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Abstract  

The new coronavirus has spread around the world at an unprecedented speed. 
Understanding patterns of disease spread is an important contribution to controlling 
any epidemic, and today's mathematical methods offer a plethora of proven models 
to choose from. We provide a brief overview of epidemiological concepts, papers 
pertaining to mathematical modelling, and present a robust, simple mathematical 
model to model incidence of COVID-19 cases in Croatia during the first year of the 
disease. For our models, we chose logistic, Gumbel and Richards functions, with 
parameters generated using the Levenberg-Marquardt iterative method of nonlinear 
regression. In conclusion, all three models provided adequate estimation of incidence 
curve and final number of infected during the chosen time period, with relatively 
minor differences depending on chosen parameters of significance. The model using 
the logistic function proved to be the most applicable to available data. While no 
model can give the answers to ending the pandemic, this approach can provide a 
simple prognostic tool to evaluate interventions and estimate disease spread. 
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1. Introduction  

Four human coronaviruses have long been recognized as a cause of common cold in 
humans. The discovery of SARS-CoV (in 2002) and MERS-CoV (in 2012) elevated the 
status of the Coronaviridae family from benign causes of mild respiratory disease to 
organisms of concern. These newly discovered viruses caused severe acute 
respiratory infections and nosocomial outbreaks. In 2019, a novel coronavirus, now 
known as SARS-CoV-2 (2019), emerged in Wuhan, China and subsequently caused the 
ongoing pandemic. The World Health Organization declared that the epidemic is a 
public health emergency of international concern on January 31, 2020. 

The ongoing COVID-19 pandemic encourages experts from all areas to apply skills 
from their area of expertise. A never before seen accessibility of data and networking 
of experts allow for rapid exploration of all aspects of disease spread and 
management. From identification of mutated strains to long term planning of vaccine 
supplies, all aspects of science come to their own and can offer useful insight. 
Conversely, the huge amount of available data depends heavily on interpretation, 
necessitating a multidisciplinary approach. The degree of global integration and ease 
of disease transmission makes rapid research a necessity. (Panovska-Griffiths, 2020) 
No area of human activity seems untouched by this epidemic. A better understanding 
of disease spread and human behaviour were the only way of combating the disease 
prior to the advent of efficient vaccines. Even after vaccine introduction, due to 
economic and sociological pressures as well as emergence of new mutations the 
pandemic is still difficult to control. Human nature in general seems reluctant to bend 
in front of objective measures necessary to prevent disease spread and emergence 
of dangerous mutations. 

We tried to fit available data on new infections into models containing commonly 
used sigmoidal mathematical functions: logistic, Gumbel and Richards. The intention 
was to estimate the final number of diagnosed cases and form a robust and usable 
estimator as to the total expected number of cases. This estimator could be useful in 
estimating future disease spread and appraising vaccine efficiency on a large scale. It 
is worth noting that the true number of COVID-19 patients is probably much greater 
than reported, and its true value will probably depend on later, population-wide 
serological probes. For the purposes of this paper, we focus on identified cases 
exclusively. 

1.1. A brief overview of epidemiology 

Epidemiology is the study and analysis of the distribution, patterns and determinants 
of health and disease conditions in defined populations. (Porta, 2014) Its roots can be 
traced back to the ancient era and rational efforts to link occurrences of disease with 
environmental influences. The term "epidemic" was coined by Hippocrates, and 
promptly nearly forgotten until the emergence of sweeping, large-scale infectious 
disease in the middle ages. By the 16th century scientific and mathematical advances 
solidified the theory of external disease causes. Observations of disease spread and 
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behavior led to formulation of rules to combat spread of disease. These rules were as 
unpopular then as they are today. Lockdowns, physical distancing, washing groceries 
and textiles, restricting shopping to one person per household, quarantines and 
health passports proved their efficiency in the past centuries.  

Personal hygiene as a key component to stopping disease also had a long and rocky 
development. In 1846, Ignaz Semmelweis proposed using chlorinated lime to 
disinfect medical students' hands before attending to childbirth, which in practice 
dropped mortality in obstetrics wards by up to 10 times. This earned him a stay and 
ultimately death in a lunatic asylum, with his theories being vindicated only after his 
death.  

John Snow is considered one of the founders of modern epidemiology due to his 
involvement in combating the 1854 Broad Street cholera outbreak. By correlating 
deaths from cholera and their temporal and spatial relationship, he determined the 
cause of the disease to be water from a particular pump. His measures of water 
chlorination and restriction of access to suspicious water sources is commonly 
credited with ending the outbreak.  

Specific, targeted influence on disease spread became possible with development of 
potent vaccines and, later, antimicrobials. Despite efforts, only one infectious disease 
has been eradicated to date - smallpox, announced eradicated in 1980. (Magner, 
2009) 

1.2. Quantitative methods in modern epidemiology 

Modern epidemiology uses quantitative methods to study diseases in human 
populations with the aim of shaping prevention and control efforts. Modern 
epidemiological models are quantifying models with parameters pertaining to 
causation of disease, natural history of disease, tracking health status of populations, 
and efficiency of interventions.  (Bonita, 2006) 

Mathematical modelling the spread of infectious disease via mathematical means is 
not new by any means. In 1766 Daniel Bernoulli published an article where he 
described the effects of smallpox variolation (a precursor of vaccination) on life 
expectancy using mathematical life table analysis  From early on, the spread of 
infectious diseases has been understood as a balance between susceptible, infected, 
and immune proportions of the population, and tis approach was validated during 
the eradication of smallpox. (Kretzschmar, 2009) 

Reinfections, alternate modes of spread, variable duration of disease and 
communicability, new mutations, duration of immunity, and many other factors are 
difficult or impossible to account for in a mathematical model. Nevertheless, 
methods such as compartmentalization, continuous age modelling, networking, and 
so on have increased the quality of predictions. An example of a popular model of 
compartmentalization is the SIR (Susceptible, Infected, Recovered (or alternatively 
Removed)) model, as outlined in Figure 1. However, it takes a long observation time 
to gather enough data for a model, and COVID-19 is barely two years old at this point.  
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Figure 1. The SIR model 

 
 

Source: Author’s illustration 

COVID-19 is expected to follow patterns similar to prior infectious diseases. Number 
of infected should follow an initial steep increase, a short plateau and finally a taper 
towards zero. Due to the speed of spread and lethality, it has been shown that 
leaving the spread of COVID-19 unchecked leads towards quick saturation of medical 
capacities, with the untreated patients from risk groups suffering from mortality as 
high as 30%.  "Flattening the curve" has been adopted as a strategy to combat 
overcrowding in hospitals, (Ferguson et al., 2020) but experience has shown that the 
population in general isn't likely to follow social distancing and other non-
pharmacological strategies of disease spread prevention. Various mitigation and 
suppression measures for control of COVID-19 have been examined (Sandip et al., 
2020), but in the end economic factors prevented serious efforts towards 
containment. Lethal outcome more than certainly depends on socioeconomic 
elements, as well as prior health problems and age. However, a clear picture of 
comorbidities and causes of death in COVID-19 patients is difficult to establish due to 
differences in reporting. In most countries, every SARS-CoV-2 positive person dying is 
counted as a death due to COVID-19, despite it not being the direct cause of death. 
(Bulut and Kato, 2020)  

Increasing amounts of available data diminish uncertainties in disease behaviour. 
However, this is a very slow process. Every month new signs, symptoms and 
treatments are introduced - some are validated while others are rejected. Post-COVID 
syndromes seem to multiply, from "long COVID" disease, to emerging clinical entities 
appearing more than 12 weeks after infection ("post-COVID" and "long-haulers"). 
Some of these are merely being linked to chronic exhaustion, while some are 
possibly deadly like the MIS-C which can end fatally in children.  

Humankind, being on the impatient end of the spectrum, itches to get answers now 
rather than later, so we fall back on mathematical description of the disease and its 
expected course. While expectations in initial rise, plateau and receding phases held 
true for initial phases of the pandemic, once the different infection waves and 
mutations overlap the difficult of applying quantitative models increases even 
further.  The first step in establishing disease prevalence is reliable identification of 
the virus. Identifying COVID-19 patients relies on PCR testing, which is reasonably 
accurate. However, this is usually only used when other symptoms are present, and 
even then exhibits a 10% false negative results in the most optimistic case. (Kanji et 
al., 2021) 
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Healthy appearing, asymptomatic individuals were 42% less likely to transmit the 
virus than symptomatic people. However, these provide a reservoir of "silent" 
infected, making it more difficult to defeat the disease. The rate of asymptomatic 
cases are estimated to be between 17 and 81%, and clearly more research in this 
area is needed. (Nogrady, 2020)  

Initially, local measures seemed to be important in halting the epidemic. Experience 
soon proved that these manage to only briefly stall the SARS-CoV-2 pandemic. 
Fighting the spread of disease now includes changes to social behaviour, information 
spread, daily rituals and memetic influence. Political decisions on disease 
countermeasures are being presented as medical necessities. Uncertainty in general 
population grows due to media representation which is in turn based on daily needs 
of selling news. (Bertolaccini and Spaggiari, 2020)  

It is accepted that using social distancing and other prophylactic measures has an 
immediate and significant effect. It is interesting to explore the case of a small 
community where such measures were not implemented or observed, this being a 
sect in south Korea.(Kim, 2020.) Researchers estimate the number of transmissions 
per infected patients to be about 10 times higher in such a population. (Soyoung and 
Bin, 2020) 

There have been numerous mathematical models of COVID-19 spread. The most 
commonly discussed numerical parameter is the reproduction index. In practice this 
parameter measures how many new infections a single infected person produces in 
the population, and is usually presented to be the cornerstone of disease spread 
estimation. Any epidemiological measure is thought to have a measurable impact in 
terms of reproduction index decrease. (Hellewell et al., 2020)   

Reproduction index was successfully lowered from an initially measured 2,35 to 1,05 
in Wuhan by using non pharmacological measures such as isolation and social 
distancing. (Kucharski et al., 2020) These numbers can be compared to a 
reproduction index of 2,28 on the Diamond Princess cruise ship. The few shipboard 
examples from the beginning of the pandemic are significant because they provide 
data from isolated, controlled environments with no outside interferences. (Sheng et 
al., 2020; Zhang, 2020) 

1.3. Modelling COVID-19 incidence 

Using sigmoidal functions to model incidence of infectious diseases is a well tried 
method. Gumbel distribution was used as a predictor in insect-borne diseases 
before, and proved adequate in predicting risk thresholds. (Lahiru et al., 2018) The 
generalized logistic function, previously used for a wide variety of infectious disease 
models, is applicable to modelling COVID-19 incidence; due to its versatility it is 
amicable to usage in multilevel and networked models as well. Manipulating its 
parameters can converge with logistic and Gompertz growth curves. (Lee, Bowen and 
Bani, 2020.) The Richards function has been successfully used in modelling SARS 
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outbreaks (Hsieh, 2009., Wang, 2012.) as well as used as a predictive tool in the 
current COVID-19 pandemic. (Aviv-Sharon, 2020) 

If we accept that the new coronavirus is here to stay, there might be periodical or 
seasonal peaks, similar to the common cold, or ambrosia allergies. (Puc and Wolski, 
2013.) Anticipatory mathematical models find their application in planning peak 
medical capacity utilization, drug and material consumption and usage of ICU beds. 
(Panovska and Griffiths, 2020.) 

Network models (e.g. Bats-Hosts-Reservoir-People) can be used to estimate potential 
transmission from the infection source (animals, or asymptomatic infected) to the 
human infection. Such models reiterate the importance of preventive measures. 
(Chen et al., 2020) 

Behaviour of COVID-19 is nevertheless still unpredictable. Early models were 
underestimating speed of disease spread, and predicted a number of cases with no 
control measures lower than actually measured with disease spread prevention 
measures in place. (Peirlinck et al., 2020, Mandal, 2020) 

2. Materials and methods 

Our intention was to form a robust model based on a commonly used sigmoidal 
function to estimate the final number of diagnosed (confirmed) cases (labeled as Ncnf) 
in in the first year of COVID-19 in Croatia. Models are created using time functions: 
N(t). As Ncnf needs to be a finite value, every function has to satisfy  

 (1) 

From (1) it is visible that Ncnf is the upper limit of the function, while the lower limit is 
zero. The value of function parameters were estimated using the Levenberg-
Marquardt iterative method of nonlinear regression. (Motulsky and Christopoulos, 
2003) Data was evaluated using Statistica (TIBCO Software Inc) version 13.5.0.17.  

We used publicly available data on incidence of confirmed COVID-19 cases published 
daily by the Croatian Ministry of Health. The basis for our model is weekly incidence 
of confirmed COVID-19 cases. Weekly incidence was chosen to somewhat mitigate 
the anticipated amount of noise stemming from lower numbers of patients being 
tested during weekends, differences in reporting, and similar artefacts. We used data 
from the first confirmed case on 26th of February 2020, until 20th of March 2021. 
Weekly incidence of COVID-19 in Croatia from the start of the epidemic is presented 
graphically on Figure 2. Even a cursory glance reveals an obvious peak of incidence 
that looks amicable to modelling via a single logistic function. However, following 
week 51, the number of new cases started to increase again, as a probable prelude to 
a new wave of infections. Our model includes data up to week 52. 
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Figure 2: Weekly incidence of new COVID-19 cases 

 
Source: Croatian Ministry of Health 

After a review of published papers and available data, three functions were chosen as 
basis for our models: 
- the logistic function, commonly used in population growth models since the early 
19th century, 
- the Gumbel function, a well researched function from the same family of functions, 
- the Richards function, already often used in epidemiological applications, which can 
approximate the prior two chosen functions depending on parameters but provides 
a greater amount of customization due to having more parameters. 
All functions label Ncnf as "a". Every parameter was evaluated in terms of p-value, with 
the chosen level of significance being 0.05. Functions were also evaluated in terms of 
adjusted coefficient of determination (R2). Since the Richards function has a greater 
number of parameters, to avoid the pitfall of over-fitting the Akaike information 
criterion was used to evaluate results in addition to correlation coefficients. Due to 
the sample size being small, the corrected Aiake information criterion was used: 

 (2) 

In expression (2) N is the total number of data, SS being the sum of square residuals, 
and K is the total number of parameters in a model. The best-fitting model is 
considered the one with the lowest AICc. 
Resulting incidence curves and comparison with observed data is presented in 
Figures 2 and 3. 
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2.1. The logistic model 

The first chosen model contains the logistic function. This is determined by the 
expression 

 (3) 

where a is the total expected number of cases (Ncnf) and t is time in weeks since 
patient zero. The function hasa total of three parameters. Computed parameters and 
results are presented in Table 1.  

Table 1: Logistic model fit to observed data 

Parameter Estimate Standard 
error 

t-value 
df = 48 

p-value Lo. Conf 
Limit 

Up. Conf 
Limit 

a 
b 
c 

241535 
1596275 
0.36077 

2236.4 
603203.3 
0.0 

107.9997 
2.6463 
36.1446 

0.000000 
0.010971 
0.000000 

237038.4 
383452.9 
0.3 

246032 
2809096 
0 

Model is: v2=a/(1+b*Euler**(-c*v1)) Level of confidence: 95.0% (alpha=0.050) 
Final value: 685474526.2409 
Proportion of variance accounted for: 0.99811619    R =0.99905765 

Source: Authors 

2.2. Gumbel model 

Our second model contains Gumbel's function, as determined by the expression 

 (4) 

where a is the total expected number of cases and t is time in weeks since patient 
zero. The function has a total of three parameters. Computed parameters and results 
are presented in Table 2. 

Table 2: Gumbel model fit to observed data 

Parameter Estimate Standard 
error 

t-value 
df = 40 

p-value Lo. Conf 
Limit 

Up. Conf 
Limit 

a 
c 
b 

258144.9 
38.1 
4.6 

6474.607 
0.188 
0.291 

39.8704 
202.7342 
15.6996 

0.00 
0.00 
0.00 

245059.2 
37.8 
4.0 

271230.6 
38.5 
5.1 

Model is: v2=a/(Euler**Euler**(-((v1-c)/b))) Level of confidence: 95.0% ( alpha=0.050) 
Final value: 1931807785.325 
Proportion of variance accounted for: 0.99418559    R =0.99708855 

Source: Authors 
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2.3. Richards model 

Our third model depends on the Richards function, as determined by the expression 

 (5) 

where a represents the final expected number of cases (Ncnf), c represents maximum 
infection rate and d represents the pause in incidence from case zero. Parameter b 
seems to have no clear epidemiological meaning. Expression (5) has a total of four 
parameters, and as such is slightly more vulnerable to the phenomenon of 
"overfitting" than the prior functions.  

Table 3: Richards model fit to observed data 

Parameter Estimate Standard 
error 

t-value 
df = 40 

p-value Lo. Conf 
Limit 

Up. Conf 
Limit 

a 
b 
c 
d 

235189.5 
244328900
0 
0.5172768 
0.4940481 

1552.84 
4027176000 
0.03641 
0.05333 

151.457 
0.6067 
14.2048 
9.2635 

0.000000 
0.05469 
0.000000 
0.000000 

232067.3 
-5653890000 
0.44 
0.39 

238,311.7 
10540470000 
0.59 
0.60 

Model is: v2=a/((1+b*Euler**(-c*v1))**d) Level of confidence: 95.0% (alpha=0.050) 
Final value: 403621697,5597 
Proportion of variance accounted for: 0.99898069, R =0.99949022 

Source: Authors 

 

 

 

 

 

 

 

Figure 2: cumulative incidence of COVID-19 and the examined models. 
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Source: Author’s illustration 

Figure 3: cumulative incidence of COVID-19 and the examined models (log scale). 

 
Source: Author’s illustration 
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3. Discussion 

All three models approximate the observed data with a statistically significant 
amount of accuracy. The logistic and Gumbel functions provided a R2

adj of 0.99811619 
and 0.99418559 respectively. The model using the Richards function provided the 
best R2

adj of 0.99898069.  

The estimates of the final number of COVID-19 patients (Ncnf, parameter "a") differ 
among the three models, with the greatest value predicted by the Gumbel model. 
Ending with week 52 the total number of CODIV-19 cases in Croatia was 242097.The 
observed number of cases was slightly underestimated by the logistic model (with a 
difference of 562 cases, which translates to 0,23% of total cases) while Gumbel model 
slightly overestimated (a difference of 16048 cases, which translates to around 
6,62%). The Richards growth curve ended at 6907.5 cases above the final observed 
value, which amounts to a difference of 2,8% of the final value.  

In week 53 an increase in the number of new cases was observed, signalling the start 
of a new wave of infections, and all the estimates were quickly exceeded in following 
weeks with a sharply upwards trend, so it is uncertain what the real final value of 
cases might have been.  

The final results for all model parameters, adjusted coefficients of determinations, 
sums of squared residuals, Akaike information coefficient and difference to the final 
observed value at week 52 ("difference") are summarized in Table 4. 

Table 4: Generated model summary 

Model Logistic Gumbel Richards 

parameter estimate p-value estimate p-value estimate p-value 

a 
b 
c 
d 

241535 
1596275 

0,361 
- 

0,000 
0,011 
0,000 

- 

258145 
4,6 

38,1 
- 

0,000 
0,000 
0,000 

- 

235189.5 
2443289000 

0.5172768 
0.4940481 

0,000 
0,056 
0,000 
0,000 

Rc2 
R2 
SS 
AIC 
AICc 
difference 

0,998 
0.99905765 

685474526,241 
858,508 
858,988 

-562 

0,994 
0.99708855 

1931807785,325 
912,385 
912,865 

16048 

0,999 
0.99949022 

403621697,560 
832,967 
833,783 
-6907.5 

Source: Authors 

All examined models display a high correlation with observed data. Judging by the 
coefficient of determination alone, the model using the Richards function provides 
the best fit for observed data. This is due to the inherent advantage of having more 
parameters, enabling the model to better follow the observed data. This can be seen 
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on Figure 3. Even when correcting for an increased number of parameters in the 
model via the corrected Akaike information criterion, this model still seems to have 
the best performance. However, the Richards model includes a parameter with a p-
value worse than our chosen level of significance. The model using the logistic 
function appears to be a good compromise candidate since it satisfies all of our initial 
requirements, the function has adequate p-value for all parameters, and no 
significant underestimation of final number of cases.  

After weighing all the above, the logistic function seems to be the most successful at 
describing the first year's incidence of COVID-19 in Croatia. As this estimate was 
made for data up to the 52nd week of the pandemic, it can be interpreted as the 
estimate of the final number of identified patients for the first two waves of the 
pandemic in Croatia. 

4. Conclusion 
All three generated models provide accurate adequate estimation of incidence curve 
with high coefficients of determination. The model based on the logistic function 
provides the best fit to available data and so represents out choice for modeling the 
incidence of COVID-19 cases during the first year of the pandemic in Croatia.  

While no model can give the answers to ending the pandemic, this approach can 
provide a simple prognostic tool to evaluate future interventions and estimate 
disease spread. Applying this methodology to following pandemic waves could help 
with prediction and decision-making on both country-wide and local scales, providing 
insights into acquired immunity, vaccination, and help planners anticipate health 
system utilization. 
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