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Prediction of Cement Compressive Strength  
by Combining Dynamic Models of Neural Networks

D. Tsamatsoulis*
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Group, Devnya 9160, Industrial Zone,  
Bulgaria

This study aimed at developing models predicting cement strength based on shallow 
neural networks (ANN) using exclusively industrial data. The models used physical, 
chemical, and early strength results to forecast those for 28- and 7-day. Neural networks 
were trained dynamically for a movable period and then used for a future period of at 
least one day. The study includes nine types of activation functions. The algorithms use 
the root mean square errors of testing sets (RMSEFuture) and their robustness as optimiza-
tion criteria. The RMSEFuture of the best models with optimum ANNs was in the range of 
1.36 MPa to 1.63 MPa, which is near or within the area of long-term repeatability of a 
very competent laboratory. Continuous application of the models in actual conditions of 
a cement plant in the long-term showed a performance at least equivalent to that calcu-
lated during the design step.
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Introduction

Machine learning techniques and especially ar-
tificial neural networks (ANN) are widely used in 
predicting cement and concrete properties for qual-
ity control purposes. The product’s compressive 
strength is the mainly utilized property, cumulati-
vely expressing the quality. The most significant 
among the strength measured at different ages is 
considered to be the 28-day strength, at least for 
normative reasons. Compressive strength depends 
on a variety of the product’s physical and chemical 
properties, which are due either to the raw materials 
used or acquired during the production processes. 
Successful implementation of ANNs and other ma-
chine learning techniques in forecasting concrete 
strength is referred to in numerous research papers, 
for multiple technologies of production and catego-
ries of this product1–9. In the cement industry, due to 
the high daily production rates and the particular 
impact of a quality accident, the 28-day strength 
forecast based on earlier analysis results has gained 
great interest from the past. Extensive reviews of 
published studies based on multilinear or polynomi-
al models can be found10,11.

In recent years, significant research has been 
elaborated on machine learning methodologies in 
predicting cement strength based on laboratory or 
industrial quality data sets. Many researchers have 
applied several techniques of this type, such as ge-

netic algorithms (GA), ANNs, fuzzy logic (FL), 
support vector machines (SVM), support vector re-
gression (SVR), adaptive-neuro-fuzzy inference al-
gorithms (ANFIS), and other more specialized 
methods. Akkurt et al.12 structure contained a GA – 
ANN correlating cement compressive strength with 
six months-worth of industrial quality data. Their 
results indicated that the increase in tricalcium sili-
cate (C3S), sulfates (SO3), and specific surface led 
to increased strength. In further publication, Akkurt 
et al.13 implemented an FL model to the same data 
set and compared the results with them of the 
ANN12. Thamma et al.14 employed gene expression 
programming to predict the 28-day cement mortar 
strength, compared the results and those of FL and 
GA-ANN models, initially developed by Accurt et 
al.12,13, and concluded that gene expression pro-
gramming performs better than FL. Verma et al.15 
employed three different kernel-based models – 
SVR, relevance vector machine, and Gaussian pro-
cess regression – in predicting cement strength. Af-
terwards, they compared the models with ANN and 
FL models provided by Akkourt et al.12,13 using the 
same data set. Similarly, Motamedi et al.16 used 
SVR and ANFIS algorithms in forecasting the com-
pressive strength of cockle shell-cement-sand mix-
tures. Their findings showed that ANFIS improved 
the generalization capability compared to SVR. 
Chen et al.17 provided an approach based on SVM 
for predicting the compressive strength of cement 
mortars exposed to sulfate attack. They compared *Corresponding author: E-mail: d.tsamatsoulis@halyps.gr
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this model with an ANN containing one hidden 
node, and concluded that SVM performance was 
higher than that of ANN. Neural networks were also 
used in two other cases18,19. Escadari-Nadaff et al.18 
developed a structure in predicting cement mortars 
strength, using three different cement strength class-
es to their mixtures. Pani et al.19 used robust multi-
variate techniques and soft sensor models based on 
ANNs and FL to detect the outliers in the quality of 
clinker industrially produced. Most of these models, 
estimating the parameters from a determined train-
ing data set, and predicting the future strength, are 
characterized as static.

Tsamatsoulis20,21 introduced a dynamic ap-
proach to predicting the strength of cement using 
movable time horizons based on long-term process 
results and several types of ANNs. The models in-
corporate the uncertainty due to the time variability 
of non-involved factors during the modeling –espe-
cially the clinker reactivity- and are dynamic. In 
this manner, the author provides a robust solution to 
the challenging issue of predicting strength during 
the daily quality control of cement production in a 
cement plant. Apart from chemical and physical 
measurements, these studies utilize results of early 
strength in predicting the typical 28-day strength. 
This technique uses data of a predetermined period 
for training, namely, for computing optimal param-
eters. Subsequently, the data belonging to a time 
interval that follows the training period are used for 
validating – or in other words, testing the model. 
The training and validation time intervals constitute 
the past and future periods, respectively. Tsamat-
soulis21 proved that the optimal future period is the 
1-day interval, whereas the training time interval 
needs optimization to achieve the best prediction. 
This previous study employed three activation func-
tions types: Sigmoid, hyperbolic tangent, and radial 
basis functions. It also used linear functions for 
comparison reasons. The aim of this study was 
threefold. Firstly, to deepen in and explore the ANN 
architectures implemented to forecast output, using 
the capability of a model to predict the future ce-
ment strength as a criterion, which can be character-

ized as the generalization ability22 of modeling. 
Subirats et al.23 clearly stated that one of the strate-
gies for avoiding overfitting is the search for com-
pact architectures. In this research, shallow ANNs 
were built with a varying number of nodes within a 
single hidden layer. A simple and robust method of 
pruning connections between nodes of input vari-
ables and the input layer was also examined and 
exploited, involving the correlations among input 
and output variables. Additionally, we used weight 
decay24–26 using L2-regularization27 for all the archi-
tectures concerned. The second purpose of this 
study was to explore the behavior of various activa-
tion functions (AF) in the application under exam-
ination, as recent work28 demonstrated that AFs are 
of high relevance, and that research in this field was 
constantly evolving29. The third objective, though 
not least, was to build robust models predicting ce-
ment 28- and 7-day strength, able to be applied in 
the daily quality control of a cement plant. Special-
ized algorithms appropriately add up the models’ 
outputs, considering the time delays, aiming at aug-
menting generalization ability. Throughout the pres-
ent text, the errors corresponding to past periods are 
characterized as training errors, while the ones 
computed from future period data, for validation 
purposes, are named test errors.

Materials and testing methods

The application field of modeling comprised 
four cement types, produced according to EN 197-
1:2011 (Cement, Part 1: Composition, specifications 
and conformity criteria for common cements): CEM 
I 52.5 R, CEM I 42.5 R, CEM II A-LL 42.5 R, 
CEM II B-LL 42.5 R. Cements of CEM I type con-
tain clinker and gypsum as main constituents. More-
over, limestone is one of the main components in 
the denoted CEM II types. Table 1 shows the raw 
materials’ typical chemical characteristics. The ox-
ides analysis was performed with XRF. Table 1 also 
presents the mineral composition of the clinker, ac-
cording to Bogue equations (1) – (4). These formu-

Ta b l e  1  – Materials chemical analyses and clinker mineral composition

LOI SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O

% % % % % % % % %

Clinker 0.50 20.89 5.20 3.63 65.72 1.18 1.00 0.93 0.43

Gypsum 21.84 0.90 0.32 0.19 31.76 0.12 44.75 0.05 0.02

Limestone 43.15 0.99 0.26 0.10 54.94 0.35 0.10 0.06 0.01

C3S C2S C3A C4AF

% % % %

Clinker 61.6 13.5 7.7 11.0
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lae use the following notation: C=CaO, S=SiO2, 
A=Al2O3, F=Fe2O3, and CaOf denote the free lime 
of the clinker.

( )4.07 7.6 6.72 1.43  = ⋅ − − ⋅ − ⋅ − ⋅C S C CaO S A F (1)

 2 32.87 0.754  C S S C S= ⋅ − ⋅  (2)

 3 2.65 1.69C A A F= ⋅ − ⋅  (3)

 4 3.04C AF F= ⋅  (4)

Modeling utilized the results of composite dai-
ly average samples of cement produced in mills of 
the Devnya plant. Each of these daily samples cor-
responded to a cement type produced by a specific 
mill. Training and verification of the models includ-
ed more than 1600 datasets of daily cement results 
produced in about 27 months. The cement’s physi-
cal, chemical, and mechanical features, and the 
analysis methods are shown in Table 2, resulting  
in a population of 11 input and output variables. 
Equation (5) of section “Mathematical models” nor-
malizes the values of these variables for the entire 
population. Fig. 1 demonstrates the frequency dis-
tributions of normalized values. Table 3 indicates 
the mean, minimum, and maximum values of these 
variables for each cement. These data clarify that 

the dispersion of values is quite large, providing an 
initial generalization capability to the models under 
consideration.

Mathematical models

The physical and chemical characteristics, 
namely, the residue at 45 μm sieve, loss on ignition, 
and SO3, SiO2, Al2O3, Fe2O3, CaO oxides, constitut-
ed the set of shared input variables in all the models 
elaborated. The chemical properties characterize 
both cement composition and clinker reactivity. The 
initial design included three basic models in pre-
dicting strength:
(i) a model predicting 28-day strength named 

Str_28_2, where the 1- and 2-day strength – 
Str_1, Str_2, respectively, were added as input 
variables to the basic set;

(ii) a second model which also predicted 28-day 
strength named Str_28_7, where the 7-day 
strength –Str_7- was also included except 
Str_1, Str_2;

(iii) a third model forecasting 7-day strength named 
Str_7_2 where physical, chemical features, and 
Str_1, Str_2 made up the input variables.

Ta b l e  2  – Physical, chemical, mechanical characteristics

Characteristic Norm Description

R45, residue at 45 μm sieve (%w/w) EN 196-6 Methods of testing cement – Part 6: Determination of fineness 
–air jet sieving

LOI, Loss on ignition (%w/w) EN 196-2 Methods of testing cement – Part 2: Chemical analysis of 
cement

SO3, SiO2, Al2O3, Fe2O3, CaO (%w/w) EN 196-2 Methods of testing cement – Part 2: Chemical analysis of 
cement – measurement by XRF

1-, 2-, 7-, and 28-day compressive strength (MPa) EN 196-1 Methods of testing cement – Part 1: Determination of strength

Ta b l e  3  – Average values of cements characteristics

Characteristic CEM I 52.5 R CEM I 42.5 R CEM II A-LL 
42.5 R

CEM II B-LL 
42.5 R

Minimum 
value

Maximum 
value

R45 (%w/w) 0.6 7.3 4.6 5.8 0.3 9.4

LOI (%w/w) 1.89 2.68 7.37 9.79 0.82 12.19

SO3 (%w/w) 3.71 3.41 3.31 2.93 2.25 4.13

SiO2 (%w/w) 19.54 19.27 17.10 16.06 15.13 20.24

Al2O3 (%w/w) 4.82 4.75 4.22 3.97 3.38 5.16

Fe2O3 (%w/w) 3.44 3.39 3.04 2.86 2.60 4.25

CaO (%w/w) 63.67 63.63 62.35 61.92 60.73 67.21

1-day strength (MPa) 28.4 18.4 19.5 17.4 12.0 36.5

2-day strength (MPa) 41.0 30.3 31.9 28.9 24.8 47.8

7-day strength (MPa) 52.0 43.4 42.8 39.9 35.0 57.8

28-day strength (MPa) 61.0 53.5 50.8 47.4 43.0 67.2
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Therefore, the maximum number of input vari-
ables for models (i) and (iii) was nine, while for 
model (ii) it was ten. Usually, the plant laboratory 
prepares the mortar for the strength measurements 
the day after producing a cement batch. Thus, in 
terms of the derived predictions, the following time 
delays appeared for each model. The delay for mod-
els (i) and (iii) was three days, and the prediction 
delay for (ii) was eight days. Apart from the three 
basic models, the design included two additional 
ones, named C1_28_2 and C2_28_2. The C1_28_2 
model adds to the strength predicted from Str_28_2, 
a correction term derived from Str_28_7. The 
C2_28_2 model exploits the result of Str_7_2 to 
add a similar quantity to the original forecasting of 

Str_28_2. As described by Tsamatsoulis21, there is a 
stronger or weaker correlation among several of the 
model’s physical, chemical, and mechanical inputs. 
For example, an increase in the contained limestone 
causes an increase in LOI and a decrease in SiO2, 
Al2O3, Fe2O3, CaO. The content of these oxides, as 
well as their ratio, is also related to clinker reactivi-
ty. Early strength not only depends on R45 and 
chemical analysis, but also on “hidden” variables 
such as milling performance and clinker reactivity. 
Therefore, the input variables contain an indepen-
dent part permitting to describe the process better. 
The models use the early strengths to include such 
hidden variables as clinker activity and grinding 
conditions in a cumulative manner. Despite that the 

F i g .  1  – Frequency distribution of normalized values of physical, chemical, and mechanical characteristics
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C3S computed from equation (1) is an activity indi-
cation, its introduction to the models as an indepen-
dent variable has weaknesses if the goal is to use 
the models in daily quality control:
(a) For a plant laboratory it is difficult to measure 

the average clinker consumed in each cement 
batch and each cement mill in a daily program. 
If the mills have a shared clinker silo, then the 
discrimination between each mill is very hard. 
Conversely, if there is one silo per mill, then a 
very intensive sampling and analysis program 
is required, hard to accomplish. Usually, the ce-
ment plants concentrate their efforts on mea-
suring and stabilizing the clinker in the kiln 
outlet.

(b) The C3S calculated by the Bogue formula accu-
mulates the uncertainties of each measurement 
on a spot basis.
The residue in some sieve or the specific sur-

face is a partial indicator of grinding effectiveness 
and cement particle size. The measurement of parti-
cle size of each cement component after grinding is 
hard or impossible to accomplish in a daily pro-
gram. The early strengths increase as the clinker 
activity increases or the clinker fraction in the ce-
ment becomes finer and reversely. Therefore, this is 
the rationale to introduce those strengths in the 
models.

The input and output variables for model 
Str_28_2 are named as follows: X1=SiO2, X2=Al2O3, 
X3=Fe2O3, X4=CaO, X5=SO3, X6=LOI, X7=R45, 
X8=Str_1, X9=Str_2, Y=Str_28. For Str_28_7, 
X10=Str_7 was also added in the inputs, whereas 
model Str_7_2 for the same inputs as Str_28_2 de-
rives output Y=Str_7. These variables were normal-
ized as follows:

(1) For a given training and test set of data, the 
minimum and maximum values of the input vari-
ables XI and the output Y, XI,MIN, XI,MAX, YMIN, YMAX, 
respectively, were computed.

(2) Equations (5) and (6) provide the normal-
ized variables, depending on the activation function 
utilized in the ANN.
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(3) Correspondingly, the predicted strength StrCalc 
is back-calculated by equations (7) or (8).

 ( ) Calc MIN MAX MINStr Y YN Y Y= + ⋅ −  (7)

 2 2
MAX MIN MAX MIN

Calc N
Y Y Y YStr Y+ −

= + ⋅  (8)

In the case of models (i) or (ii) application,  
Str_28Calc = StrCalc. Otherwise, if 7-day strength is to 
be predicted, Str_7Calc=StrCalc.

Shallow neural networks

Several architectures of feed-forward ANNs’ 
with three layers, one of which is hidden, have been 
developed. The number of nodes in the hidden layer 
varied, aiming at succeeding the optimum general-
ization performance. Therefore, the examined 
ANNs were shallow and variable in width. All the 
software had been developed in C#. Before feeding 
the data of a training dataset to the input layer, a 
preprocessing of them preceded, as follows:
(i) For the given training set of size NTr, the cor-

relation factors CorrelI, between each input 
variable XI (for I=1 to NI) and the 28-day 
strength, were computed.

(ii) A positive threshold of CorrelMin was assumed.
(iii) XNI is fed to the input layer only if the absolute 

value |CorrelI | ≥ CorrelMin.
The described comparator acts as a filter of the 

input variables. If XI passes the filter, then the fil-
ter’s output is XFIP=XNI, else I=I+1. Thus, IP lies in 
the range from 1 to NIP, where the total number of 
variables passed is NIP ≤ NI. Afterwards, for each 
dataset belonging to the training set, the activation 
function of each node J of the hidden layer accepts 
the linear combination of XFIs computed from for-
mula (9).

 
0

IPN

J IJ I
I

Z W XF
=

= ⋅∑  (9)

where XF0=1, to take into account the bias and J=1 
to NN.

Activation functions

Nine activation functions (AF) were examined-
nd implemented in the software developed. The set 
of AFs comprised equations traditionally applied in 
ANNs and others developed over the last years. A 
short description of them follows:

(1) Linear function (Linear):

 a (Z) = Z (10)

The identity function, having its input as out-
put, can be characterized as a special AF, where the 
ANN can have only one node in the hidden layer.
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(2) Sigmoid function (Sigmoid):

  (11) 
 

( ) ( )
1     

1 exp
Z

Z
σ =

+ −

The sigmoid function is frequently referred to 
as the logistic function, and its results belong to the 
interval (0, 1).

(3) Hyperbolic tangent function (Tanh)

 ( ) ( )
( )

1 exp
 

1 exp
Z

a Z
Z

− −
=

+ −
 (12)

The Tanh function lies within the range of –1 to 
1 and is zero centered.

(4) Hard hyperbolic tangent function (HardTanh)
 ( ) max(–1,min( ,1))a Z Z=  (13)

The HardTanh function represents a computa-
tionally “cheaper” version of Tanh.

(5) Radial basis function (RBF)

 ( ) ( )
2

1

0exp ;  
IPN

I IJ

I IJ

XF Xa Z Z Z
σ=

 −
= − =  

 
∑  (14)

where (X01J, X02J… X0NIP J) is the vector of the RBF 
center, while (σ0J, σ1J… σΝIPJ) are variance parame-
ters for the node J, where J=1 to NN.

(6) Rectified linear unit function (ReLU)
 a (Z ) = max(0, Z ) (15)

The ReLU function, proposed and used by Nair 
et al.30, is the most widely used activation function 
for deep learning applications29.

(7) Sigmoid-weighted linear unit function (SiLU)
 a (Z ) = Z ⋅ σ (Z )   (16)

(8) Derivative of sigmoid-weighted linear unit 
function (dSiLU)
 ( ) ( ) ( )( )( ) 1 1σ σ= ⋅ + ⋅ −a Z Z Z Z  (17)

The SiLU and dSiLU functions were intro-
duced and applied by Elfwing et al.31 The authors 
had been motivated by the high performance of 
similar equations in both classification and rein-
forcement learning.

(9) Softsign (SoftSign)

 ( )   
1

Za Z
Z

=
+

 (18)

Softsign function, introduced by Turian et al.32, 
has been used in regression problems33. However, 
its performance is to be evaluated in this study by 
applying it in cement’s strength prediction.

For each hidden layer’s node J, the input of AF 
is ZJ, computed by equation (9). As for normalized 
inputs XFI, the algorithm applied formulae (5) for 
the AFs with equations (10) to (11) and (14) to (17). 

For the three AFs, whose output lay in the interval 
(–1, 1), i.e., those described from relations (12), 
(13), and (18), formulae (6) were used. The outputs 
of all nodes enter the output layer, which calculates 
the ANN normalized output as follows:

 
1

     
NN

J j
J

YN V YN
=

= ⋅∑  (19)

The back-calculated StrCalcs are computed via 
equation (7) if the AFs are provided from (10) to (11) 
and (14) to (17). Otherwise, equation (8) is applied.

Dynamic models

First of all, a short description is needed as to 
how the dynamic models process the experimental 
datasets to extract training and test period: (1) A 
certain number of days is assumed as a training pe-
riod, TTr. (2) For a given date t, all the production 
samples belonging to the interval [t, t +TTr–1] con-
stitute the training data set. (3) The algorithm trains 
models Str_28_2, Str_28_7, Str_7_2 by computing 
the corresponding ANNs’ weights via non-linear re-
gression methodologies. (4) The future test set of 
each mentioned model is found considering the date 
t +TTr–1 and the delay between production date and 
early strength measurement. The test period is the 
minimum possible time interval of one day if the 
production dates allow it. According to the quality 
plan of the plant quality system, physical, chemical 
tests, and mortar preparation are performed on daily 
average samples of each mill the day after the pro-
duction date. A date variable, TC, is considered to be 
the current date. During this date, the following 
strength results appear if production samples exist:
(a) 1-day strength result of cement produced 2 

days ago, i.e., in TC–2.
(b) 2-day strength result of cement produced 3 

days ago, i.e., in TC–3.
(c) 7-day strength result of cement produced 8 

days ago, i.e., in TC–8.
(d) 28-day strength result of cement produced 29 

days ago, i.e., in TC–29.
Appendix A presents the algorithms imple-

menting the five models and a basic set of equa-
tions. Fig. 2 demonstrates the block diagram of fu-
ture predictions for all the dynamic models. All 
variables have been transformed according to the 
Laplace transformation, and bold characters are 
used in the vectors representation. Depending on 
the model chosen, TD1 and TD2 parameters take the 
subsequent values: (1) For the Str_28_2 model, 
TD1=3 d, TD2=29 d. (2) For the Str_28_7 model, 
TD1=8 d, TD2=29 d. (3) For the Str_7_2 model, TD1=3 
d, TD2=8 d. The synaptic weights of each of the 
three models are provided by the vectors WMod,J, for 
J=0 to NN.
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Results and discussion

The principal objective of the optimization at-
tempted was the best generalization ability of the 
models, i.e., minimization of RMSEFuture. In suc-
ceeding this, the model with the optimized parame-
ters would be utilized in the daily quality control of 
the studied cement types. The synaptic weights of 
each ANN were determined by minimizing the ob-
jective function given by equation (20), which does 
not imply that the residual error of the training set is 
minimal. As the purpose was to minimize the test 
error, the optimization of the λ parameter became 
highly significant. Another major factor requiring 
the optimum selection was the activation function 
type. This is the reason behind a large number of 
AFs being examined. Several other parameters also 
required optimization:
(i) Length of the training period.
(ii) Number of nodes in the hidden layer for each 

chosen AF.
(iii) Number of days, Npr, and the multiplier kC, de-

scribed in steps (xiv) – (xvi) of the Appendix.
The length of the training period selected was 

within the range of 20 and 300 days. For these 
training periods, the number of consecutive training 
sets, NTot, was between 400 and 640. Table 4 shows 
the median value and the 10 % and 90 % percen-

tiles of the data sets’ number within each training 
set as a function of TTr. Concerning testing sets, the 
median value of the population within each one was 
two, and the 10 % and 90 % percentiles, 1 and 6, 
respectively. The small amount of data in each test-
ing set was the reason for choosing RMSE as the 
single metric. The calculation of RMSEFuture is al-
ways feasible. Choosing the widely used correlation 
coefficient may lead to erroneous conclusions for 
small populations or may be inapplicable. If the set 

F i g .  2  – Block diagram of dynamic models

Ta b l e  4  – Median and 10 %, 90 % percentiles of samples 
population per training set

TTr Percentile (%) TTr Percentile (%)

(d) 50 10 90 (d) 50 10 90

20 44 32 51 140 286 269 314

30 65 48 75 160 326 309 359

40 85 65 99 180 368 351 400

50 106 83 121 200 410 390 440

60 127 100 143 220 451 430 483

70 147 120 165 240 490 470 524

80 168 142 185 260 531 509 558

100 208 185 227 280 576 550 598

120 246 224 272 300 616 593 635
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has only one element, then the calculation of the 
regression coefficient is not possible because there 
is no standard deviation of the experimental data.

Not only all the AFs but also the impact of 
nodes’ number on the resulting errors were thor-
oughly. For presentation of the results, the follow-
ing abbreviations were used: AFabbr_XN, where 
“AFabbr” is the abbreviation of each AF referred to 
in section “Activation Functions”, and “X” is the 
number of nodes.

Correlations between input and output variables

The correlation among all the input variables 
and Str_28 was initially examined through the com-
putation of correlation coefficients. Fig. 3 shows the 

percentile distribution of these statistics for the 
whole population of training data sets for a training 
period of 50 days. Fig. 3 also depicts a threshold 
CorrelMin=0.8. The correlation coefficients between 
Str_28 and SiO2, LOI, Str_1, Str_2, Str_7 were con-
tinuously higher than 0.8 in absolute value. The oth-
er input variables had correlation coefficients less 
than 0.8, up to a certain percentile. These results 
shall be examined from a physical standpoint. High-
er LOI corresponds to higher limestone content in 
the cement composition, which has a negative im-
pact on the 28-day strength. Thus, the correlation 
between LOI and Str_28 was strongly negative.

Lower CaCO3 in the cement leads to a higher 
SiO2, Al2O3, Fe2O3, explaining the positive correla-
tion between Str_28 and each of the three oxides. 

F i g .  3  – Percentiles of correlation coefficients among input variables and Str_28
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On the other hand, CaO content in the cement was 
not only due to the clinker and gypsum, but also to 
the limestone. The result was a worsening of the 
correlation coefficient of CaO compared to those of 
the other three oxides. Table 3 indicates that types 
of cement with higher average LOI value, therefore 
lower clinker and strength, were designed with low-
er average SO3 values, proving the positive correla-
tion between SO3 and Str_28. As expected, a high 
correlation existed between any early strength and 
the typical one of 28 days. The R45 shows a nega-
tive correlation with the Str_28, and a percentile of 
0.3 presents a correlation less than 0.8 in absolute 
value. These low values were attributed to the im-
pact of the grinding conditions of each cement mill, 
the wide range of compositions of cement types, 
and the variance of clinker reactivity.

A systematic search of the shape of the func-
tions between Str_28 and input variables follows. 
Concerning the early strength, the intervals of the 
percentiles from 0.1 to 1 with a step of 0.1 were 
computed. In each interval, the average values of 
early strength and Str_28 were determined. The 
same procedure was also applied for R45. The re-
sults are plotted in Fig. 4. A significant non-lineari-
ty occurs in the function between Str_1 and Str_28 
in Fig. 4a, as the shape of the curve is sigmoid. An 
increase in linearity exists as the early strength in-
creases from 1-day to 7-day strength (Figs. 4b – 
4c). Specifically, the function between 7-day and 
28-day strength was strongly linear, meaning that 
the impact of the chemical and physical factors on 
both ages was similar for the cement types under 
consideration. The function between residue at 45 
μm and Str_28 in Fig. 4d verifies the results of Fig. 

3b. The increase in strength for the last percentile of 
high R45 is explained from the data presented in 
Table 3: CEM I 42.5 R was the coarsest cement, but 
due to its high clinker content, it achieved a high 
typical 28-day strength.

Fig. 5 demonstrates the correlation between the 
chemical characteristics of each cement type and 
the 28-day strength. For each of these characteris-
tics, the percentiles from 0.2 to 1 with a step of 0.2 
were computed. The function between LOI and 
Str_28 decreased for the entire population, but this 
trend was not verified for each cement type sepa-
rately. For example, this function for CEM I 42.5 R 
increased non-linearly. The cause was attributed to 
other parameters, such as clinker activity, partly ex-
pressed by C3S, and cement fineness partially ex-
plained by R45. The correlation between SO3 and 
Str_28 for each cement type generally passed from 
a weak optimum value or was flat, meaning that the 
selection of SO3 target per cement type was in the 
optimal range. The functions between Str_28 and 
the four oxides, SiO2, Al2O3, Fe2O3, CaO, increased 
if taking all points as a whole. As concerns CEM I 
42.5 R and CEM I 52.5 R, the types of the highest 
clinker content, the correlations for SiO2, Al2O3, and 
Fe2O3 clearly decreased. The reason being that an 
increase of these oxides resulted in a decrease in 
clinker C3S. For these cement types, an increasing 
function between Str_28 and CaO was not observed 
as could be expected. This was attributed to the low 
limestone content permitted to be used as a minor 
component, which is also rich in calcium oxide.

Therefore, Figs. 4 and 5 contribute in detecting 
noticeable non-linearities, which hardly could be 

F i g .  4  – Effect of early strength a) Str_1; b) Str_2; c) Str_7, and d) R45 residue on Str_28
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described with multi-linear, polynomial, or simple 
exponential models. The above explains the selec-
tion of a deep analysis based on shallow ANNs.

Parameters’ impact on the models’ errors

Fig. 6 depicts the effect of the training period 
on RMSEFuture for the models Str_28_2, Str_28_7, 
Str_7_2 by selecting several ANNs architectures 
and the majority of AFs. The optimal value of the λ 
multiplier was determined and used for each TTr. 
Each curve RMSEFuture=f(TTr) is convex, presenting 
a minimum for a definite training period. Initially, 
as Ttr increases, the testing error decreases. The 
cause of this behavior is the existence of values of 
variables not belonging to the values’ range of these 
variables during the TTr period. Therefore, the mod-
els are obliged to extrapolate the computation lead-
ing to a worsening of prediction. Following this TTr 
value, an increase in the training period causes an 
increase in RMSEFuture, although the variables during 
the test period take values more likely to be within 
the values’ range of the training period. As seen lat-

er, the function RMSEPast = f(TTr) is increasing for 
larger values   of TTr, which means that after a certain 
TTr level, an increase in training error leads to a 
worsening of generalization ability. One may notice 
that the minimum is not heavily acute. For an al-
lowable range [RMSEFuture, (1+ε)· RMSEFuture], where 
ε is a small positive number, the corresponding TTrs 
are spread to a narrower or wider range. However, 
the correct training period selection is crucial: For 
the Str_28_2 model and Tanh_2N architecture, a 
choice TTr=260 days instead of the optimum of 50 
days results in a 21 % higher error. Table 5 presents 
the ratio between the maximum and minimum  
RMSEFuture for each ANN, and a wide range of train-
ing periods. The selection for the maximal training 
period is 200 days. The minimum TTr is 30 days 
when one or two nodes exist in the hidden layer, 
and 40 days in the case of three nodes. The results 
verify that the optimal selection of the training peri-
od is critical for all the models and ANNs.

Figs. 7a and 7b demonstrate the impact of TTr 
on RMSEPast for the model Str_28_2, implemented 
with the Tanh and ReLU as AFs, and using struc-

F i g .  5  – Effect of chemical characteristics on Str_28
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F i g .  6  – Effect of the training period on RMSEFuture for the models Str_28_2, Str_28_7, and Str_7_2

Ta b l e  5  – Ratio of Maximum to Minimum RMSEFuture 

ANN Str_28_2 Str_28_7 Str_7_1

Linear_1N 1.22 1.21 1.20

Sigmoid_1N 1.13 1.07 1.06

Sigmoid_2N 1.10 1.07 1.06

Tanh_1N 1.12 1.06 1.07

Tanh_2N 1.12 1.06 1.06

Tanh_3N 1.11 1.04 1.05

HardTanh_1N 1.12 1.06 1.08

HardTanh_2N 1.11 1.08 1.10

HardTanh_3N 1.08 1.07 1.08

RBF_1N 1.06 1.13 1.10

ANN Str_28_2 Str_28_7 Str_7_1

ReLU_1N 1.14 1.05 1.07
ReLU_2N 1.13 1.08 1.08
ReLU_3N 1.08 1.14 1.15
SiLU_1N 1.13 1.05 1.06
SiLU_2N 1.12 1.05 1.07
dSiLU_1N 1.14 1.05 1.07
dSiLU_2N 1.15 1.06 1.11
dSiLU_3N 1.14 1.08 1.09

SoftSign_1N 1.08 1.07 1.09
SoftSign_2N 1.09 1.10 1.07
SoftSign_3N 1.09 1.06 1.05
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tures of one, two, and three nodes within the hidden 
layer. The training errors were determined by zero-
ing the λ multiplier in equation (20) to obtain the 
minimal ones. The functions RMSEpast=f(TTr) are in-
creasing or pass from a minimum value. Fig. 7c. 
shows the corresponding test errors for the model 
Str_28_2 and the Tanh activation function, where 
the λ’s value optimizing the RMSEFuture was deter-
mined for each training period and ANN’s architec-
ture. The comparison of Figs. 7a and 7c leads to the 
subsequent conclusions: As far as training errors are 
concerned, RMSEPast decreases as the number of 
nodes increases. Fig. 7c does not verify this trend, 
especially in the area of optimum test errors: These 
errors of the ANN with two nodes are smaller than 
are those of the architectures with one and three 
nodes.

Fig. 8 depicts training and testing errors as a 
function of TTr for the model Str_28_7, SoftSign, 
and SiReLU functions, using one to three nodes in 
the hidden layer. One can observe that, for the same 
AF and TTr, increasing the node number, both types 
of error decrease. With the two-node case, the two 
ANNs behave differently, especially in the region of 
training periods from 50 to 100 days, which provide 
the optimum testing errors: While the training error 
of the SoftSign_2N is less than that of the SiRe-
LU_2N, as to the corresponding testing errors the 
inequality is reversed. This proves the effect of AF 
type on the resulting errors.

Fig. 9 demonstrates the correlation between the 
λ-multiplier and the testing error for several combi-
nations of ANNs’ architectures and AFs, for the 
Str_28_2 model. For each combination, the training 

F i g .  7  – Effect of the training period on a) – b) RMSEPast; c) RMSEFuture using Tanh, for the model Str_28_2
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F i g .  8  – Effect of the training period on a) RMSEPast; b) RMSEFuture, for the model Str_28_7

F i g .  9  – Impact of λ-multiplier on RMSEFuture for various AFs and ANNs with a) one node, b) two nodes, and c) three nodes in the 
hidden layer, for Str_28_2
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F i g .  1 0  – RMSEFuture as a function of NPr and kC for a) C1_28_2, and b) C2_28_2 models

period corresponds to that providing the minimum 
RMSEFuture for the optimum λ. A wider or narrower 
but distinct range of minimum errors occurs in each 
curve. The shapes of the curves differ noticeably, and 
the minimal errors are located in a large region of λ 
for the eight cases presented. One could see that, in 
the majority of the cases, the λ of optimum error is 
between 10 and 100. However, the optimum value 
of this multiplier is 3 for Sigmoid_1N, whereas it is 
50 for Tanh_2N. Therefore, no general rule exists 
for the multiplier’s selection, and a case-by-case 
search is needed. The minimal error of each curve is 
significantly less than the corresponding error for  
λ = 0, concluding that L2-regularization is an effec-
tive technique for improving generalization ability.

An optimal selection of the Npr and kc parame-
ters appearing in equations (29) – (30) results in a 
significant diminishment of the test errors of 
C1_28_2, C2_28_2 models compared with those of 
Str_28_2. Fig. 10 shows the RMSEFuture as a func-
tion of the mentioned two parameters for both mod-
els, using two different AFs. The test errors of 
Str_28_2 also appear in this Figure. It is worth not-
ing that the optimal value of λ is not necessarily the 
same for the Str_28_2 model and the two models 
under consideration.

Optimal neural networks

The combination of activation functions with 
the number of nodes results in 21 different ANNs. 

All the cases studied present an optimum CorrelMin 
threshold between 0.5 and 0.7 for the minimal  
RMSEFuture. Figs. 11a, 11b, 11c show the minimal 
mean test errors of each investigated ANN corre-
sponding to optimal CorrelMin, TTr, and λ values for 
the models Str_28_2, Str_28_7, and Str_7_2. To en-
large the height of each column, in each Figure, the 
maximum value of the Y-axis is 10 % greater than 
the minimum error. The black columns represent 
testing errors up to 1 % higher than the minimum 
RMSEFuture, whereas the errors shown with grey col-
umns are at least 10 % higher than the minimum 
one. Therefore, the 1 % margin is considered as the 
optimality criterion. The optimal point of the ANNs 
Tanh_1N, Tanh_2N, Tanh_3N, ReLU_1N, SiLU
_2N, dSiLU_1N is continuously found in the opti-
mum region for all three models. Additionally, in 
two out of the three models, ANNs SiLU_1N and 
SofSign_3N behave optimally. For any model, the 
ANN with linear activation functions failed to meet 
the optimality criterion. Some tests performed with 
four-node ANNs gave RMSEFuture worse than those 
of three-nodes ANNs, which is a clear indication of 
overfitting, concluding that a systematic search of 
such ANNs is not needed.

The robustness of generalization ability for a 
particular ANN can be expressed by the range of 
training periods having a testing error in a subopti-
mal region. In each model, as such region, the inter-
val [RMSEFuture,Min, β · RMSEFuture,Min] is assumed, 
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where RMSEFuture,Min is the minimum mean testing 
error of all the ANNs. The value of 1.025 is selected 
for β. Then the following procedure is applied:
(i) In the coordinates system (TTr, RMSEFuture) the 

rectangle defined by the section of the lines x = 
TTr,IN, x = TTr,FIN, y = RMSEFuture,Min, y = β · RM-
SEFuture,Min is considered.

(ii) The surface of this rectangle SRef is computed 
and considered as a reference.

(iii) For each ANN, the surface between the func-
tion RMSEFuture = f(TTr) and the line y= β · RM-
SEFuture,Min is computed, named SOpt. Fig. 12 
shows a graphical example.

(iv) The ratio FOpt = SOpt/SRef expresses the fraction 
of the reference surface covered with optimal 
or suboptimal mean test errors, and it is the 
measure of the ANNs’ robustness.

(v) Among all the FOpt, the maximum value FOpt,Max 
is found. Then the ratios ROpt=FOpt/FOpt,Max are 
compared.
Fig. 13 demonstrates the ratios ROpt, for all the 

three models Str_28_2, Str_28_7, and Str_7_2, and 
all ANNs investigated. Implementing this opti-
mization criterion, the range of optimal ANNs nar-
rows considerably. Neural networks having ROpt 
around 0.90 or higher are only two or three per 
model. Fig. 14 shows the corresponding ROpt ratios 

F i g .  11  – Optimum errors for all the ANNs’ architectures and AFs for a) Str_28_2, b) Str_28_7, and c) Str_7_2 models
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F i g .  1 2  – Optimum and reference surfaces of RMSEFuture

F i g .  1 3  – ROpt ratios for the models a) Str_28_2, b) Str_28_7, and c) Str_7_2
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per ANN for the C1_28_2 and C2_28_2 models. 
The conclusion of comparing the results of this Fig-
ure is that only the dSiLU_1N meets both optimali-
ty criteria. Besides, these two models provide an 
improved minimum test error compared to that of 
the model Str_28_2. The minimal RMSEFuture is 1.54 
MPa for the former models, whereas it is 1.63 for 
the latter, resulting in a 5.5 % improvement.

Table 6 presents the ANNs that meet optimiza-
tion criteria for each of the five models, the best test 
errors, ROpts, and model parameters. The following 
conclusions can be drawn from these results:
(i) The Str_28_7 model is the most accurate 

among all, reaching an RMSEFuture of 1.36 MPa 
by implementing ReLU_1N and dSiLU_1N, 
but its usage presents a delay time of eight 
days, while the Str_28_2 model shall take into 
account a delay of only three days. The mean-
ing of the above result is that the incorporation 
of 7-day strength better takes into account pa-
rameters non-involved in the models, such as 
clinker reactivity, but with a loss in terms of 
early forecasting.

(ii) The optimal training periods of the Str_28_7 
model are approximately twice that of the 
Str_28_2. The comparison of the models 
Str_7_2, Str_28_2 results in the same trend.

F i g .  1 4  – ROpt ratios for the models a) C1_28_2 and b) C2_28_2

Ta b l e  6  – Optimal ANNs and parameters for each of the 
models

ANN
RMSEFuture ROpt CorrelMin TTr λ

(MPa) (d)

Str_28_2

Tanh_2N 1.637 0.96 0.6 50 30

dSiLU_1N 1.630 1.00 0.5 40 14

Str_28_7

ReLU_1N 1.356 1.00 0.6 100 28

dSiLU_1N 1.359 0.89 0.5 100 12

Str_7_2

Tanh_2N 1.406 1.00 0.5 70 26

Tanh_3N 1.410 0.89 0.6 100 18

ReLU_1N 1.408 0.94 0.6 60 36

C1_28_2 NPr=12, Kc=1.5

dSiLU_1N 1.539 1.00 0.6 80 24

C2_28_2 NPr=4, Kc=0.6

dSiLU_1N 1.538 1.00 0.6 80 40
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(iii) Corrective models C1_28_2, C2_28_2 provide 
a significant improvement in the test error of 
Str_28_2, with a simultaneous increase in TTr 
and λ parameters, in terms of optimum neural 
network dSiReLU_1N.
The critical step in finding the optimal network 

is selecting the type of activation function and the 
number of nodes. Among all architectures applied, 
dSiLU_1N, ReLU_1N, and Tanh_2N provide the 
best results.

Fig. 15 illustrates a more thorough search of 
the correlation of test errors between the corrective 
models and the Str_28_2, for a wide range of train-
ing periods, for two different ANNs. The test error 
for the first two models is consistently smaller than 
that of the latter and is significantly better for lon-
ger training periods. The above proves that these 
models are more robust than Str_28_2 in terms of 
generalization ability.

Except for the RMSEFuture that constitutes a cu-
mulative criterion of optimization, it is worth fur-
ther deepening and looking at the distribution of the 
residual test errors, provided by equation (26), for 
the optimal ANN of each one of the five models. 
Table 7 shows cumulative distributions of these er-
rors for percentiles from 50 % to 95 %, from which 
the following can be concluded:
(i) The median residual error for all models is be-

tween 0.82 MPa and 1.24 MPa. This area be-
longs to the limits of the long-term repeatabili-
ty of a very competent laboratory. The norm 
EN 196-1 “Methods of testing cement – Part 1: 
Determination of strength” provides a value of 
2.5 % expressed as coefficient of variation. The 
expected long-term repeatability for 50 MPa 
and 60 MPa strength is 1.25 MPa and 1.5 MPa, 
respectively. The optimal RMSEFuture– 1.36 MPa 
for Str_28_7 and 1.63 MPa for Str_28_2– are 
also near these limits.

F i g .  1 5  – Comparison of RMSEFuture between the corrective models and Str_28_2

Ta b l e  7  – Cumulative distributions of the residual test errors

Model – ANN

Residual test errors (MPa)

Percentile (%)

50 60 70 80 90 95

Str_28_2
dSiLU_1N

1.04 1.34 1.65 2.01 2.70 3.30

C1_28_2
dSiLU_1N

1.24 1.42 1.64 1.88 2.34 2.80

C2_28_2
dSiLU_1N

1.21 1.38 1.60 1.87 2.37 2.80

Str_28_7
ReLU_1N

0.82 1.03 1.36 1.67 2.16 2.70

Str_7_2
Tanh_2N

0.94 1.17 1.44 1.74 2.30 2.72
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(ii) The errors of the models C1_28_2, C2_28_2 
are significantly smaller than those of Str_28_2, 
for percentiles 90 % and higher. The above 
proves that the contribution of corrective mod-
els is to reduce the worst errors of Str_28_2.

(iii) The Str_28_7 model constantly provides the 
best errors for all percentiles. However, for the 
95 % percentile, perhaps its error cannot be 
considered significantly different from that of 
corrective models.

(iv) The errors of the Str_7_2 are between those of 
Str_28_7 and the corrective models for all the 
percentiles.
The minimal values and the robustness of  

RMSEFuture indicate the C1_28_2, C2_28_2, 
Str_28_7, and Str_7_2 models could adequately be 
used for controlling the 28-day or 7-day strength of 
cement produced in the mills. A manual or automat-
ic control technique can use, as a control variable, 
the clinker percentage and process variable the pre-
diction from the corresponding model. The need to 
construct a dynamic function of the effect of the 
clinker percentage on strength is evident. The pro-
cess dynamics presented in Fig. 2 would be the core 
of the control loop in such a case.

Comparison of results and implementation in 
daily quality control

The main characteristic of this study is the ex-
clusive usage of industrial quality data. A compari-
son of the results of this research with literature re-
sults in the same field is necessary to gain a more 
comprehensive evaluation, much more if the pub-
lished studies include industrial data. Table 8 pres-

ents the results of the 28-day strength prediction 
reporting the method implemented and the RMSE 
of test sets. All RMSE belong to the interval [1.3, 
1.9], where the low limit is related to the long-term 
repeatability of the test method, as explained in the 
section “Optimal neural networks”. The models de-
veloped in this study present RMSEs of testing sets 
lower than the mean value of the mentioned inter-
val, proving their generalization ability.

Finally, the application of the models in daily 
quality control was the actual metric of their perfor-
mance: The two basic models, Str_28_2 and 
Str_28_7, were applied continuously for more than 
15 months in the Devnya plant, predicting around 
1000 daily 28-day strength measurements. Table 7 
shows the models’ settings and the statistical re-
sults. Comparison of the actual results of the two 
models with those shown in Fig. 11 and Table 7 led 
to the following conclusions:

(1) All the results were in line with the results 
found during the ANNs’ design, and especially the 
RMSE of Str_28_7 was lower than predicted.

(2) The operation of the algorithms in actual 
conditions verified that the design procedure built 
robust models of sufficient generalization ability.

(3) The optimization of the ANNs parameters 
in combination with the movable training period 
guarantee long-term performance.

Conclusions

A series of five models predicting cement 
strength was developed based on shallow ANNs 
and exclusively industrial quality data. Three out of 
the five were independent of each other. The mod-
els used physical and chemical data as well as:

(i) 1- and 2-day strength to predict those of 28- 
and 7-day – models Str_28_2, Str_7_2, respectively;

(ii) additionally, the 7-day strength to predict 
that of the 28-day – model Str_28_7.

The two last models – C1_28_2, C2_28_2 – 
combined the results of the previous ones aiming at 
improving the predictions of the model Str_28_2, 
taking into account the time delays. Input variables 
were filtered before datasets insertion into the 
ANN’s input layer: Only variables whose correla-
tion coefficient with the 28-day strength was higher 
than the threshold, CorrelMin, entered the input layer. 
ANNs contained from one to three nodes within the 
hidden layer, and were trained dynamically for a pe-
riod of TTr days. Prediction of future strength fol-
lowed for a test period of at least one day. Upon 
completion of this period, the process was repeated 
by moving forward the training period. For a given 
ANN, achieving the best test error needs optimiza-
tion of the training period. Nine types of activation 

Ta b l e  8  – Comparison with literature results

Reference Method
RMSE in 
testing set 

(MPa)

Accurt et al.12,13 ANN – Sigmoid 1.70

Accurt et al.13 FL 1.84

Thamma et al.14 Gene expression programming 1.50

Verma et al.15 Symbiotic organism search – SVR 1.90

Verma et al.15 Particle swarm optimization – SVR 1.85

Verma et al.15 Relevance vector machine 1.80

Verma et al.15 Gaussian process regression 1.86

Tsamatsoulis21 Multiple linear regression 1.89

Tsamatsoulis21 ANN – Sigmoid, Tanh 1.86

This work: 
Str_28_2

ANN – dSiLU 1.63

This work: 
Str_28_7

ANN – ReLU 1.36
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functions were studied: The traditional ones such as 
the linear, sigmoid, hyperbolic tangent, and some 
developed in recent years like the rectified linear 
unit, sigmoid-weighted linear unit, and its deriva-
tive. The algorithm applied L2-regularization to the 
objective function used to find the ANN’s synaptic 
weights, and optimized the corresponding weight 
coefficient λ to obtain the minimal test errors. As 
optimality criteria, the algorithm used the minimi-
zation of RMSEFuture and its robustness.

The type of activation function is a decisive 
factor in selecting the optimum ANN for each mod-
el. The ANN implementing the derivative of the 
sigmoid-weighted linear unit and having one node 
in the hidden layer – dSiLU_1N – showed the 
smallest and most robust RMSEFuture, for the models 
Str_28_2, C1_28_2, C2_28_2. The test errors for 
the three models were 1.63 MPa, 1.54 MPa, and 
1.54 MPa, respectively. Therefore, the two correc-
tive models were equivalent to each other, and im-
proved the error of Str_28_2 by 5.5 %. The opti-
mum ANN of model Str_28_7 contained one node 
in the hidden layer utilizing the rectified linear unit 
or the derivative of the sigmoid-weighted linear unit 
– ReLU_1N and dSiLU_1N, respectively – with an 
RMSEFuture of 1.36 MPa. This error was excellent 
and 11.7 % lower than those of corrective models, 
but was achieved at the expense of delay time com-
pared to previous ones. The median test residual er-
rors for the optimal ANNs were between 0.82 MPa 
and 1.24 MPa, belonging to the range of the long-
term repeatability of a very competent laboratory.

In conclusion, the main contribution of the 
present research is the combination of four factors 
impacting the generalization ability decisively:
(a) The usage of early strengths as independent 

variables to uncover hidden variables like clin-
ker activity and milling conditions.

(b) The selection of the optimal activation function 
among many traditional and modern ones and 
the determination of the number of nodes in the 
hidden layer.

(c) The implementation of the L2-regularization 
technique to avoid overfitting.

(d) The length of time of the moving training period.
The fact that the models were dynamic and ap-

plied to industrial data spread over 27 months was a 
guarantee that they could be implemented effective-
ly to the daily quality control of the same cement 
plant. Continuous application of the models in the 
Devnya plant in actual conditions for more than 15 
months showed a performance at least equivalent to 
that calculated during the design step.

Furthermore, the modeling can be a part of a 
control algorithm, which will use, as a control vari-
able, the clinker percentage and process variable the 

prediction from the corresponding model. The algo-
rithms developed can be applied to the quality con-
trol of any cement plant after training with long-
term plant data, as long as they characterize the 
main properties of cement. The accuracy and reli-
ability of the raw data characterize the quality of the 
strength prediction. A further improvement of these 
techniques could include as inputs the chemical 
characteristics of the clinker, such as C3S, C3A, 
equivalent alkalis, free lime, in case the above are 
measured routinely by some automatic sampling 
and measurement system.

Appendix

A summary of the algorithm implementing the 
model Str_28_2 follows:

(i) All datasets are sorted according to the pro-
duction date. For each date, more than one set usu-
ally exists.

(ii) An initial training date, TIn,Tr, is selected. 
The first day initializes the algorithm, and the train-
ing set index k is equal to 1.

(iii) The latest final training date, TFin,Tr, is 
found so that TFin,Tr – TIn,Tr ≤ TTr.

(iv) The training set of index k comprises all 
datasets in the interval [TIn,Tr, TFin,Tr], and its size is 
NTr.

(v) The initial date of the test set, TIn,Test is 
found, which is the earliest date satisfying TIn,Test – 
TFin,Tr ≥ TD, where TD=26 d in the case of Str_28_2 
model. TD derives from the subtraction of TC–29 
from TC–3.

(vi) A search for the final test date is performed: 
The production date just after the end of training 
date, TNext, is considered. The dates after TIn,Test are 
compared with TNext. If they differ less than TD from 
TNext, these dates belong to the testing set. Therefore, 
TFine,Test is the latest date where TFin,Test – TNext < TD. In 
conclusion, the test period is usually a one-day in-
terval, except if the production dates are sparsely 
distributed.

(vii) All data belonging to the interval [TIn,Test, 
TFin,Test] constitute the testing set with a size of NTest 
datasets.

(viii) As to the training set of index k, the ANN 
is trained by minimizing the next objective function:
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Equation (20) incorporates the weight decay 
term by applying the L2-regularization. Parameter λ 



D. Tsamatsoulis, Prediction of Cement Compressive Strength…, Chem. Biochem. Eng. Q., 35 (3) 295–318 (2021) 315

needs optimization to receive the best generaliza-
tion ability of the ANN under study. For a given λ 
value, the optimal parameters of formula (20) are 
obtained using the Levenberg – Marquardt tech-
nique. It is worth mentioning that this method has 

been efficiently used in ANNs’ training34,35. The pa-
rameters bI are a function of the number of nodes, 
NN, in the hidden layer, provided by the following 
formulae:

 ( ); 0  to  ; 1  to ; 1  to 1I mn IP N N IPb W m N n N I N N= = = = ⋅ +  (22)

 ( ) ( )1 ; 1  to ;   1
N IP I N N IP NN N Ib V I N M N N N⋅ + + = = = ⋅ + +  (23)

 ( )1  0 ;   0 ;  1  to ;  1  to 
IPIP IJ J N I IJ IP NJ N Ib X b I N J Nσ⋅ +− ⋅ + = = = =  (24)

 2 ;  1  to ;   2
N IPN N I I N N IP Nb V I N M N N N⋅ ⋅ + = = = ⋅ ⋅ +  (25)

where equations (22), (23) are used if AFs (10–13) or (15–18) are implemented, and equations (24), (25) are 
applied in the case of AF (14) application.

(ix) The bI parameters are used to predict the 
28-day strength, Str_28Calc,J, for all the data belong-
ing to the test set. Then, the error of index k is com-
puted as follows:
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(x) If the test set contains the last dataset of the 
entire population, the searching for new training set 
stops. Otherwise, the procedure is repeated starting 
from step (iii), setting TFin,Tr = TNext, finding TIn,Tr by 
the formula TFin,Tr – TIn,Tr ≤ TTr, and increasing index 
k by one. The above means that, when the algorithm 
adds datasets for the new TFin,Tr, it subtracts the data-
sets between the old TIn,Tr, and before the new TIn,Tr, 
making the training period movable.

(xi) By executing steps (i) to (x), processing of 
NTot consecutive training and test sets occurs. After-
wards, the root mean square training and testing er-
rors, RMSEPast and RMSEFuture, respectively, are 
computed as follows:
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(xii) The impact of multiplier λ, characterizing 
the weight decay, on the model generalization is as-
sessed by executing the algorithm for a range of λ 
from 0 to λMax. The λ’s value providing the mini-
mum RMSEFuture corresponds to the best generaliza-
tion for the given training period.

The same algorithm implements the two other 
models, Str_28_7 and Str_7_2, with the only differ-
ence that TD=21 d for the former and TD=5 d for the 
latter. There is no peculiarity in ANN’s architecture 
for each model, except for the fact that there is a 

comparator before the input layer: For each training 
set, the correlation factor between each input variable 
and Str_28 compares with a threshold value, and 
only if higher, the variable enters the input layer.

The implementation of the C1_28_2 model fol-
lows the next steps, in addition to those already de-
scribed:

(xiii) After the execution of step (xii) for the 
trinity Str_28_2, Str_28_7, Str_7_1, the first date of 
the first testing set, TC, is considered, as determined 
from the Str_28_2 model.

(xiv) The latest date with results of the Str_28_7 
and Str_28_2 is at least five days before this date, 
and there is the 7-day strength measurement on this 
date. Starting from this date, Tpr, the algorithm con-
siders Npr consecutive past days.

(xv) For all the datasets contained in the time 
interval [Tpr–Npr+1, Tpr], the algorithm calculates the 
differences between the Str_28_7 and Str_28_2 pre-
dictions.

(xvi) The mean value of the differences, DAver, 
is multiplied with a coefficient kC, and the product is 
added to all the results of the Str_28_2 predictions, 
belonging to the test set of first date TC. So, for out-
put of Str_28_2 equal to Str_28_2Calc, the result is 
the following:
 1_ 28_ 2  _ 28_ 2   · = +Calc Calc C AverC Str k D  (29)

(xvii) The residual error is computed using 
equation (26) and the output of C1_28_2 instead of 
that of the Str_28_2.

(xviii) The test date, TC, moves to the first one 
of the next testing set, and the process is repeated 
starting from step (xiv) until the TC becomes the last 
date of the entire population.

(xix) Equation (28) is applied to calculate the 
test error, RMSEFuture.

The C2_28_2 model is implemented using the 
same steps as C1_28_2, with the only distinction 
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being the step’s (xv) calculations. This model uses 
the differences between the 7-day strengths and 
those provided by the Str_7_2 model. Afterwards, 
the model’s output is as described below:

 2 _ 28_ 2  _ 28_ 2   · = +Calc Calc C AverC Str k D  (30)

N o m e n c l a t u r e

bI – ANN’s weights to be optimized, I=1 to M
C1_28_2Calc – Calculated 28-day compressive strength 

from C1_28_2 model, MPa
C2_28_2Calc – Calculated 28-day compressive strength 

from C2_28_2 model, MPa
C2S – Dicalcium aluminate, %
C3A – Tricalcium aluminate, %
C3S – Tricalcium silicate, %
C4AF – Tetra-calcium aluminate, %
CorrelI – Correlation factor between XI and Str_28, 

I=1 to NI

CorrelMin – Minimum correlation factor
DAver – Mean value of difference
FOpt – Fraction of SRef covered by SOpt

k – Training set increasing index ranging 
from 1 to maximum number of sets

kC – Multiplier used in models C1_28_2, 
C2_28_2

M – Number of ANN weights to be optimized
NI – Number of input variables, NI=9 or NI=10
NIP – Number of input variables, passing the fil-

ter of correlation factors
NN – Number of nodes in the hidden layer
NPr – Consecutive past days used in models 

C1_28_2, C2_28_2, d
NTr – Size if the training data set
NTest – Size of test data set
NTot  – Total number of consecutive training sets
ofk – Objective function to be minimized for 

the training set of index k, MPa2

RMSE – Root mean square error, MPa
RMSEFuture – Root mean square testing error, MPa
RMSEPast – Root mean square training error, MPa
ROpt – Ratio of FOpt to maximum FOpt

s2
Res,k – Residual error of training set of index k, 

MPa2

s2
Test,k – Residual error of testing set of index k, 

MPa2

SOpt – Optimum surface of errors, MPa d
SRef – Reference surface of errors, MPa d
Str_1 – 1-day compressive strength, MPa
Str_2 – 2-day compressive strength, MPa

Str_7 – 7-day compressive strength, MPa
Str_7_2Calc – Calculated 7-day compressive strength, 

MPa
Str_28 – 28-day compressive strength, MPa
Str_28Calc – Calculated 28-day compressive strength, 

MPa
Str_28_2Calc – Calculated 28-day compressive strength 

from Str_28_2 model, MPa
Str_28_7Calc – Calculated 28-day compressive strength 

from Str_28_7 model, MPa
StrCalc – Calculated compressive strength, MPa
SRef – Reference surface for ANNs’ robustness 

computations, MPa d
SOpt – Optimal surface for ANNs’ robustness 

computations, MPa d
TC – Current date or testing date, d
TD1, TD2 – Time delay parameters, d
TIn, Tr – Initial training date, d
TIn, Test – Initial testing date, d
TFin, Tr – Final training date, d
TFin, Test – Final testing date, d
TNext – Production date just after final training 

date, d
TTr – Training period, d
XI – Model’s input variables, I=1 to NI

X0I – Centre’s parameters of RBF function, I=1 
to NI

XFI – Normalized variables inserted to input 
layer, I=1 to NIP

XF – Vector of normalized variables inserted to 
input layer

XNI – Normalized input variables, I=1 to NI

Y – Model’s output variable
YN – Normalized output variable
ZJ – Input to the J node of the ANN’s hidden 

layer
VJ – Synaptic weights between hidden and out-

put layers
WIJ – Synaptic weights for equations (6–9), 

(11–14) between input and hidden layers
WMod,J – Vectors of synaptic weights for each mod-

el, J=1 to NN

G r e e k  S y m b o l s

α(Z) – Activation function of input Z
β – Coefficient of suboptimal region
λ – Multiplier of weight decay term
λMax – Maximum value of λ
σ(Z) – Sigmoid activation function of input Z
σI – Variance’s parameters of RBF function, 

I=1 to NI
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S u b s c r i p t s

Aver – Mean value
D1, D2 – Delay
I, J, IP, k – Indexes
Calc – Calculated value
Future – Future period
Max – Maximum value
Min – Minimum value
Mod – Model
N – Indexes
Next – Next date
Opt – Optimum value
Pr – Past days
Tr – Training data set
Test – Test data set
Tot – Total
Past – Past period
Ref – Reference
Res – Residual

A b b r e v i a t i o n s

AF – Activation function
ANFIS – Adaptive –neuro-fuzzy inference
ANN – Artificial neural networks
CEM – Cement type
dSiLU – Derivative of sigmoid-weighted linear 

unit function
EN – European norm
FL – Fuzzy logic
GA – Genetic algorithms
HardTanh – Hard hyperbolic tangent function
RBF – Radial basis function
ReLU – Rectified linear unit function
SiLU – Sigmoid-weighted linear unit function
SVM – Support vector machine
SVR – Support vector regression
Tanh – Hyperbolic tangent function
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