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SUMMARY 
Efforts to disclose the mechanisms of transcranial therapeutic electro-magnetic fields (EMF) acting on the brain's cells (Marino, 

Kibleur) and recently immune cells (Gülöksüz) meet unsolved physiological details of blood vessels, exclusively arterial vasomotion 
or the non-glial-related former g(lia)-lymphatic flow (Iliff; Liu DX) - now replaced by an astrocytic AQP4-pipeline cooling the brain 
(Nakada 2014). Here within the convergent dyn4TAM-framework, which had suggested the first mast cell behavioral experiment 
(Fitzpatrick & Morrow 2017), three intertwined physiological concepts are contributed: A) “autocrinicity” – how flushed, thus 
absent, autocrine signals integrate external fluidics into cellular computations e.g. on motility: EMFs could increase such absences 
by targeting e.g. dipole-cytokines; B) a new concept of the arterial wall based on a tangible interpretation of the coronal histology of 
all arteries as a co-axial pulse-dampening engine (Treviranus 2012). In the brain this engine might provide the quickest cerebral 
outflow via the Cerebral IntraMUral Reverse Arterial Flow (Treviranus 2018b), while transmitting further forces acting upstream to 
the paravascular spaces; C) some key roles for mast cells in neuro-psychiatry (Silver & Curley 2013) and their interactive lymphatic 
and non-luminal vascular routes to the brain dictated by peripheral imprinting as to destiny (Csaba 1987) and destination 
(Treviranus 2013). Within the skull they might advance against para-arterial upstream currents. 

Some known causal mediators of the effects of transcranially applied EFMs and puzzling results are then put tentatively in 
perspective with the above “tangible” models, e.g. by aligning probable induced currents with arterial segments or the new direct 
meningeal-calvario-myeloid channels. 

Results: The case for a role of mast cells and diverse flows in transcranial electromagnetic brain therapy seems promising. 
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*  *  *  *  *  

INTRODUCTION 

Those attained by a unipolar major depression epi-
sode (MDD) as adolescents face a nearly 20% risk to 
fail treatments and remain in MDD for half their life-
time constituting 1% of the population (Zorumski 2015). 
As far as response and short-term effects are concerned, 
repetitive transcranial magnetic stimulation (rTMS) 
especially with H1-coils (Gellersen & Kedzior 2019) 
have become non inferior to tACS (Leggett 2015). 
Depressions respond twice as well to alternating-current 
electro-convulsion (tACS) as to conservative therapies. 
Electro-magnetic field (EMF)-effects on the brain achie-
ved by chemical and meanwhile non-convulsive thera-
pies (Zuo 2018, Akbarnejad 2018, Gazdag & Ungvari 
2019) reveal their immune (Pozzi 2018) and occasio-
nally harming mechanisms slowly (Marino 2016, Singh 
& Kar 2017, Kibleur & David 2018). 

Here hypotheses add topics this speculative field: 1.) 
autocrinicity as integration of external fluidics through 
flushed and thus absent signals into cellular decisions 
e.g. in motility: EMFs could increases such absences by 
targeting e.g. dipole-cytokines; 2.) non-canonical migra-
tory routes of mast cells MCs to the brain (Pavlov 
2018); 3.) contradictory (Springer 2017) key roles for 
MCs in psychiatry. These are generated from the con-
vergent dyn4TAM-framework, which already suggested 
the first behavioral MC experiment (see Treviranus 

2018a, pp. S 621-2; Fitzpatrick & Morrow 2017) stop-
ping rodent sign-tracking by interfering with thalamic 
MCs within the first cortico-thalamo-subcortico-cortical 
circuit (CSTC).  

The decreased excitability after continuous trains at 
5Hz (Huang 2017) maybe reflects MC exhaustion. A 
likely site of relevant encounters between transcranial 
EMFs and the above putative processes include the 
“para”- arterial Virchow-Robin Spaces (VRSs), where 
MCs possibly advance counter-current along the adven-
titia (as granulocytes do intraluminally; Lyck & Engel-
hardt 2012), while this arterial VRS could be modulated 
by the parallel but mostly disconnected and acellular 
arterial intramural flow (related to pulse dampening). 
Through markers this astonishing intramural route sho-
wed up as the (hence also electrically) quickest “lym-
phatic” exit from the brain (Bradbury & Cserr 1974-84, 
Carare 2008). Here (3.2) it is explained via its bio-
mechanics as read from histology (CIMURAF; Trevi-
ranus 2018b), whereby its reverse vasomotion against 
pulses could also induce a reverse flow in VRSs. 

 
Electrohydrodynamics, vectorial alignment,  
and “ecological autocrinicity” 

Only matter, electrons, but also ions or molecules 
function as charge carriers. “Drift velocity” becomes the 
product of obstructed mobility and EMF (Grimnes & 
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Martinsen 2014). Electro-kinetics require supercompu-
ting (Götz 2010), but the low velocity of solute simply 
adds to the carriers’ drift velocity. The EMF-generated 
brain currents between two electrodes between alter-
native paths thus pass in proportion to their con-
ductances: notably along arteries’ and vein’s VRSs and 
along the said reverse intramural flow. 

 
Electromagnetic therapy and its puzzling  
effects of frequency and alignment 

In early studies applying rTMS scores of major de-
pression (MDD) and perfusion varied with personalized 
frequencies at 20 or 1 Hz (Speer 2000): With 20 Hz 
applied at the dorsolateral prefrontal cortex (dlPFC) key 
affective centers and cortical areas (compatible with the 
medial three CSTCs) received more blood and the 
subgenual anterior cingulate cortex (sgACC; where 
MDD concentrates neuronal loss, Meier 2016), received 
less. Applied close to cortex rTMS induced distant the-
rapeutic changes involving the sgACC and the default 
mode network, while surprisingly the executive control 
network (ECN) remained spared (Philip at al 2018). 
Through an occipital to left fronto-parietal long-range 
effect tACS too changed the correlation between such 
networks (Cabral-Calderin 2016), while antagonistically 
resonating with local slow (possibly vasomotive) fluc-
tuations. The incisive accelerated ITB-rTMS rapidly 
showed improved integration with remote modules and 
cognitive parcing by complexity (Caeyenbergs 2019): 
maybe through thalamic cortico-cortical facilitation 
(Collins 2018). 

 
ELECTROMAGNETIC NEUROPSYCHIATRY 
WORKS - BUT HOW? 

Convulsive tACS and alternatives interactively chan-
ge neurogenesis, angiogenesis, the glia, the hypothala-
mic-pituitary-adrenal (HPA) axis, and neurotrophic factor 
levels (Rotheneichner 2014). 

 
Between analogies and fluctuations 

Through rTMS the dlPFC seems to rebalance lasting 
“homeostatic plasticity” (Turrigiano 2007, 2017). High 
activity potentiates positive (LTP), low activity negative 
synaptic learning (LTD) through unsupervised feedback 
via presynaptic and postsynaptic molecules like tumor 
necrosis factor α (TNF-α) Under rTMS “low-frequency 
leads to LTD, high-frequency elicits LTP (≥20 Hz)” 
while it also stimulates innumerable underlying 1st and 
2nd order causes. Direct current stimulation (tDCS) 
instead paused for around 10 minutes, results in motor-
effects opposing those of a previous priming in sense, 
while neurophysiological effects hardly survive one 
hour (Karabanov 2015). On the chemical side rTMS 
close to the dlPFC increased its γ-aminobutyric acid 
(Levitt 2019). Such processes could as well be com-
pensatory for a subcortical (Zuo 2019) cortico-cortical 
(Collins 2018) disturbances. While the hippocampi (HC) 

enlarge, favoring plasticity by tACS, it remains obscure 
despite modeling (Dokos 2013), how this comes about 
(Oltedal 2017, 2018) - even in peripheral nerves (Wang 
2018).  

Alternative tDCS (Dedoncker 2016) and rTMS (Se-
rafini 2015) approach the efficacy of cumbersome con-
vulsive tACS. The innovative “variable phase” tACS eli-
citing phased and traveling effects (Alekseichuk 2019) 
manipulates “resonances”, reflecting statistically measu-
red correlations which are actually blind to dimensio-
nalities from e.g. CSTCs (Treviranus 2018a), in which 
tissue flows acquire weight, as reflected by signals of 
diffuse tensor imaging (MRT-DTI; Matsumae 2017, 
Sepehrband 2019, Dokos 2013) (Table 1). 

 
Ecological autocrinicity 

Only a few results (Silletti 1998, Doganer 2016) sup-
port a concept (beyond sensitivity to shear), that cells 
would be advantaged by autocrine signals flushed away 
by ecologically patterned and thus meaningful changes 
in external fluidics. Such an e.g. asymmetrical pattern of 
absences of signals (Lemmon 2016) would be integrated 
into cellular cybernetics and hereby e. g. modulate move-
ment. A candidate molecule is adrenomedullin effecting 
motility (Zudaire 2006) and MC-degranulation (Lv 2018). 

Induced EMFs conceivingly could remove autocrine 
signals from the uniquely immature and long-lived MCs 
while these travel (putatively) along cerebral arteries to 
where they mature and settle. While they guard the 
blood-brain-barrier (BBB) as key drivers of immuno-
logy, the intrusion of deviant MCs into the brain (where 
they activate macrophages which only once migrate to 
the brain (Ginhoux 2010)) makes them an important 
therapeutic target (Silver & Curley 2013, Treviranus 
2018a). Extracellular microvesicles (György 2011) may 
soon qualify as the most interesting of such autocrine 
signals (Chen 2017). 

 
PERIARTERIAL AND CEREBRAL 
INTRAMURAL FLOW AND VASOMOTION 

The glymphatic enthusiasm revised 
Interest in the interstitial fluid (ISF), which takes a 

20-100% larger part of brain´s water than blood or CSF 
led to the “glymphatic” theory (Iliff 2012) which erro-
neously conceived a flush of the parenchyma by water 
drawn in by AQP4-channels from the «para»-vascular 
Virchow-Robin-Spaces (VRSs) expelling the parenchy-
ma’s ISF via venous VRSs back to CFS and as deep cer-
vical lymph (Wang & Casley-Smith 1989). This “g(lia)-
lymphatic” account was recently corrected by an inverse 
one, whereby astrocytes (ACs) provide a pipeline which 
circumvents the sealed BBB and no Starling-mechanism 
builds up (Hladky & Barand 2016). Few issues remain: a) 
the direction of flows (Bakker 2019) in the VRSs; b) the 
energetic origin of pressure gradients; c) the role of 
pressure pulsations; and d) the now contradicted (Nakada 
& Kwee 2019) contribution of the water-selective channels  
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Table 1. Putative Mechanisms of Transcranial Electro-Magnetic Therapies 
Theory Mechanism R, G Ref. 
“BCM” Post-/Pre-Synaptic learning  Cooper 2012 
BCM in rTMS etc. Analogy  Karabanov 2015 
Fluid PNEI (tACS) TRP-KYN, TDO/IDO R Gülöksüz 2015 
PICs like TNF-α  serum R Joshi 2016 
P/AIC TNF-β, IL-5  serum R Rotter 2013  
Serotonin 5-HT ? binding to 5HT2AR  Yatham 2010 
BDNF serum  plasma R Polyakova 2015 
VEGF serum , mTOR Elfving 2012  Minelli 2014  
HC cell proliferation:    

  (rat)                      -  Nakamura 2013 
(( )) adult human / primates Natural development - Sorrells 2018 

 rat Antidepressant drug, 0 ECS +A Malberg 2000 
*Neural Stem Cell (SGZ)  (-)A Segi-Nishida 2008 
*Neural Progenitor Cell +/- NStC &  NPG  Encinas 2006 
Mossy fiber sprouting  (less, if ketamine)  Chen 2001  
DA to Mossy fiber   Kobayashi 2017 
Human HC volume  R Oltedal 2018, Powell 2017 
Human DG volume  R Nuninga 2019 s 
HC volume No ECT, Escitalopram R G Powell 2017  
HC, AMYvolume   R Tendolkar 2013 
HC, AMYvolume   R Nordanskog 2103 
Insula volume  R Van Eijndhoven 2016 
Any neurogenesis ECS  R Alemu 2019 
HC R ant. Perfusion  R Leaver 2019 
dmTHAL  ? CSTC R Leaver 2019 
Glucose uptake  PFC   Henry 2001 
Spontan-fluctuation CIMURAF ?  Cabral-Calderin 2016 
Vasomotion CIMURAF ?  This project 
Autocrinicity   This project 
Mast cells   This project 
MC disorders   Georgin-Lavialle 2016 

In Italics: Sources referring to Antidepressant drugs or Hypotheses followed by the author (e.g. Cerebral Intra MURal Flow).  
Abbreviations: CSTC: Cortico-subcortico-thalamo-cortical circuit;   PIC pro-inflammatory cytokine;   TRP-KYN, TDO/IDO: 
Tryptophan-Kynurenine metabolism through TDO-/IDO-enzymes;   mTOR: mechanistic Target of Rapamycin;    
dmTHAL: dorsomedial thalamus;   ECT: Electro-Convulsive Therapy;   TNF-α: tumor necrosis factor α R: clinical response;    
G: genetical evidence;   0/(-) A: chemical Antidepressants for comparison (Italics): No or negative effect 

 
(aquaporin-4; AQP4), since these are expressed inside the 
BBB and not dedicated to water exchanges with the 
outside. Astrocytes (ACs) use AQP-4 at the podocytes 
to acquire H20 from just above the cortex (Suzuki 2017) 
for the AC’s own hydration and again to expel H20 into 
the VRS. During heat-alarm the latter shut down to 
hydrate ACs (Nakada 2014). There is no lymphatic 
“flush” like in other tissues.  

 

Wondersome intra- and extramural  
“peri”-arterial flows 

Following the clearance of Abeta (Carare 2008, 
Okamoto 2012, Ball 2010), from also cortical interstitial 
brain fluid (Bakker 2016), a wondersome rapid and 
reverse marginal “peri”-vascular intramural route had 
shown up in rodents (H.F. Cserr 1974-1984; Szenti-
stvanyi 1984). An application of peripheral arterial 

reflected pulse waves to this process (Schley 2006, 
Diem 2016, 2017) lacked the required reflection sur-
faces (Coloma 2019) and valve-like macro-nano-links.  

The Cerebral IntraMUral Reverse Arterial Flow-mo-
del (CIMURAF; Treviranus 2018b) was derived from a 
previous Co-axial Arterial Wall Engine (CAWE) inter-
pretation of the aortic wall, proposed originally (Trevi-
ranus 2012) to explain its exceptional biomechanical 
resistive persistence.  

 

The Co-axial Aortic-Wall-Engine:  
a smart macro-engine? 

The CAWE-model is readily verified by coronal his-
tology, but requires scientific testing. Since at least mol-
luscs’ arterial vascular smooth muscle cells (VSMCs) do 
not (usually) “hold hands”, but in the tunica media at-
tach obliquely to co-axial tubes made of elastic laminas 
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Figure 1. How arteries were seen: The two blueprints of the textbook author anatomist A. Benninghoff (1928) were 
both wrong. The helical version accepted by Bakker (2015) was refuted by O’Connell (2008). The correct blue-print by 
R.V. Krstic (1991) went unnoticed. The first insert shows the Co-Axial-Wall-Engine-model (Treviranus 2012) 
 
starting with the lamina interna (López-Guimet 2017), 
which are separated by pressurized watery inter-lamellar 
compartments (ILCs; Carew 1968, Davis 1993). The 
human aorta is made out of more than 60 of such tubes 
stuck inside one another. Also, the sense of this obli-
quity alternates radially from tube to tube. Hereby most 
(~3/4) of the VSMCs more tangential action does not 
result in pressurizing by radial contraction (~1/4), but in 
small co-axial rotations (<10°) of the tubes, which in the 
aorta e.g. possibly follow the heart rate, but elsewhere 
might be related to the several-fold slower «vasomo-
tion» (see below). These torsional movements, induced 
by VSMC contraction, extend anti-parallel elastin fibers, 
which after relaxation restore the system to baseline, 
whereby a simple harmonic oscillator is built. This ne-
glected co-axial cylinder blueprint of arteries (Hayman 
2016) is more hidden in other arteries (Hill 2016, 
Hinderer 2015, Eoh 2017) (Figure 1). 

At the same time such neurally induced segment by 
its alternating axial momenta at each ILC - like a 
«christmas cracker» - causes two slight hyperboloid 
circular embayments (HCEs). When such a segment 
moves upstream to dampen the pulse (by appropriate 
nervous instigation-relaxation of the VSCMs) coupled 

HCEs will resolve and renew themselves over a tra-
veling distance. This will drive a “multilayered cushion” 
with a bow wave and a stern suctioning end. Within 
every ILC a) incoming contrary arterial pulses from 
heart-like pumps are dampened by working against the 
VSMCs´ torque (the primary evolutionary scope) and b) 
water is drawn into the ILCs of the segment – the 
fenestrations becoming radially aligned by torsion in 
order to refill them, and c) CIMURAF is accelerated in 
its reverse upstream direction behind the stern HCE, the 
radial outflow being shut again. This is peculiar to the 
brain where the radial lamellar fenestrations are twice as 
numerous, albeit obstructed by myo-endothelial-cell pro-
trusions (Sandow 2009). CIMURAF is steered by four 
vasomotive nerve systems (Ainslie 2014, Taktakishvili 
2010, Roloff 2016), and stronger during sleep (Xie 
2013) (Figure 2). 

 
Heat and not self-erasing impacts  
of electromagnetic fields on arteries 

Although arteries, being larger and less complex per 
volume, can be expected to be «more aligned» to the 
curved and changing EMFs, the problem of complex and  
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Figure 2. The Co-Axial-Wall-Engine-model with two interlaminar spaces with Vascular Smooth Muscle Cells axially 
twisting three laminar tubes against each other in a leftward vs. rightward sense creating a sliding pressured chamber 
between two zones between hyperbolic embayments. The shutter-mechanism effectively shuts down the radial tortuous 
exit towards the VRS as shown by sliding two overlaid copies of fenestrated laminae (image from Campbell & Roach 
1981). Mollusc, reptile and mammals all show the exact same aortic blueprint (Gosline & Shadwick 1982) 

 
opposite self-erasing effects of EMFs persists (see 
Between analogies and fluctuations). The effects of 
alignment followed during biphasic stimulation of cor-
tical interneurons (Wang 2018, Sommer 2018) hardly 
reflect the tissue’s neuronal, axonal or subcellular in-
tricacies.  

EFMs probably also pass through ionic gap junc-
tions connecting same and different mural cells. But 
muscle contractions nevertheless require neuromuscular 
junctions (Kean 1974, La 2019, Kotecha & Neild 1988) 
- apart from vague nano-electro-sensitivity (Suzuki 2017, 
Oosawa 2018).  

The VSMCs providing CIMURAF therefore are 
only allowed to perform the coronal obliquely tangential 
contractions following the CAWE-engine’s architecture. 
How EFMs from diverse angles will affect VSMC-
contractions remains understudied. 

After the substitution of the “glymphatic” paradigm 
(see The glymphatic enthusiasm revised) the degree to 
which ACs might react towards heating (Nakada 2014) 
by the EMF-waves might move center-stage since 5/6 of 

brain’s perfusion remains unexplained. MCs have at 
least one highly temperature-sensitive proton channel 
(Kuno 1979), which is very present in microglia and 
stroke (Wu 2012). Both K+-channels KCC2 and NKCC, 
determining inhibitory transmission MDD or epilepsy 
via intracellular Cl- , decrease the latter in proportion to 
temperature (Hartmann & Nothwang 2011). About 
brains’ temperature physiology despite clinical ques-
tions little exists (Wang 2014): The BBB becomes highly 
permeable upon heating up to fever and just beyond 
neurons perish. Axons instead concentrate the heat ge-
neration capacities with a role in neurotransmission. 

 
Intramural muscles drive the para-vascular 
flow in Virchow-Robin spaces 

The VRSs remained puzzling since their first descrip-
tion (His & Bastian 1867). Today their waste-flushing 
function (Di Marco 2015) stays crucial and pluri-seg-
mental MRI 4D-velocimetry shows its deterioration along 
the Alzheimer spectrum (Rivera-Rivera 2016).  
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CIMURAF-engine and reverse acceleration  
in the Virchow-Robin-Spaces 

Since the lamina interna is water-tight and the twis-
ting dynamic of the wall opens the shutters in the 
segment right behind the bow wave, while the stern 
suction accelerates the CIMURAF within the normally 
radially closed ILCs, a compensatory similarly counter-
current flow is predicted for the VRS. When the segment 
travels upstream the opportunities for radial influx first 
shortly increase by the initial segment up to compen-
sation, but then subsides (while behind the stern HCE of 
the ILCs the radial exits are again obstructed). Thus there 
is always more radial influx into the wall upstream than 
downstream and this gradient is reinforced by the 
traveling speed of the segment, while the VSMCs keep 
working against the cardiac muscle in order to dampen 
the destabilizing effects of the pulse on the wall and the 
tissue homeostasis. This account is reversed if one assu-
mes that the shutters would close in the segments, but that 
would destabilize the wall over the relaxed parts.  

CSF-tracers are enriched up to 40-fold in the circle 
of Willis, (Bradbury 1981) which in fact cannot have 
sliding torsional segments and therefore could testify for 
the capacity of CIMURAF. 

Vasomotion 
The CAWE-blueprint concerning all arteries could 

be related to the slower vasomotion (VM) - for which 
only approximative molecular processes are put forward 
(Cole 2019). VM denotes rhythmic oscillations of about 
10/min in the diameter of even isolated arteries and 
arterioles, which – in a way maybe related the origin of 
the BOLD-signal of MRT – seem to be neuronally 
entrained by energetic needs of cortical neuronal acti-
vities (Mateo 2017). VM, as CAWE/CIMURAF, seems 
to be unique for arteries. The wall of veins do not show 
this blueprint, and only games of nature like the original 
bat wing (Wharton 1852) show entirely different 
oscillations (Liu 2014, Scholbach 2016, Arpi 2018). 
Thus a “review” (Van Helden & Imtiaz 2019) focussed 
entirely on lymphatics.  

VM can be influenced by many factors and corre-
lates with cycling of force-generating myosin cross-
bridges in VSMCs and their molecular and membrane 
potential context. The ensuing «flowmotion» reflects 
environmental physical and local influences from VSMC, 
paracrine ECs, perivascular fat (Nava & Llorens 
2016), and from other cells. Where nitric oxide (NO) is 
low and availability and sensitivity to thromboxane 
(TBX) are high TBX elicits strong VM (Horváth et al. 
2010). MCs again can be strong producers of TBX 
(Macchia et al. 1995).  

 
IMPRINTABLE MAST CELLS: 
UNDERRATED AND MIGHTY 

One-cell organisms can be induced by a single 
imprinting signal to respond lastingly in another way. 

György Csaba extended this pioneering research with 
early glandular hormones to similarly imprintable MCs 
(Csaba 1987, 2012, 2014). MC are complex hubs 
(Niarakis 2014). They guard interfaces of tissues, 
varying their complexity. They respond to over 200 
often combinatorial chemical, often psycho-social, 
neural, or physical, i.e. receptor- or surface-mechanical, 
hot-cold-, and electrical and/or fluidic inputs. These 
may doubly imprint them as to a) their migratory 
destination in the CNS through selective molecular 
pairing between cell and paths still immature cells, and 
b) as to their mature persistent destiny. Following signal 
integrations MCs respond through a dozen release 
modes. Rat peritoneal MCs e.g. one hour after injection 
were close to thalamic blood vessels, among 90% 
previous residents, and deep to the basal lamina, in nests 
of glial processes (Silverman 2000). MCs “orchestrate” 
fellow immunocytes early in response; but they can 
survive for years as guardians of barriers and homeo-
stasis (Table 2). 

 
The mast cell - “lymphatic cauldron” relations 

Only recently meningeal lymphatics were discovered 
(Aspelund 2015, Louveau 2015, Absinta 2017) and 
channels draining from the calvarial bone-marrow (Cai 
2019): a highly promising route for e. g. MCs to cause 
insomnia, hallucinations or hidden lesions in the cortex.  

As, often subverted, first-line defendants and later 
“orchestrators” of innate and adaptive response and as 
likely intestinal lipid uptake monitors, MCs join the 
well-isolated inflammatory cauldron of the collecting 
and thoracic lymphatics to orchestrate immune res-
ponses in lymphatic tissue and to evaluate metabolic or 
toxic signals. The lymphatic ECs in fact decisively 
interact with MCs - else obesity occurs (Pal 2017, 
Gasheva 2019). Furthermore the lymphatics are regu-
lated by autonomic peptidergic nerve signals (Ito 1989), 
which are often involved in permeability and MC 
communication. 

 
Hypothetical events between  
lymphatics and mast cell  

After distal challenges the, passive, lymphatic 
transport could be hastened by a plausible proximal 
neurally induced “sieving” of obstructing fluid (sigma-
1-receptor; Trujillo 2017).  

«IRF-4-dependent CD11b-+ dendritic cells» (DCs) 
control the permeability of lymphatic collecting vessel 
(Ivanov 2016) through NF-κB signaling (Grumont & 
Gerondakis 2000) to their CCR7-receptors (already 
calling them into initial lymphatics; Pflicke & Sixt 
2009), and later become “embraced” by the vascular 
ECs (Teijiera 2013). Now the NF-κB stems from a pre-
dominant MC/histamine/NF-κB axis (Nizamutdinova 
2016), shielding the lymphatic’s transport and barrier 
functions (Kang 2009), unless by failure the perivas-
cular tissue becomes inflamed or infected (Zolla 2015). 
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Table 2. Incomplete synopsis of mast cell concepts. Mast cells are very versatile and their faculties seem to serve 
various “scopes” of which the “mechanisms” and “main proofs” are referred to leading sources 
Theory of scope Mechanism Main proof  Source 
Bioeconomical Complexity deciding 0.5 bio years old This project 
Immunometabolism (Fat sensing) Masted by lymph Paul Ehrlich 1877 
Morphogenesis   Crivellato & Ribatti 2016 
Early host defence Etosis Only armed cell Möllerherm 2016  
Adaptive Immunity Lymph Pellets with PICs S. N. Abraham 2009 
Guardians of BBB PNEI  T. Theoharides 1996 
Mind modulators Ethology Molecular biology Silver & Silvermann 1996 
Meningeal  Migraine V. Dimitriadou 1997 
Gut-Brain-Axis  AutismMoura T. Theoharides 2015 
Neuropsychiatry BDNF (+) Mastocytosis etc. Moura 2011, Afrin 2015 
Oligodendrocyte Tryptase Complement 4 ? Medic 2010 
CSTC modulator Cognition Sign-tracking (rats)  Fitzpatrick & Morrow 2017 
 MC degranulation Uncertainty Orient Treviranus 2018a 
Imprintability:  Destiny G. Csaba 1987 

Imprintability   Destination 
Author 
GRS Treviranus 

This project 

Transgranulation   M. Wilhelm 2005 
Epigenetic changes Histone Tryptase F. Levi-Schaffer 2014 

In Italics: Sources referring to Hypotheses followed by the author 
 
Exploring non-canonical migratory routes the follo-

wing sequence can be imagined after “sieving” (Tre-
viranus 2013): (A) Since MCs in order to activate lymph 
nodes (Kunder 2009) produce cytokine-protecting-
pellets (CPPs, my term) which shield pro-inflammatory 
cytokines (PICs) from ultra-rapid disposal - such CPPs 
carrying TNF-α (which is also a chemokine) can be 
expected to be (B) spilled out of the lymphatics and (C) 
to attract MCs to where they happen to go. Then (D), 
occasionally a space would be created by the MC 
adjacent to a vessel and filled with CPPs, again through 
TNF-α, (E) tight-junctions (TJs) could be cracked 
(Marcos-Ramiro 2014), opening (F) a path into the main 
lumen or into a VV. Thereby (G) being rolled in and 
dragged on by laminar flow CPPs could advance. When 
(H) stuck inside a VV the CPPs – restarting the rope 
trick – would attract MCs or crack the TJs. At lympho-
arterial crossings (I) MCs could switch vessels (J): a.) 
Towards the anterior cerebral circulation: lymphatic 
duct to aortic arch from below into the carotid 
“chimney” modulating the carotid, the jugular vein, and 
the vagal nerve; b.) Towards the posterior circulation: 
from the lymphatic retro-clavicular “end-curve” of the 
duct to the vertebral artery - MCs could thereby (J) 
cross-over from the lymphatics into the lumen or into a 
VV within arterial walls. Similar processes actually 
contribute to vascular pathologies e.g. in hepatic veins 
(Yamamoto 2000, Takahashi-Iwanaga 1990, Lukacs-
Kornek 2016). Adventitial MCs have been described for 
long in relation to vasospasm, dissection (Wågsäter et 
al. 2016), and atherosclerosis (Lindstedt et al. 1999) as 
well as their relation to neurogenic inflammation (Laine 
et al. 2000) in blood vessels, and lymphatics (Pal 2017). 

At the skull’s border, where the acellular intramural 
CIMURAF (Treviranus 2018b) leaves the arterial wall 
for the ethmoïds, (K) MCs could surface on the adven-
titia and enter the VRS, advancing counter-current. The 
ensuing fluidic information together with chemokines 
and apt (imprintable) pairings of the EC surface 
molecules with their own, could (L) steer them into 
specific brain areas. Such hands-on details on migratory 
paths are being sought (Martinelli 2014).  

 
Mast cells as related  
to electromagnetic therapies 

MC regulate many cerebral sites, but, besides their 
strong presence in the stress systems, their main 
neuropsychiatric influences stem from their meningeal 
or thalamic residency. Currents applied to rodents have 
terminated thalamo-cortical spikes and waves, and 
provided on-demand anti-epileptic activity for weeks 
(Kozák & Berényi 2017). Also do MCs produce and 
store dopamine (Rönnberg 2012). Some dysfunctions in 
Parkinson’s diseases refer to the thalamus: e. g. tremor 
to insufficient self-inhibition of the ventral intermediate 
thalamus via external dopamine (Caligiore 2019, Dirkx 
2017). Motor performances improved through rTMS 
reduced the jointly pathogenic serum IFNγ and IL-17A, 
produced by striatal Th1- and Th17-cells (Idova 2012).  

Grey matter cortical changes in MDD (Harrison et 
al. 2006) or schizophrenia (Xu 2017) instead are either 
due to isolated deficits in function (ACC, lPFC, puta-
men) or structure (frontal and temporal cortex) or in 
both (ACC, insula), whereby thalamic MCs could 
destabilize function (and neurotrophic activity) at the 
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CSTCs, and meningeal MCs could functionally disturb 
or attack neurons and oligodendrocytes directly after 
intruding e. g. from arterial walls of the anterior arterial 
supply, which densely crosses the insulas. 

 
CONCLUSION 

The challenge to explain the most effective treat-
ment for several neuropsychiatric conditions should 
profit from incorporating not only “fluid” Psycho-
neuro-endocrino-immunology, but also the highly ver-
satile, long-lived, and mighty mast cells ascending to 
destinations and destinies within the brain from the 
lymphatics and via other non-canonical routes, possibly 
co-regulated by negative “autocrinicity”. While the blue-
print of arteries by itself calls for a comprehensive in-
vestigation it contributes to understand the regulation of 
intracerebral flows. All these are candidates as targets of 
electro-magnetic fields induced in the brain for thera-
peutic purposes. 
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