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SUMMARY 
Major depressive disorder is one of the most important psychiatric issues worldwide, with important prevalence of treatment-

resistant depression (TRD). Non-monoaminergic agents are currently in the spotlight. Objective was to explore for information 
about mechanisms of action of ketamine, its connections with copper and possible importance for TRD treatment. There are at least 
few possible pathways for ketamine action in depression in which copper and other divalent ions may show a vital role. There is urgent 
need for more studies to gather information about correlation between ketamine, copper and antidepressive features of these agents. 
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INTRODUCTION 

Major depressive disorder (MDD) is one of the key 
public health problems worldwide. It has a negative 
influence of personal life, work life, education also 
sleeping, eating habits, and general health (Hasin et al. 
2005). About one third of depressed patients experience 
treatment-resistant depression (TRD) despite broad use 
of monoaminergic antidepressants (Ionescu et al. 2015). 
The definition of TRD varies worldwide – some authors 
define TRD as failure in achieving remission with two 
or more adequate antidepressant trials (McIntyre et al. 
2014). The number of patients not able to have good 
response to conventional treatment makes need of non-
monoaminergic antidepressive agents of prime impor-
tance. 

 
KETAMINE 

Ketamine, which is commonly used to induce 
anesthesia, is a dissociative agent used in psychiatry to 
trigger a fast antidepressive and antisuicidal effects 
(Larkin et al. 2011). What is more, ketamine shows a 
rapid antidepressant effect in patients with TRD 
(Diamond et al. 2014). In view of increased response 
compared to traditional antidepressant treatment, keta-
mine seems to be an auspicious drug in TRD with 
prevalent pharmacodynamic effect of the N-methyl-D-
aspartate receptor (NMDAR) antagonism. Ketamine 
promotes fast antidepressant effect - it starts within 
hours of administration and is mediated by alteration 
in glutamate transmission (Berman et al. 2000). How-
ever, there are more suggested mechanisms of action 
highlighted later in this paper. (S) – ketamine has a 
much greater affinity for the NMDAR, and (R) – keta-
mine has a greater opioid receptors affinity (Morgan et 
al. 2012). One of the first clinical studies on ketamine's 

potential antidepressant effects was conducted over a 
decade ago. The study was double blinded, performed 
on eight patients during the depressive episode (seven 
suffering from MDD, one bipolar), randomized to re-
ceive either a subanesthetic dose of ketamine (0.5 mg/kg) 
or saline placebo. Four patients reported an antide-
pressant response to ketamine, evaluated a reduction of 
at least 50% on the Hamilton Depression Rating Scale 
(HAM-D) (Berman et al. 2000). Other researches 
iterated this ketamine-associated antidepressant reac-
tion in clinical trials with single and repeated admini-
strations under open-label, double-blind, placebo-con-
trolled, and double-blind active comparator conditions 
via parallel arm or crossover treatment paradigms, but 
notably in treatment-resistant depression (Newport et 
al. 2015). Ketamine could be taken into consideration 
as the model glutamatergic agent, in particular because 
it is the best known and - to date - the most effective of 
the glutamatergic agents (Kishimoto et al. 2016). The 
molecular mechanisms underlying ketamine’s antide-
pressant effects is being revealed by recent studies 
concerning the properties of ketamine and its meta-
bolites (Lener et al. 2017). 

 
COPPER 

Copper (Cu) has been linked to mental disorders as 
for example autism and epilepsy. So far, researches 
measuring copper levels in patients' blood or hair with 
depressive disorder showed contrary results. To obtain a 
versatile approximation of the correspondence between 
body burden of copper and depressive disorder and 
examine the possible role of copper in mental health, 
there was a systematic review and meta-analysis per-
formed. Gathered studies found that patients suffering 
from depression had higher blood levels of copper than 
the control group without depression (Ni et al. 2018). 
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NMDAR AND DIVALENT IONS 

One of the most opulent ionotropic glutamate re-
ceptors in the human brain are the NMDARs (McBain 
et al. 1994). Binding the synthetic agonist NMDA, for 
instance glutamate, with the co-agonist glycine (Shleper 
et al. 2005) opens cation channel, which causes entry of 
calcium and sodium ions into the intracellular space. An 
excitatory postsynaptic potential could be induced by 
the activation of NMDAR by glutamate. Assembling 
evidence implies that the NMDAR has an important role 
in the treatment and neurobiology of major depressive 
disorder (Dang et al. 2014). Extracellular magnesium 
ions inhibit NMDARs, when negative membrane po-
tential is attendant (Nowak et al. 1984). There are many 
elements such as magnesium and zinc ions, which are 
involved in the etiology of depression due to effect on 
biological pathways by modulating the NMDAR 
activity (Sowa-Kućma et al. 2013, Peters et al. 1987). 
Copper is another divalent ion having a major influence 
on NMDA receptor. It is reported to inhibiting NMDAR 
channels with the half maximal inhibitory concentration 
close to 20 mM. Although, the significance of values 
presented in the varied researches was rather wide and 
the molecular mechanism underlying inhibition of 
NMDAR activity is largely unclear (Trombley et al. 
1996). Copper at doses >30mM prevalently blocks the 
NMDAR, however there are some studied that notifies 
that copper can facilitate this receptor at lower 
concentrations (Marchetti et al. 2014). This aspect may 
concern metal activity in synaptic and non-synaptic 
sites. The NMDARs undergo desensitization (Mayer et 
al. 1989) which leads to deplete toxic calcium over-
extension of cells during intervals of prolonged gluta-
mate raisings. High glycine concentration is neurotoxic 
as it essentially slows desensitization kinetics, namely 
blocking glycine reuptake increases NMDAR mediated 
neuronal excitability (Chen et al. 2003). Some authors 
divulged that NMDARs are likewise adjusted by 
cellular prion protein (PrPC) (Khosravani et al. 2008, 
You et al. 2012). 

 
COPPER AND PRPC 

PrPC is a molecule which includes copper binding 
sites with fluctuates varying from the femtomolar to the 
micromolar range (Jackson et al. 2001). Transformation 
of PrPC into the abnormal β-sheet-rich scrapie confor-
mation (i.e. PrPSc) has been affiliated with prion disea-
ses (Kingsbury et al. 1983). Changes in PrPC confor-
mation is induced by binding of copper ions (Wong et 
al. 2003). This fact may have significant consequences 
for the regulation of NMDARs and progress of de-
pression. Lack of PrPC in mice causes depressive-like 
behavior (Gadotti et al. 2012). It can be cured with the 
NMDAR antagonists, which suggests that the absence 
of PrPC may enhance the receptor's activity. You et al. 

(2012) suggested that chelation of copper ions adjusts 
native NMDARs in rat and mouse hippocampal neurons. 
What is more, glycine chelates of copper ions (Martin et 
al. 1971) by extension balance between agonist level 
and copper concentration is essential. Copper-dependent 
cooperation between the NMDAR subunit and PrPC 
regulate receptor complex for glycine, conducting to 
non-desensitizing currents insignificant to glycine con-
centration (Słupski et al. 2018). Nonetheless, it is 
essential to remember that higher levels of copper are 
also toxic on account of the generation of free radicals 
(Simpson et al. 1988). Copper inflects also AMPA-
receptors, which are glutamate-gated cation channels 
that intercede the majority of fast central excitatory 
transmission (Weiser et al. 1996) and calcium channels 
(Jeong et al. 2003). 

 
FOCUS ON GLUTAMATE PATHWAY 

Acute stress multiplies extracellular glutamate in the 
medial prefrontal cortex (mviaPFC) and hippocampus, 
and this has conducted to the presumption that glu-
tamate-mediated excitotoxicity through activities at 
extrasynaptic N-methyl-D-aspartate receptors (NMDARs) 
is accountable for the atrophy of neurons in these CNS 
parts (Popoli et al. 2011). However, ketamine is an 
NMDAR channel blocker, it causes a paradoxical erupt 
of glutamate in the rodent PFC (Moghaddam et al. 
1997). Dose-dependent increases in glutamate cycling 
by increased glutamate signaling is assisted by MRS 
studies in rodents and humans (Chowdhury et al. 2017). 
Essentially, these studies explain that the burst of gluta-
mate is exponetial (within minutes) and evanescent, 
which is crucial to ration the excitotoxic effects of 
ketamine (Chowdhury et al. 2017, Moghaddam et al. 
1997). The cellular trigger for this burst of glutamate is 
thought to involve blockade of NMDAR on tonic firing 
GABA interneurons, leading to disinhibition of gluta-
mate transmission (Duman et al. 2016). Tonic activity of 
GABA interneurons would take into consideration 
removal of the Mg2+ block of the NMDAR channel, 
thus increasing vulnerability of these interneurons to 
ketamine occlusion in contrary to less active glutamate 
neurons. Recent slice electrophysiology studies show 
that ketamine incubation declines inhibitory postsynap-
tic currents (IPSCs) on hippocampal principle neurons, 
sustaining this theory (Widman and McMahon 2018). 
The muscarinic receptor antagonist scopolamine also cau-
ses rapid antidepressant actions in patient suffering from 
MDD. It is reliant on blockade of M1 receptors on 
GABAergic interneurons in the mPFC and disinhibition 
of glutamate transmission (Wohleb et al. 2016). Acti-
vity-dependent synapse formation is dependent on 
AMPAR activity, BDNF release, and stimulation of the 
mTORC1 signaling pathway, and it is caused by the 
ketamine-stimulated transient glutamate burst (Duman 
et al. 2016, Lepack et al. 2014, Li et al. 2010). 
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NMDA-INDEPENDENT  
MECHANISM OF ACTION 

Another suggested pathway of ketamine action should 
be brought to light, as NMDA-independent action has 
been identified in animal study.  

Gαs plasma membrane redistribution induced by keta-
mine increased pairing of Gαs and adenylyl cyclase and 
through this mechanism increased intracellular cyclic 
adenosine monophosphate (cAMP) (Czysz et al. 2014). 
Furthermore, enhanced intracellular cAMP increased 
phosphorylation of cAMP response element-binding pro-
tein (CREB), which respectively increased BDNF expres-
sion. Intracellular cAMP induced by ketamine remained 
increased even when NMDAR was not present, which 
indicates an NMDAR-independent effect (Wray et al. 
2018). Besides, 10 µM of the ketamine metabolite 
(2R,6R)-hydroxynorketamine (HNK) which has no affi-
nity to NMDAR also induced Gαs redistribution and 
increased cAMP. These results indicate a new mechanism 
of action in depression, mediated by acute ketamine 
treatment that may support ketamine’s strong antide-
pressant effect. It seems that the translocation of Gαs from 
lipid rafts is a plausible characteristic of antidepressant 
action that might contribute to further diagnosing process 
or for drug development (Zanos et al. 2016). 

 
DISCUSSION 

Focusing on ketamine seems to be even more vital 
issue as ketamine may become a basis for transfor-
mative treatment with powerful impact on stigma of 
depression and may serve as a first agent from entirely 
new class of antidepressants. This approach is based on 
the hypothesis that both efficacy and tolerability can be 
better preserved with selectively targeting elements of 
ketamine’s effects (Krystal et al. 2019). Ketamine and 
copper are both antagonists of NMDA receptor. Copper 
interacts also with PrPC pathway (Wong et al. 2003). 
The evidence deliberated may testify the synergistic 
interaction between copper and ketamine pharmaco-
dynamic activity being of particular importance in mood 
disorders. During the observation of copper serum 
levels in patients treated with ketamine important infor-
mation about connections between NMDAR antago-
nistic agents and trace elements antagonistic to that 
receptor may be provided. It is essential to carry out 
further investigations referred to copper and ketamine in 
pharmacotherapy of depression - copper levels may be 
associated with the therapeutic response to ketamine in 
TRD and copper supplementation may increase the 
response rates in depressed subjects. 
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