configuration is more flexible than single-hull ship, 

and the designer can get a better scheme by changing the transverse and longitudinal lay-outs 

between the main hull and the side hull [33-35]. As we all know, with the increasing of 

transverse spacing, the trimaran vessel has a larger radius of transverse meta-centering and 

better stability than mono-hull ship in static stability, but the roll period is reduced quickly. The 

rolling system is a nonlinear system by the function of the nonlinear of rolling damping and 

restoring moment. In addition to the conventional component such as friction damping, wave-

making damping, vortex damping, and appendage damping, nonlinear damping caused by flow 

interference between the main hull and the side hull should be considered for the trimaran vessel 

[36]. The nonlinearity of the restoring moment coefficient is mainly related to the irregularity 

of the hull, which is also more prominent for the trimaran vessel. Under severe sea conditions 

and low forward speed, this kind of ship will have a large nonlinear roll motion [37-38]. The 

change of the coefficient caused by the change of the lay-outs will cause some uncertainties to 

the stability. So, it is necessary to establish the method to study the rolling stability for trimaran 

vessels. This paper focuses on the establishment of roll motion stability prediction methods for 

trimaran vessel in complex environments with regular and irregular waves and wind loads under 

the variation of transverse layouts.  

1.1 Principal Dimensions 

A 600-ton high-speed transportation trimaran vessel is adopted as the research object. 

Table 1 shows the principal dimensions. The characteristics of different transverse spacing from 

4.5m to 10m will be studied. When the spacing changes, the draft, displacement, and center of 

gravity remain unchanged, but the hydrodynamic coefficients are changing, and the detailed 

data is shown in table 1 and subsequent studies. Fig.1 shows the whole model and section lines 

when transverse spacing is 7.0m.  

   
(a) 3D calculation model                                     (b) Ship lines of cross section 

Fig.1 Trimaran model 
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Table1 Principal dimensions 

Item Paticulars Unit Trimaran 

Length between perpendicular (main hull) Lppm m 65 

Moulded Breadth (main hull) Bm m 5.5 

Draft (main hull) Tm m 2.8 

Displacement (main hull) ∆𝑚 ton 580 

Length between perpendicular (side hull) Lpps m 26 

Moulded Breadth (side hull) Bs m 1.5 

Draft (side hull) Ts m 1 

Displacement (side hull) ∆𝑠 ton 10 

Longitudinal Spacing SL m 0(tail alignment) 

Transverse Spacing  CL m 4.5-10 

1.2 Roll motion equation  

(𝐽𝜑𝜑 + ∆𝐽𝜑𝜑)�̈� + 𝑀(�̇�) + 𝑀(𝜑) = 𝐹𝑤𝑎𝑣𝑒(𝑡) + 𝐹𝑤𝑖𝑛𝑑(𝑡)                             (1) 

The ship roll motion equation in waves can be expressed as equation (1). 

Where,  𝐽𝜑𝜑 , ∆𝐽𝜑𝜑are the transverse moment of inertia and the additional moment of inertia, 

respectively. 𝑀(�̇�)  is damping moment, 𝑀(𝜑)  is restoring moment, 𝐹𝑤𝑎𝑣𝑒(𝑡)  is wave 

force, 𝐹𝑤𝑖𝑛𝑑(𝑡) is wind force. 

1.2.1 Nonlinear roll damping model 

Roll damping is always obtained by roll decay motion in still water which can be simulated 

by CFD or model experiments [39-40]. Due to the limited test conditions, one roll decay model 

test of the transverse spacing CL=7m is carried out as shown in Fig.2, and other conditions are 

simulated by CFD method. The implicit inconstant method is applied to solve the Reynolds 

Average Equations (RANS)，while 𝑘 − ω model is applied as the turbulence model. The 

overlapping mesh technique is used as shown in Fig.3. The CFD results are compared with 

experiment. It can be seen from Fig. 4 that the accuracy is well verified. Fig.6 shows the roll 

decay curves of different CLs. Preliminary observation shows that trimarans with large 

transverse spacing decay more quickly. 

                         
  Fig. 2 Rolling decay model test                                               Fig. 3 CFD calculation mesh   

                       
Fig.4 The comparison between CFD and model test              Fig.5 Comparison of 𝜑𝑚 − ∆𝜑 curves of LPCD  

and LPQD damping models  
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  (a) CL=4.5m-6.5m                                              (b) CL=7m-10m 

Fig.6 Roll decay curves of different CLs 

Similar to conventional mono-hull ships, the nonlinear roll damping moment 𝑀(�̇�) of 

trimaran vessel can usually be expressed in linear plus square damping (LPQD) or linear plus 

cubic damping (LPCD)，respectively shown as equation (2) and equation (3). 

𝑀(�̇�) = 𝐴�̇� + 𝐵�̇�|𝜑|̇                                                       (2) 

   𝑀(�̇�) = 𝐴�̇� + 𝐶�̇�3                                                         (3) 

The selection of roll damping model may be different for different ship types. Wassermann 

[41] studied a post panama ship with different damping models and found that the linear plus 

square plus cubic model was more suitable. Bikdash et al. [42] studied the effect of damping 

models of a mono-hull ship, they derived an equivalent damping condition under which the two 

models yields the same Melnikov predictions. For trimaran vessels, Zhang [43] studied the roll 

damping in detail, and LPQD damping model was discussed at low speed while the LPCD 

damping model was not studied in his research. As we all know, the roll damping coefficient is 

usually obtained by using the 𝜑𝑚 − ∆𝜑 curve according to the peak points of the decay curve, 

where, 𝜑𝑚 and ∆𝜑 are the mean values of the adjacent amplitudes and the difference of the 

adjacent amplitudes of the decay curve. In this paper, the two damping models were used to fit 

the 𝜑𝑚 − ∆𝜑 curve in Fig.5, respectively, and it was found that the error between LPQD and 

LPCD models is very small within 0.5%. Therefore, any of the two models can be used for the 

trimaran vessel. However, the LPQD model has the absolute item |𝜑|̇ , in order to deal with the 

equations conveniently for stability and chaotic analysis, LPCD model is adopted in following 

studies. 

1.2.2 Restoring moment model 

The direction of restoring moment is always opposite to the roll motion. In the case of 

small motion, the restoring moment has a linear relationship with the roll angle, but in the case 

of large roll motion, this relationship turns to nonlinear. In this paper, linear plus cubic plus 

quintic model is adopted to describe the nonlinear restoring moment, as shown in equation (4). 

𝑀(𝜑) = 𝐶1𝜑 + 𝐶3𝜑
3 + 𝐶5𝜑

5                                              (4) 

It could also be written as                    𝑀(𝜑) = 𝑀𝑔(𝑅1𝜑 + 𝑅3𝜑
3 + 𝑅5𝜑

5)                     (5)  

Where, 𝑅1, 𝑅3, 𝑅5  are the lengths of restoring moment arm respectively, and can be 

obtained by fitting the GZ curve of a real ship. The GZ curves are obtained based on ship statics 

and corrected by free liquid level. 𝑀𝑔 is the gravitational force or buoyancy. The fitting curve 

of restoring moment arm when the transverse spacing is 5m and the transverse spacing is 8m 

are shown in Fig.7 and Fig.8, indicating that the above nonlinear restoring moment model has 

a high precision. 
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Fig.7 Nonlinear restoring moment  

arm   fitting curve (CL=5.0m) 

Fig.8 Nonlinear restoring   moment 

arm  fitting curve (CL=8.0m) 

1.2.3 Model of wind load 

The model of wind load changing with roll angle can be defined as: 

𝐹𝑤𝑖𝑛𝑑 = 𝐹0𝑐𝑜𝑠𝜑                                                        (6) 

Where，𝐹0is the wind force when roll angle is zero. For the sake of research, we can 

expand out 𝑐𝑜𝑠𝜑 by Taylor Expansion: 

𝐹𝑤𝑖𝑛𝑑 = 𝐹0(1 −
𝜑2

2
+
𝜑4

24
)                                          (7) 

𝐹0 is mainly affected by the wind speed and shape above the waterline of the trimaran as 

shown in equation (8). The CFD method is used for calculation of the wind force coefficient 

𝐶𝑦 . Fig.9 is a scalar diagram of the wind field. The calculated wind load coefficient 𝐶𝑦 is 0.805 

for this trimaran vessel. Then, according to different wind speeds, 𝐹0 can be obtained. 

𝐹0 =
1

2
𝐶𝑦𝜌𝑉

2𝐴 ∙ 𝑙𝐴                                              (8) 

Where, 𝑉 is the velocity of wind, 𝐴 is windward area, 𝜌 is the air density, 𝑙 is the arm of 

the wind force.  

 
Fig. 9 Scalar diagram of the wind field 

1.2.4 Parameters of rolling model  

According to the above analysis, the nonlinear roll motion equation of the trimaran vessel 

in regular beam waves is obtained as follows： 

(𝐽𝜑𝜑 + ∆𝐽𝜑𝜑)�̈� + 2𝑁1�̇� + 𝑁3�̇�
3 + 𝐶1𝜑 + 𝐶3𝜑

3 + 𝐶5𝜑
5 = 𝐹(𝑡) + 𝐹𝑤𝑖𝑛𝑑               (9) 

Divide both sides by 𝐽𝜑𝜑 + ∆𝐽𝜑𝜑，equation (9) is simplified to: 

�̈� + 2𝜐𝜑𝜑�̇� + 𝜐3�̇�
3 + 𝑟1𝜑 + 𝑟3𝜑

3 + 𝑟5𝜑
5 = 𝑓(𝑡) + 𝑓𝑤𝑖𝑛𝑑                        (10) 
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Table2 Parameters at different transverse layouts of nonlinear roll system 

CASE 2𝜐𝜑𝜑 𝜐3 𝑟1 𝑟3 𝑟5 
 

s-1 s m s-2 s-2 

Cl=4.5m 0.055 5.675 0.188 -0.134 0.003 

Cl=4.8m 0.065 5.762 0.281 -0.183 0.010 

Cl=5.0m 0.065 6.438 0.356 -0.238 0.022 

Cl=5.5m 0.080 6.573 0.531 -0.369 0.051 

Cl=6.0m 0.101 5.314 0.689 -0.488 0.079 

Cl=6.5m 0.129 4.025 0.836 -0.609 0.105 

Cl=7.0m 0.155 3.292 0.976 -0.723 0.131 

Cl=8.0m 0.188 1.649 1.199 -0.912 0.177 

Cl=9.0m 0.301 - 1.401 -1.084 0.216 

Cl=10m 0.335 - 1.577 -1.232 0.249 

Table 2 shows the detailed parameters in equation (10) at different transverse spacing. To 

study the transverse spacing as a variable, the center of mass and displacement are kept 

constant. As we can see, different CL has different nonlinear restoring moment coefficients 

𝑟1, 𝑟3, 𝑟5, which are fitted by corresponding GZ curves. With the increase of CL, the damping 

generally presents an increasing trend, with the linear damping increasing all the time, while 

the nonlinear damping increases first and then decreases. When the CL increases to 8m, the 

damping coefficient can only be fitted as linear damping, which may be due to the reduction of 

nonlinear interference caused by too large transverse spacing between main hull and side hull. 

2. Chaotic analysis and validation in regular waves 

2.1 Phase portraits analysis 

The equilibrium point calculation and phase portraits analysis in the nonlinear dynamic 

system are usually taken as the key stages in whole stability analysis process. The stability of 

the autonomous system near the equilibrium point can be qualitatively analyzed by phase 

portrait of homoclinic or heteroclinic orbit, which is the basement and precondition for stability 

judgement of the non-autonomous system. Nayfeh and Balachandran [14] has provided the 

homoclinic and heteroclinic orbits and phase portraits research of some typical quantic 

nonlinear systems, which is useful for nonlinear roll system of the trimaran vessel. 

We study the equation of roll motion under the action of regular beam waves and 

transverse wind： 

(𝐽𝜑𝜑 + ∆𝐽𝜑𝜑)�̈� + 2𝑁1�̇� + 𝑁3�̇�
3 + 𝐶1𝜑 + 𝐶3𝜑

3 + 𝐶5𝜑
5 = 𝐹𝑐𝑜𝑠𝑤𝑡 + 𝐹𝑤𝑖𝑛𝑑               (11) 

Wave force amplitude 𝐹 is usually expressed as 𝐹 = 𝑀𝑔ℎ. 𝛼𝑒0 [44], where ℎ is transverse 

metacentric height, 𝛼𝑒0 is the effective wave slope angle, which is expressed as 𝛼𝑒0 = 𝑋𝜑𝛼0, 

𝑋𝜑 is the effective wave slope angle correction which consider the influence of ship breadth 

and draught limitation [45]. The wave slope angle  𝛼0 = 𝑘𝜁𝑎， 𝑘 is the wave number, 𝜁𝑎 is the 

wave amplitude. 

2.1.1 Symmetric system with no wind 

Firstly, we analyze the situation when there is no wind, for the roll motion equation (10), 

Set 𝑑1 = 2𝜐𝜑𝜑, 𝑑3 = 𝜐3, then equation (10) becomes： 

�̈� + 𝑑1�̇� + 𝑑3�̇�
3 + 𝑟1𝜑 + 𝑟3𝜑

3 + 𝑟5𝜑
5 = 𝑓𝑐𝑜𝑠𝑤𝑡                          (12) 
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Set 𝑥 = 𝜑, 𝑦 = �̇�, then, 

{
�̇� = 𝑦

�̇� = −𝑑1𝑦 − 𝑑3𝑦
3 − (𝑟1𝑥 + 𝑟3𝑥

3 + 𝑟5𝑥
5) + 𝑓𝑐𝑜𝑠𝑤𝑡

                        (13) 

According to the nonlinear dynamic method, the small parameter ε is used for the external 

force，so， 

𝑑1 = 𝜀𝑑1, 𝑑3 = 𝜀𝑑3, 𝑓 = 𝜀𝑓                                   (14) 

and equation (13) turns into: 

{
�̇� = 𝑦

�̇� = −𝜀(𝑑1𝑦 + 𝑑3𝑦
3) − (𝑟1𝑥 + 𝑟3𝑥

3 + 𝑟5𝑥
5) + 𝜀𝑓𝑐𝑜𝑠𝑤𝑡

                    (15) 

When 𝜀 = 0, the system degrades to a non-interference autonomous system, 

{
�̇� = 𝑦

�̇� = −(𝑟1𝑥 + 𝑟3𝑥
3 + 𝑟5𝑥

5)
                                  (16) 

From the perspective of energy, the restoring moment corresponds to the potential energy, 

which is expressed as follows, 

𝑉(𝑥) =
1

2
𝑟1𝑥

2 +
1

4
𝑟3𝑥

4 +
1

6
𝑟5𝑥

6                                    (17) 

For a system without damping and external excitation, it can be regarded as a Hamilton 

system. In order to solve the homoclinic or heteroclinic orbits, the Hamilton quantity 𝐻(𝑥) is 

used. 

𝐻(𝑥) =
1

2
𝑦2 +

1

2
𝑟1𝑥

2 +
1

4
𝑟3𝑥

4 +
1

6
𝑟5𝑥

6                            (18) 

According to the initial condition, �̇� = 0, �̇� = 0, five equilibrium points can be calculated 

for the system (16), 

(0,0), (±√
√𝑟3

2−4𝑟1𝑟5−𝑟3

2𝑟5
, 0) , (±√

−√𝑟3
2−4𝑟1𝑟5−𝑟3

2𝑟5
, 0)                       (19) 

The characteristics of five equilibrium points are closely related to the stability of the 

system. The characteristic equation of system (16) is shown in equation (20). 

|
−𝜆 1

−𝑟1 − 3𝑟3𝑥
2 − 5𝑟5𝑥

4 −𝜆
|=0                              (20) 

         𝜆1,2 are characteristic values. 

𝜆1,2 = ±√−𝑟1 − 3𝑟3𝑥2 − 5𝑟5𝑥4                              (21) 

We calculated the equilibrium points and eigenvalues of all layouts, as shown in table 3，
𝜆1,2are the characteristic values corresponding to 𝑥2, 𝑥3, and 𝜆3,4are the characteristic values 

corresponding to 𝑥4,𝑥5. 

𝑥2, 𝑥3, 𝑥4,𝑥5 respectively correspond to the following four equilibrium points. 

(√
√𝑟3

2 − 4𝑟1𝑟5 − 𝑟3
2𝑟5

, 0) , (−√
√𝑟3

2 − 4𝑟1𝑟5 − 𝑟3
2𝑟5

, 0) (√
−√𝑟3

2 − 4𝑟1𝑟5 − 𝑟3
2𝑟5

, 0) , (−√
−√𝑟3

2 − 4𝑟1𝑟5 − 𝑟3
2𝑟5

, 0) 

Fig.10 shows the phase portraits of the non-interference autonomous system at different 

CLs. In general, for the rolling system of the trimaran vessel, according to the classification 

method of homoclinic and heteroclinic orbits [14], stable attractor domain consists of two 

heteroclinic orbits Γ1 and Γ2, shown in Fig.10-(a). 
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Table 3 Equilibrium points and characteristic roots at different CL 

 CL=4.5m CL=4.8m CL=5.0m CL=5.5m CL=6.0m CL=6.5m CL=7.0m CL≥8.0m 

𝑥2 1.20 1.30 1.34 1.40 1.47 1.49 1.53 none 

𝑥3 -1.20 -1.30 -1.34 -1.40 -1.47 -1.49 -1.53 none 

𝑥4 6.57 4.08 3.02 2.30 2.0 1.88 1.77 none 

𝑥5 -6.57 -4.08 -3.02 -2.30 -2.0 -1.88 -1.77 none 

𝜆1,2 ±0.6 ±0.7 ±0.75 ±0.82 ±0.8 ±0.78 ±0.69 none 

𝜆3,4 ±3.3i ±2.2i ±1.7i ±1.3i ±1.08i ±0.98i ±0.79i none 

   
(a) CL=4.5m                                          (b) CL=4.8m                                      (c) CL=5.0m     

  
(d) CL=5.5m                                    (e) CL=6.0m                                        (f) CL=6.5m 

                        

                          
(g) CL=7.0m                                                          (h) CL=8.0m    

Fig.10 Phase portraits of rolling Hamilton systems at different CL 

 

The characteristic value of 𝑥1 = (0,0) is a pure virtual root; therefore, it is impossible to 

determine its properties according to the linearization method. However, the Hamiltonian, as 

Lyapunov function, is greater than zero in the vicinity of 𝑥1 = (0,0)，so, 𝑥1 = (0,0) can be 
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judged as the center point which is at stable equilibrium state. When the transverse space CL is 

less than 8m, the characteristic values corresponding to𝑥2, 𝑥3 are real numbers, and it can be 

determined that the equilibrium points corresponding to 𝑥2, 𝑥3 are the saddle points where two 

heteroclinic orbits intersect, which is exactly the vanishing angle of the ship's stability. The 

characteristic value of 𝑥4,𝑥5 are pure imaginary roots, similar to 𝑥1, the corresponding type of 

equilibrium points are also the central point, which are the unstable attractors for ship roll 

motion. The left orbit passing through the left saddle point and the right orbit passing through 

the right saddle point are homoclinic orbits, as shown in Fig.10 However, the homoclinic orbits 

has exceeded the motion bounds（𝑥 = 𝜋,）, in reality, ship roll motion loses its practical 

significance, therefore, it has no significance for discussion.  

It can also be seen from Fig.10 and Table 3 that, with the increase of the transverse spacing, 

the abscissa of the saddle point turns away from the center point C, and the attractor area of the 

intersection of the two heteroclinic rails becomes larger and larger. In a physical sense, that is, 

the larger the stability range of the corresponding Hamilton system, and the vanishing angle of 

stability is infinitely close to 90 degrees, leading to more stable state for the trimaran vessel. 

On the other hand, with the increase of CL, the position of the saddle point is further and further 

away from 𝑥1 = (0,0), while the positions of the other two unstable center points are closer 

and closer to 𝑥1 = (0,0). 𝑥2, 𝑥3 and 𝑥4,𝑥5 get closer, and finally disappears. The attractor areas 

of 𝑥4 and 𝑥5 bounded by homoclinic orbits is shrinking and finally disappearing as the saddle 

point disappears. When CL≥8m, the system is left with only one central point, which is in a 

globally stable stat. Physically, when other conditions of the trimaran vessel remain unchanged, 

and the transverse spacing CL reaches a certain distance, the vanishing Angle of stability will 

not exist in the quadrants of 0~
𝜋

2
, no matter how much angle it turns, it can be restored to the 

original state. Looking at the potential function, a potential well can be found both at the center 

point and the saddle point. As the CL increases, the potential energy generally tends to increase 

in the phase plane of roll motion. 

2.1.2 Asymmetric system with wind 

When the wind speed is constant, the wind load action to the trimaran is related to the 

heeling angle, which is similar to the restoring force. So, the wind load can be taken as a part 

of the undisturbed Hamilton system, and the nonlinear rolling motion system of the trimaran 

can be expressed as: 

{
�̇� = 𝑦

�̇� = 𝑓𝑤𝑖𝑛𝑑0(1 −
𝑥2

2
+
𝑥4

24
) − 𝜀(𝑑1𝑦 + 𝑑3𝑦

3) − (𝑟1𝑥 + 𝑟3𝑥
3 + 𝑟5𝑥

5) + 𝜀𝑓𝑐𝑜𝑠𝑤𝑡
          (22) 

When, 𝜀 = 0，rolling system become the undisturbed Hamilton system. 

{
�̇� = 𝑦

�̇� = 𝑓𝑤𝑖𝑛𝑑0(1 −
𝑥2

2
+
𝑥4

24
) − (𝑟1𝑥 + 𝑟3𝑥

3 + 𝑟5𝑥
5)

                               (23) 

The potential energy equation is shown as below， 

𝑉(𝑥) =
1

2
𝑟1𝑥

2 +
1

4
𝑟3𝑥

4 +
1

6
𝑟5𝑥

6 − 𝑓𝑤𝑖𝑛𝑑0(1 −
𝑥3

6
+

𝑥5

120
)                              (24) 

It is similar to the state of no wind, where Hamilton quantity is: 

𝐻(𝑥) =
1

2
𝑦2 +

1

2
𝑟1𝑥

2 +
1

4
𝑟3𝑥

4 +
1

6
𝑟5𝑥

6 − 𝑓𝑤𝑖𝑛𝑑0(1 −
𝑥3

6
+

𝑥5

120
)                      (25) 

The characteristic equation of the undisturbed autonomous system is used to solve the 

equilibrium point, and the Hamiltonian of the equilibrium point is used to solve the homoclinic 

or heteroclinic orbits, which forms the phase plane of the rolling motion. For the trimaran ships 
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with different transverse spacing, the wind speed are 0m/s, 20m/s,30m/s and 40m/s. Fig.11 

shows the phase plane and potential energy function when CL=4.5m under different wind 

speed. When the wind load is not considered, the undisturbed system is a symmetric system, 

with a center point C and two saddle points ml and mr. The saddle point is the intersection point 

of two heteroclinic orbits, and the potential function is symmetric about the Y-axis. With the 

increase of wind speed, the wind force moment gradually increases, and the symmetry of the 

system is destroyed. The central equilibrium point C of the system is shifted to the right, and 

the right saddle point develops into the intersection point of a homoclinic orbit. With the 

increase of wind speed, the safe basin surrounded by the homoclinic orbit becomes smaller, 

making the ship more vulnerable to loss of stability. It is also worth noting that the potential 

energy function is also asymmetrical, with the potential energy on the right plane decreasing 

and that on the left plane increasing. 

 Fig.12 shows the phase plane and potential energy function of trimaran at different 

transverse spacing. It can be intuitively found that, with the increase of spacing, the center point 

moves to the origin, and the coordinates of the saddle point and the area of the safe basin 

increases gradually, indicating that nonlinear system become more stable. The asymmetry of 

the potential function is decreasing. For the unstable left saddle point ml, the intersection point 

of the homoclinic orbit gradually develops to the homoclinic orbit. It is worth noting that when 

CL=8, the saddle point disappears and the system has only one central equilibrium point. For 

the ship moving plane 𝑥𝜖[−1.57,1.57], the state of global stability will be reached. 

        
 (a) CL=4.5m, Vwind=0m/s                                    (b) CL=4.5m,Vwind=10m/s 

           
            (c)CL=4.5m,Vwind=20m/s                                      (d)CL=4.5m,Vwind=30m/s 

Fig. 11 Phase portrait of cl=4.5m under different wind speed 
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(a) CL=4.8m,Vwind=20m/s                                   (b) CL=5.0m,Vwind=20m/s 

         

(c) CL=5.5m,Vwind=20m/s                                       (d) CL=6.0m,Vwind=20m/s 

               
(e) CL=6.5m, Vwind=20m/s                                               (f) CL=7.0m,Vwind=20m/s 

 
(f)CL=8.0m,Vwind=20m/s 

Fig. 12 Phase portrait of different cl under wind speed of 20m/s 
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2.2 Melnikov function  

Melnikov function is a typical analytic method to solve the external excitation threshold 

of a chaotic system, although it returns the conservative side results in some engineering 

applications. According to the theory of Melnikov's function, when the non-autonomous system 

connects the unstable shape flow and stable shape flow of homoclinic or heteroclinic saddle 

points, it can be determined that the system has chaos in the sense of Smale horseshoe 

transformation [14]. The meaning of Melnikov function is the distance between stable form 

flow and unstable form flow, which is always applied to calculate the threshold of external 

excitation when the system is entering the chaotic state. 

The two-dimensional non-autonomous system can be expressed as �̇� = 𝑓(𝑥) + 𝜀𝑔(𝑥, 𝑡). 

For nonlinear roll motion model of the trimaran vessel, there is only heteroclinic orbits in 

the real motion plane as discussed above. The distance between stable and unstable form flow 

through saddle point 𝑥 = 𝑚0 is expressed as: 

𝑀(𝑡0) = ∫ 𝑓(�̅�0(𝑡))
+∞

−∞
∧ g(�̅�0(𝑡), 𝑡 + 𝑡0)exp [−∫ 𝑡𝑟𝑎𝑐𝑒(𝐷𝑓(�̅�0(𝑠)))𝑑𝑠

+∞

−∞
]𝑑𝑡            (26) 

Where �̅�0(𝑡) is the heteroclinic orbital equation through 𝑚0, and 𝑡𝑟𝑎𝑐𝑒(𝐷𝑓(�̅�0(𝑠))) is 

the trace of the matrix. 

For rolling autonomous undisturbed system，𝑡𝑟𝑎𝑐𝑒 (𝐷𝑓(�̅�0(𝑠))) ≡ 0， 

So, the Melnikov function is simplified to： 

𝑀(𝑡0) = ∫ 𝑓(�̅�0(𝑡))
+∞

−∞
∧ g(�̅�0(𝑡), 𝑡 + 𝑡0)𝑑𝑡                              (27) 

For the rolling system (22), Melnikov function can be obtained as follows. 

𝑀(𝑡0) = ∫ 𝑓 cos(𝑤𝑡0) 𝑦𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡
∞

−∞
− ∫ 𝑓 sin(𝑤𝑡0) 𝑦𝑠𝑖𝑛(𝜔𝑡)𝑑𝑡

∞

−∞
− �̅�1 ∫ 𝑦2𝑑𝑡 −

∞

0

�̅�3 ∫ 𝑦4𝑑𝑡
∞

0
          (28) 

By further simplification, 

𝑀(𝑡0) = 𝑓 cos(𝑤𝑡0) 𝐼1 − 𝑓 sin(𝑤𝑡0)𝐼2 − �̅�1𝐼3 − �̅�3𝐼4                          (29) 

Where, 𝐼1 = ∫ 𝑐𝑜𝑠(𝜔𝑡)𝑑𝑥
𝑚𝑟𝑟

𝑚𝑟𝑙
,  𝐼2 = ∫ 𝑠𝑖𝑛(𝜔𝑡)𝑑𝑥

𝑚𝑟𝑟

𝑚𝑟𝑙
, 𝐼3 = ∫ 𝑦𝑑𝑥

𝑚𝑟𝑟

𝑚𝑟𝑙
, 𝐼4 =

∫ 𝑦3𝑑𝑥
𝑚𝑟𝑟

𝑚𝑟𝑙
,𝑚𝑟𝑙，𝑚𝑟𝑟 are the x coordinates of the left and right boundaries of safe basin in the 

phase plane. The above integrals are solved by numerical integration method of Gauss-

Legendre. When 𝑀(𝑡0) = 0, Melnikov function appears simple zero root, and the system loses 

stability due to chaos.  

 𝑓�̅� = |�̅�1𝐼3 + �̅�3𝐼4|/√𝐼1
2 + 𝐼2

2                                         (30) 

Multiply 𝜀 for both sides of this equation, the critical value of external excitation for the 

real ship is 

𝑓𝑡 = |𝑑1𝐼3 + 𝑑3𝐼4|/√𝐼1
2 + 𝐼2

2                                         (31) 

For the rolling system, 𝑓𝑡 is the threshold of wave force when chaos happens.  

According to the quantity of Hamilton, 

 𝑦 = ±√2𝐻(𝑥, 𝑦) − (𝑟1𝑥2 + 𝑟3𝑥4/2 + 𝑟5𝑥6/3) + 𝑓𝑤𝑖𝑛𝑑0(𝑥 −
𝑥3

3
+
𝑥5

60
)                 (32) 

Because the above equation involves the 𝑥6  term, it is impossible to get the analytic 

expression of heteroclinic orbit, which usually needs to be solved by numerical integration. 

From 𝑦 = �̇� = 𝑑𝑥/𝑑𝑡，after integrating both sides,   
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𝑡 = ±∫
1

√2𝐻(𝑥𝑚,𝑦𝑚)−(𝑟1𝜍2+𝑟3𝜍4/2+𝑟5𝜍6/3)+𝑓𝑤𝑖𝑛𝑑0(𝜍−
𝜍3

3
+
𝜍5

600
)

𝑥

0
𝑑𝜍                           (33) 

The three points integral formula of Gauss-Legendre integral is used to calculate the 

integral𝐼1, 𝐼2, 𝐼3, 𝐼4, and the gaussian points and weight coefficients can refer to the numerical 

integration textbook. 

The above method is applied to calculate the wave force threshold under different wave 

frequencies for the trimaran with different transverse spacing. As for the trimaran itself, with 

the increase of wave excitation frequency, the threshold also increases. Fig.13 shows the wave 

threshold with no wind force. From the perspective of layout variation, the threshold value 

generally increases with the increase of CL, which is identical to the results of phase portrait 

analysis of Hamilton system. However, considering the nonlinear roll damping, when the roll 

motion is violent, nonlinear roll damping will produce great effect to the roll system, which can 

be found from table 2, when spacing increasing after CL=5.5m, nonlinear damping shows the 

tendency of decrease, so for CL=6.0 m, CL=6.5 m and CL=7.0 m, their threshold values are 

less than some small spacing, especially in the high frequency obviously. Theoretically, when 

the wave force excitation exceeds the threshold, chaos will occur in the system, causing unstable 

roll motion and capsizing. 

 
Fig.13 Wave force threshold at different CLs of the trimaran vessel (Vwind=0m/s) 

Fig.14 shows the threshold values of the distance CL=4.5m for different wind speeds. It 

can be seen that the wave threshold gradually decreases with the increase of wind speed, which 

is consistent with the physical phenomenon. Fig.15 shows the wave threshold values at different 

CL. With the increase of CL, the system stability is enhanced, which is consistent with the 

conclusion of phase portrait analysis. 

             
Fig.14. Wave force threshold under varying 

wind speed (CL=4.5m) 

Fig.15. Wave force threshold of varying CL   

(Vwind=30m/s) 
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2.3 Numerical Verification 

The threshold of chaos can be calculated based on Melnikov function, but it is not a 

sufficient condition for chaos to occur in the system. In order to verify the accuracy of the wave 

force threshold for trimaran roll system, other methods are needed for numerical verification. 

In the field of nonlinear dynamics, there are some methods for numerical verification of chaos, 

including Lyapunov exponent, power spectrum, fractal dimension, etc. In this paper, Lyapunov 

exponent is used to judge the chaotic characteristics of a certain threshold, and the global 

stability of rolling system is studied by the erosion of safe basin.  

2.3.1 Lyapunov exponent 

To the equilibrium point, the stability can be judged by the real part of characteristic value 

of the system’s Jacobi matrix or the characteristic exponent of the periodic motion perturbation 

equation. Lyapunov exponent is a generalization of characteristic value and characteristic 

exponent, and gives a measure of the average divergence or average convergence of any 

adjacent orbits of the system, which is the most reliable measure to judge chaos. 

Lyapunov exponent is expressed as: 

𝜆𝑘 = lim
𝑡→+∞

𝑙𝑛‖𝑊𝑘(𝑡)‖

𝑡
，𝑘 = 1,2, … , 𝑛                                 (34) 

Arrange them from large to small, 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑛. 

If the maximum Lyapunov exponent is less than zero, the system is stable. If the maximum 

Lyapunov exponent is greater than zero, chaos will appear in the system. For the non-

autonomous two-dimensional roll motion system, there are only two Lyapunov exponents. The 

most common solution of Lyapunov exponents is RHR algorithm [46]. 

For two dimensional non-autonomous systems as follows. 

�̈� + 𝑓(𝑥, �̇�, 𝑡) = 𝑔(𝑡)，Set 𝑥 = 𝑦1, �̇� = 𝑦2, 𝑡 = 𝑦3，it changes to be a three-dimensional 

autonomous system.  

  {

�̇�1 = 𝑦2
�̇�2 = 𝑔(𝑦3) − 𝑓(𝑦1, 𝑦2, 𝑦2)

�̇�3 = 1
                                        (35) 

Obviously, the two Lyapunov exponents of the two-dimensional non-autonomous system 

are the same as the first two Lyapunov exponents of the corresponding three-dimensional 

autonomous system. 

Carry on the division to autonomous system, and �̇�(𝑡) = 𝐽(𝑡)𝑌(𝑡) ,  𝑌(0) = 𝐼3  is the 

identity matrix，𝐽(𝑡) is the Jacobian matrix. According to 𝐽(𝑡), the third-row element of Y(t) 

is known, and Y(t) is a non-singular matrix, so QR decomposition can be performed as follows. 

[
𝑌11 𝑌12 𝑌13
𝑌21 𝑌22 𝑌23
0 0 1

]=[
𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 1

] [
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 1

]                     (36) 

Since 𝑅33 = 1, the first two Lyapunov exponentials can be obtained only by solving the 

two-dimensional subsystem, which can also be divided as follows， 

�̇̅�(𝑡) = 𝐽(̅𝑡)�̅�(𝑡)，𝐽(̅𝑡) = [
𝐽11 𝐽12
𝐽21 𝐽21

], �̅�(𝑡) = �̅�(𝑡)�̅�(𝑡),  

Combine the above equations,  

�̅�𝑇�̇̅� + �̇̅��̅�−1 = �̅�𝑇𝐽�̅̅�                                     (37) 

Based on RHR algorithm ，the orthogonal matrix �̅�(𝑡) is transformed as follows. 
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�̅�(𝑡) = [
cos 𝜃(𝑡) sin 𝜃(𝑡)
− sin 𝜃(𝑡) cos𝜃(𝑡)

] , �̅�(𝑡) = [
𝑒𝜆1(𝑡) 𝑟11
0 𝑒𝜆2(𝑡)

]                       (38) 

Thus, the solution system of the Lyapunov exponent can be expressed as,， 

{
 
 

 
 

𝑑𝜎1(𝑡)

𝑑𝑡
= −

𝜕𝑓

𝜕𝑦2
 

𝑑𝜎2(𝑡)

𝑑𝑡
= −

𝜕𝑓

𝜕𝑦2
cos2𝜃 − (1 −

𝜕𝑓

𝜕𝑦1
) sin2𝜃

𝑑𝜃(𝑡)

𝑑𝑡
= −

𝜕𝑓

2𝜕𝑦2
sin2𝜃 + sin2𝜃 +

𝜕𝑓

𝜕𝑦1
cos2𝜃

                                (39) 

Where, 

 {
𝜆1(𝑡) = (𝜎1(𝑡)+𝜎2(𝑡))/2

𝜆2(𝑡) = (𝜎1(𝑡)−𝜎2(𝑡))/2
                                     (40) 

The two Lyapunov exponents of two-dimensional non-autonomous system were further 

solved as： 

𝜆1 = lim
𝑡→+∞

𝜆1(𝑡)

𝑡
 ，𝜆2 = lim

𝑡→+∞

𝜆2(𝑡)

𝑡
                                 (41) 

The parameters of the roll motion system are substituted into the equations (39), we can 

get the final calculation system. 

{
 
 

 
 

𝑑𝜎1(𝑡)

𝑑𝑡
= −(𝑑1 + 3𝑑3𝑦

2)

𝑑𝜎1(𝑡)

𝑑𝑡
= (𝑑1 + 3𝑑3𝑦

2)cos2𝜃 − sin2𝜃 + [𝑟1 + 3𝑟3𝑥
2 + 5𝑟5𝑥

4 + 𝑓𝑤𝑖𝑛𝑑0 (𝑥 −
𝑥3

6
)]sin2𝜃

𝑑𝜃(𝑡)

𝑑𝑡
= −

1

2
(𝑑1 + 3𝑑3𝑦

2)sin2𝜃 + sin2𝜃 + [𝑟1 + 3𝑟3𝑥
2 + 5𝑟5𝑥

4 + 𝑓𝑤𝑖𝑛𝑑0 (𝑥 −
𝑥3

6
)]cos2𝜃

     

       (42) 

In this paper, the 4-order Runge-Kutta method is applied to solve the equations (22) and 

(42), and the Lyapunov exponent can be obtained by combining equations (40) and (41). For 

the rolling system of trimaran vessel with different transverse layouts, it is verified according 

to the wave force excitation threshold obtained by Melnikov function. Fig.16 and Fig.17 show 

the Lyapunov exponent of two CLs when the wave frequency is 0.4 rad/s, and the ft refers to 

wave force threshold. For the selected three lay-outs, when the excitation value is greater than 

the threshold, the maximum Lyapunov exponent is greater than zero, and the system is in a 

chaotic state, however, when the excitation is less than the threshold, the maximum Lyapunov 

exponent is less than zero, and the system is in a stable state. This result effectively verifies the 

wave force threshold calculated by Melnikov function. 

           
(a) f=0.26 (ft=0.27) Vwind=0m/s                              (b) f=0.28 (ft=0.27) Vwind=0m/s 
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(c) fwave=0.083 (ft=0.084) Vwind=20m/s                 (d) fwave=0.085(ft=0.084) Vwind=20m/s 

   Fig.16 Lyapunov exponent at different wind speeds at CL=4.5m 

               

(a) CL=6.0m, f=1.4 (ft=1.5) Vwind=0m/s                 (b) CL=6.0m, f=1.6 (ft=1.5) Vwind=0m/s 

              

(c) fwave=1.15(ft=1.2)Vwind=20m/s                         (d) fwave=1.25(ft=1.2)Vwind=20m/s 

Fig.17 Lyapunov index at different wind speeds at CL=6.0m 

2.3.2 Safe basin analysis 

For the roll motion system, the safety region can be defined as follows: on the phase plane, 

the numerical simulation of roll motion is carried out with different rolling angle and angular 

velocity as initial values. When the motion is not divergent, the rolling system is stable. By 

representing the distribution of the stable points and unstable points on the phase plane, the safe 

basin diagram of roll motion can be obtained [28, 47-48]. It can also be applied for the further 

verification of the wave force threshold obtained by Melnikov function. Take three kinds of 

transverse lay-outs for example, Fig.18 show the safe basin of CL=4.5m, CL=5.0m and 

CL=6.0m, and keep the wave frequency as 0.4 rad/s as the same as Lyapunov calculation above. 

As we can see, when the external excitation increases from zero to the same threshold obtained 

from Melnikov method, the safe basin is relatively complete, and when the excitation exceeds 

the threshold, the stability domain begins to break, and chaos will be generated in the system. 

The wave force threshold obtained from Melnikov method is well validated by safe basin 

analysis.  
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(a) CL =4.5m, F=0                     (b) CL =4.5m, F=0.26                    (c) CL =4.5m, F=0.28 

 

(d) CL =4.5m, F=0.50             (e) CL =4.5m, F=0.75 

 

(f) CL =5.0m, F=0                         (g) CL =5.0m, F=0.70                      (h) CL =5.0m, F=0.74 

 

(j) CL =5.0m,F=1.0                     (j) CL =5.0m, F=1.5 

 

(i) CL =6.0m,F=0                    (j) CL =6.0m,F=1.4                   (k) CL =6.0m,F=1.6 

 

(l) CL =6.0m, F=2.0                  (m) CL =6.0m, F=2.5 

Fig.18 The erosion of safe basin of trimaran at different CLs under the change of wave force 

 when the wave frequency 𝜔 = 0.4𝑟𝑎𝑑/𝑠  

Fig.19 shows the area of the safe basin. The beginning areas of the three CLs are different, 

and the larger the CL is, the larger the area will be, which is related to the restoring force 

coefficient [49]. However, with the increase of wave force excitation, when the threshold is 
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reached, the area of safe basin starts to break. The trimaran vessel with small CL first begins to 

break down, and the rolling system becomes more unstable than the ship with big CL. 

 

Fig.19 The change curves of the safe basin area  

               

(a) f=0.26                                   (b) f=0.28                                              (c) f=0.75 

Fig.20 Roll motion trails of point a(1.45,-0.2)under different wave force 

(𝐶𝐿 = 4.5𝑚,𝜔 = 0.4𝑟𝑎𝑑/𝑠) 

From the topological analysis, when the wave force excitation reaches the threshold, the 

system is in an unstable and chaotic state, and the phenomenon of multi-value and bifurcation 

of rolling will appear. We can track the trail of a point in motion plane to analyze this 

phenomenon. Point a is selected for example, when the transverse spacing CL of the trimaran 

vessel is 4.5m, and its initial state is (1.45, -0.2), as shown in the Fig.18-(c). The trail of point 

a are obtained by solving the nonlinear motion equation (1) with numerical method. 

As shown in Fig.20-(a), when the wave force excitation is less than the threshold, the 

motion is attracted to the equilibrium point 𝑥1 from the initial point a and makes stable resonant 

motion. when the wave force excitation exceeds the threshold value, as shown in the Fig.20-

(b), it can be found that the trail starting from point a escapes from the stable safety region, and 

a large roll motion and capsizing occurs. Obviously, the trial is attracted by the attractor 

corresponding to the equilibrium point 𝑥4 in the phase plane, and the detailed value of 𝑥4 is 

listed in Table3. In addition, to continue to increase the wave force excitation, the trail starting 

from point a has already lost the significance of discussion in the actual ship concept, and the 

trimaran vessel has already capsized. However, from the perspective of theoretical research，
based on the bifurcation topological theory, we can find in Fig.20-(c) that when the excitation 

exceeds a certain level, the motion begins to be bifurcated and multi-valued. The ship will move 

back and forth between the two attractive fields of 𝑥4 and 𝑥5, and the rolling system will be in 

a strong chaotic situation. 

3.  Chaotic analysis in irregular waves 

In the actual sea environment, the waves are irregular and random, so the deterministic 

method under regular wave state can no longer be used. Based on the Melnikov function theory 

of deterministic systems, stochastic dynamics can be studied from the perspective of statistical 
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analysis. Melnikov random theory is a statistical extension of the simple zero-point solution of 

Melnikov function for deterministic systems. Combined with phase flow function and phase 

space transfer rate, the global stability of stochastic systems can be analyzed. 

3.1 Stochastic Melnikov process and phase space transfer rate 

For Hamilton single degree of freedom system with bounded weak disturbance, using 

small parameter 𝜀 , the motion equation can be expressed as: 

{
�̇� =

𝜕𝐻

𝜕𝑌

�̇� =
𝜕𝐻

𝜕𝑋
− 𝜀𝑐(𝑋, 𝑌)

𝜕𝐻

𝜕𝑌
+ 𝜀𝑓(𝑋, 𝑌)𝜉(𝑡)

                                                                                   (43) 

The Hamilton Value is: 

𝐻 =
1

2
𝑦2 + 𝑈(𝑥)                                               (44) 

Where, 𝜉(𝑡) is the bounded stochastic excitation. The Hamilton system has hyperbolic 

saddle points and homoclinic or heteroclinic orbits. 𝑥0(𝑡), 𝑦0(𝑡). 

Based on the deterministic Melnikov function of equation (26), the stochastic Melnikov 

process can be expressed as： 

   𝑀(𝑡0) = ∫
𝜕𝐻

𝜕𝑌

+∞

−∞
[−𝑐(𝑋, 𝑌)

𝜕𝐻

𝜕𝑌
+ 𝑓(𝑋, 𝑌)𝜉(𝑡 + 𝑡0)] 𝑑𝑡               (45) 

According to the previous research, for a deterministic system, the chaotic threshold of 

external excitation can be calculated by solving the first-order zero of Melnikov function, but 

the first-order zero of stochastic Melnikov process cannot be solved. In order to quantitatively 

reflect the damage to the stability of the stochastic system, Frey and Jiang further extended the 

Melnikov method and introduced the phase flow function and phase space transfer rate to 

describe the instability of the random system [29-30]. Phase flow function 𝜙 is the flow from 

stable domain into unstable domain in the phase space. The phase space transfer rate refers to 

the area where the phase flow function of the system flows from the safe domain to the unsafe 

domain within a unit period of motion or excitation period. When the phase flow function 𝜙 >
0, system lost stability into chaotic state. Therefore, the external excitation threshold of the 

stochastic system can be solved by solving the zero of the phase flow function. 

The phase flow function is defined as： 

𝜙 = 𝜀𝜓 + 𝑂(𝜀2)                                        (46) 

Where,  𝜓  is average value of Melnikov function. According to equation (45), the 

Melnikov process of the random system can be expressed as: 

𝑀(𝑡0) = ∫ [𝑓(𝑋, 𝑌)(
𝜕𝐻

𝜕𝑌
)𝜉(𝑡 + 𝑡0)]

+∞

−∞
𝑑𝑡 − ∫ [𝑐(𝑋, 𝑌)(

𝜕𝐻

𝜕𝑌
)2]

+∞

−∞
𝑑𝑡 = 𝑀𝑧 −𝑀𝑑                 (47) 

Then, the phase space transfer rate of the system is: 

�̅� = lim
𝑇⟶∞

𝜀

2𝑇
∫ [𝑀𝑧(𝜉) − 𝑀𝑑]

+𝑇

−𝑇
𝑑𝜉                                    (48) 

Define the function: 

 𝑓+(𝜉) = {
𝑓(𝜉)   𝑓(𝜉) > 0

0        𝑓(𝜉) ≤ 0      
                                      (49) 

According to the stationary random characteristics of ergodic states of random waves, the 

mean time results can be described by statistical means. 
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�̅� = lim
𝑇⟶∞

𝜀

2𝑇
∫ [𝑀𝑧(𝜉) − 𝑀𝑑]

+
𝑇

−𝑇

𝑑𝜉 = 𝐸{[𝑀𝑧(𝜉) − 𝑀𝑑]
+} = ∫ (𝜐 −𝑀𝑑)𝑝(𝜐)

+∞

𝑀𝑑

𝑑𝜐 

= ∫ (𝜐 − 𝑀𝑑)
1

√2𝜋𝜎𝑧
exp (−

𝜐2

2𝜎𝑧2
)

+∞

𝑀𝑑
𝑑𝜐                                     (50) 

Where, 𝑝(𝜐) =
1

√2𝜋𝜎𝑧
exp (−

𝜐2

2𝜎𝑧2
) is the normal distribution probability density function 

of the random excitation. 

𝜎𝑧 = √𝐸[𝑀𝑧
2(𝜉)]                                                 (51) 

Further simplify and set 𝑢 = 𝜐/𝜎𝑧,so, 

�̅� = 𝜎𝑧∫ (𝑢 −
𝑀𝑑

𝜎𝑧
)
1

√2𝜋
exp (−

𝑢2

2
)

+∞

𝑀𝑑/𝜎𝑧

𝑑𝑢 

= −𝜎𝑧∫ 𝑢
1

√2𝜋
exp (−

𝑢2

2
)

+∞

𝑀𝑑
𝜎𝑧

𝑑𝑢 − ∫ (
𝑀𝑑

√2𝜋
) exp(−

𝑢2

2
)

+∞

𝑀𝑑
𝜎𝑧

𝑑𝑢 

= −
𝜎𝑧

√2𝜋
exp [−

1

2
(
𝑀𝑑

𝜎𝑧
)2] − 𝑀𝑑 [1 − 𝑃𝑛 (

𝑀𝑑

𝜎𝑧
)] = 𝜎𝑧𝑝𝑛 (

𝑀𝑑

𝜎𝑧
) + 𝑀𝑑𝑃𝑛 (

𝑀𝑑

𝜎𝑧
) − 𝑀𝑑              

(52) 

Where, function 𝑝𝑛(𝑥) =
1

√2𝜋
exp (−

𝑥2

2
) is the probability density function of the standard 

normal distribution, and function 𝑃𝑛(𝑥) = ∫
1

√2𝜋
exp (−

𝑥2

2
)

𝑥

−∞
𝑑𝑥  is the probability 

distribution function of the standard normal distribution. 

When �̅� = 𝜎𝑧𝑝𝑛 (
𝑀𝑑

𝜎𝑧
) +𝑀𝑑𝑃𝑛 (

𝑀𝑑

𝜎𝑧
) − 𝑀𝑑 = 0, it can be considered as the zero of the 

phase space transfer rate of the stochastic system, and then the threshold of external excitation 

can be solved. 

3.2 Extreme significant wave height 

The nonlinear roll motion equation of the trimaran vessel in crosswind and random beam 

waves can be expressed as：

{
�̇� = 𝑦

�̇� = 𝑓𝑤𝑖𝑛𝑑0(1 −
𝑥2

2
+
𝑥4

24
) − 𝜀(𝑑1𝑦 + 𝑑3𝑦

3 − 𝑓𝑤𝑎𝑣𝑒0𝜁(𝑡)) − (𝑟1𝑥 + 𝑟3𝑥
3 + 𝑟5𝑥

5)
            (53) 

Where, 𝜁(𝑡) is the wave height at time t，𝑓𝑤𝑎𝑣𝑒0 = 𝐹𝑤𝑎𝑣𝑒0/(𝐽 + Δ𝐽), 𝐹𝑤𝑎𝑣𝑒0  is wave 

force of unit wave amplitude. 

According to equation (47), the random Melnikov process of the roll system is: 

𝑀(𝑡0) = ∫ 𝑦(𝑡)[−(𝑑1𝑦(𝑡) + 𝑑3𝑦
3(𝑡)) + 𝑓𝑤𝑎𝑣𝑒0𝜁(𝑡 + 𝑡0)]

+∞

−∞

𝑑𝑡 

= −∫ 𝑦(𝑡) [(𝑑1𝑦(𝑡) + 𝑑3𝑦
3(𝑡))]

+∞

−∞
𝑑𝑡 + ∫ 𝑦(𝑡)[𝑓𝑤𝑎𝑣𝑒0𝜁(𝑡 + 𝑡0)]

+∞

−∞
𝑑𝑡 = −𝑀𝑑 +𝑀𝑧 

(54) 

According to the ergodic properties of random waves， 

𝐸[𝑀𝑧] = 0                                                  (55) 

So, 

𝐸[𝑀0] = −𝐸[𝑀𝑑] < 0                                         (56) 
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Therefore, for the random system of the nonlinear roll of the trimaran, Melnikov simple 

zero cannot be solved, and the phase space transfer rate is needed to get the Extreme significant 

wave height. 

The mean square value 𝐸[𝑀𝑧
2] needs to be solved in the phase space transfer rate. Take 

the Fourier transform of 𝑀𝑧, and get the spectrum of 𝑀𝑧 : 

𝑀𝑧(Ω) =
1

2𝜋
∫ (∫ 𝑦(𝑡)[𝑓𝑤𝑎𝑣𝑒0𝜁(𝑡 + 𝑡0)]

+∞

−∞

𝑑𝑡)
+∞

−∞

𝑒−𝑗Ω𝑡0𝑑𝑡0 

=
1

2𝜋
∫ 𝑦(𝑡) (∫ 𝑓𝑤𝑎𝑣𝑒0𝜁(𝜏)

+∞

−∞

𝑒−𝑗Ω𝜏𝑑𝜏)
+∞

−∞

𝑒−𝑗Ω𝑡𝑑𝑡 

= 2𝜋 𝑓𝑤𝑎𝑣𝑒0𝜁(Ω)𝑦(Ω)                                                     (57) 

Where, 𝜁(Ω) is the spectral density function of random wave surface elevation，𝑦(Ω) is 

the spectral density function of homoclinic(heteroclinic) orbit. The power spectrum function of 

𝑀𝑧 is: 

𝑆𝑀𝑧(Ω) = 2𝜋𝑀𝑧(Ω). 𝑐𝑜𝑛𝑔[𝑀𝑧(Ω)] = 2𝜋[(2𝜋 𝜁(Ω)𝑦(Ω))]. 𝑐𝑜𝑛𝑔[(2𝜋 𝜁(Ω)𝑦(Ω))] 

= 2𝜋𝑓𝑤𝑎𝑣𝑒0𝑆𝑦(Ω)𝑆𝜁(Ω)                                   (58) 

So, the mean square value of 𝑀𝑧 can be expressed as: 

𝐸[𝑀𝑧
2] = 2𝜋𝑓𝑤𝑎𝑣𝑒0

2 ∫ 𝑆𝑦(Ω)𝑆𝜁(Ω)𝑑Ω
+∞

−∞
= 𝜎𝑧

2                          (59) 

ITTC double - parameter spectrum is used as the wave spectrum. 

𝑆𝜁(Ω) =
124𝐻𝑠

2

𝑇𝑧Ω5
exp (

−496

𝑇𝑧
4Ω4
)                                         (60) 

Where, 𝐻𝑠 is the significant wave height, and 𝑇𝑧 is the mean span zero period. It is easy to find 

that 𝜎𝑧 is proportional to 𝐻𝑠.   So, 𝜎𝑧 = 𝜎𝑧0𝐻𝑠，and 𝜎𝑧0 is the mean square value under 

unit significant wave height. 

Then, The phase space transfer rate in equation (52) is converted to： 

�̅� = 𝜎𝑧0𝐻𝑠𝑝𝑛 (
𝑀𝑑

𝜎𝑧0𝐻𝑠
) + 𝑀𝑑𝑃𝑛 (

𝑀𝑑

𝜎𝑧0𝐻𝑠
) − 𝑀𝑑                                 (61) 

When 𝐻𝑠 ⟶∞， �̅� =
1

√2𝜋
𝜎𝑧0𝐻𝑠 −

1

2
𝑀𝑑 

If �̅� = 0，the extreme significant wave height 𝐻𝑠𝑐𝑟 can be obtained. 

𝐻𝑠𝑐𝑟 =
√2𝜋𝑀𝑑

2𝜎𝑧0
=

𝜀√2𝜋𝑀𝑑

𝜀2𝜎𝑧0
                                             (62) 

When the significant wave height exceeds 𝐻𝑠𝑐𝑟, the rolling system will lose its stability in 

irregular waves and enter chaos state. For different layouts, the trimaran vessel with transverse 

spacing CL=4.5m was selected as the research object. 

For the numerator part in equation (61): 

𝜀𝑀𝑑 = ∫ 𝑦(𝑡)[(𝑑1𝑦(𝑡) + 𝑑3𝑦
3(𝑡))]𝑑𝑡

+∞

−∞
                                   (63) 

This integral is similar to the solution in deterministic system. Since the homoclinic 

(heteroclinic) orbit y(t) cannot be solved analytically, numerical integral solution is applied. 

For the denominator part in equation (62): 

𝜀𝜎𝑧0 = √2𝜋𝑓𝑤𝑎𝑣𝑒0√∫ 𝑆𝑦(Ω)𝑆𝜁0(Ω)𝑑Ω
+∞

−∞
                                   (64) 
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Where, 𝑆𝜁0(Ω) is the wave energy spectrum of unit significant wave height. 𝑓𝑤𝑎𝑣𝑒0 is the 

wave force of unit wave amplitude, which is calculated by 3D potential theory. Fig.21 shows 

the wave force in frequency domain by 3D potential theory. 

         

Fig.21 Wave force response curve in frequency domain        Fig.22 𝑦(𝑡) of different wind speeds (CL=4.5m) 

       𝑆𝑦(Ω) is the power spectral function of the roll angular velocity 𝑦(𝑡) along a homoclinic 

or heteroclinic orbit. For the high-order nonlinear rolling system of the trimaran vessel, 𝑦(𝑡) 
cannot be solved analytically, so the discrete solution can only be obtained by numerical 

calculation. The Fig.22 shows the discrete orbit equation of 𝑦(𝑡) corresponding to different 

wind speeds obtained by the 4-order Runge Kutta method. 

         
Fig.23 𝑆𝑦(Ω) of different wind velocity (CL=4.5m)        Fig.24 The Hscr of different wind velocity (CL=4.5m) 

The power spectrum of 𝑦(𝑡) can be obtained by Fourier transform. As shown in Fig.23, 

the power spectrum of different wind speeds in the low-frequency region is different obviously, 

and the higher the wind speed is, the smaller the power spectrum is. Then, according to 

equations (63) and (64), the 𝐻𝑠𝑐𝑟 corresponding to different wave frequencies can be obtained. 

As shown in Fig.24, with the increase of wind speed, the 𝐻𝑠𝑐𝑟 when entering the rolling chaos 

state in the irregular wave gradually decreases. Moreover, with the change of wave period, the 

𝐻𝑠𝑐𝑟 tends to decrease first and then increase.  
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Fig.25 𝑦(𝑡) of different CL (Vwind=30m/s) 

For the trimaran vessel with different transverse spacing CL, when the wind speed is 

30m/s, the 𝑦(𝑡) is obtained according to the above method. As shown in the Fig.25, the trimaran 

vessel with large transverse spacing has lager area bounded by the homoclinic orbit. Fig.26 

shows power spectrum of 𝑦(𝑡) corresponding to different transverse spacing, and the Fig.27 

shows  𝐻𝑠𝑐𝑟 of different transverse spacing. It can be clearly found that the trimaran vessel with 

large transverse spacing has a lager 𝐻𝑠𝑐𝑟, the stronger the stability of the rolling motion in the 

irregular wave is, which is consistent with the conclusion in the regular wave. It also means that 

the roll motion in irregular waves is more stable, which is consistent with the conclusion in 

regular waves. Combined with the actual sea conditions, the trimaran ship studied in this paper 

is prone to unstable rolling in the region with a small wave period. In the condition of 30m/s of 

the cross wind, the minimum 𝐻𝑠𝑐𝑟 of a trimaran vessel with CL= 7.0m is about 12m, so it will 

not encounter such sea conditions in its sailing sea area, but unstable rolling may occur in severe 

weather such as typhoon, and it's even more dangerous for trimarans of small CL. From the 

point of view of limitation, a single-hull ship can be considered as a trimaran with a very small 

transverse spacing. Therefore, the rolling stability of trimaran vessels with the same tonnage 

and the same center of gravity is obviously better than that of mono-hull ships in theory. 

       
Fig.26 𝑆𝑦(Ω) of different CL(Vwind=30m/s)          Fig.27 The Hscr of different CL (Vwind=30m/s) 

 

4. Conclusions 

It is significant to study the stability and chaos of roll motion for the trimaran vessel with 

the variation of layout, which is the main parameter in the design of the trimaran vessel. In 
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rolling system, both damping coefficients and restoring moment coefficients are important for 

the stability analysis. With the CFD method and high-order polynomial fitting of GZ curves, 

the characteristics of the damping coefficients and restoring moment coefficients are found, 

which has the deep relationship with the chaotic analysis. 

In the phase portrait analysis, with the increase of the transverse spacing, the stable 

attraction domain gradually expands, and the saddle point disappears after reaching a certain 

distance, and the system reaches the state of global stability. After the wind load is added, the 

system has the asymmetric migration, and the heteroclinic orbits surrounding the stability 

region change topologically, from heteroclinic orbits to homoclinic orbits, and the equilibrium 

point also shifts accordingly with the decrease of the stability. Based on the Lyapunov stability 

theory and Melnikov method, the wave force threshold of rolling chaos for trimaran vessel is 

calculated in regular waves. The wave force threshold increases gradually with the increase of 

transverse spacing, indicating the enhancement of system stability. We also find that the 

nonlinear roll damping is sensitive to wave force threshold. The increase of the restoring force 

will increase the area of the safety region and increase the external excitation of chaos. The 

Lyapunov exponent and safe basin analysis verifies the threshold by Melnikov method. The 

extreme significant wave height of the trimaran vessel is calculated by using the phase space 

transfer rate in irregular waves, which can be the reference to the design of the trimaran vessel.  
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