
LITERATURE REVIEW ARTICLE / STRUČNI PREGLEDNI ČLANAK 

Artificial Intelligence in Radiotherapy
Aleksandar Kostovski 
IMC Banja Luka – Member of the Affidea Group

Summary

Back in 1999, Bill Gates wrote about advances expected to take place in the healthcare of the future in his book 
“Business at the speed of thought”. He described the complete flow of information in a pathway surrounding 
a patient picked up by the ambulance to the moment of discharge from the hospital, including presentation 
of patient’s status in the ambulance, signing off of the documents on the go, analysis of the best treatment 
options by the doctors based on the digital documents prior to patient’s arrival to the hospital, digital decision 
making, treatment prescription and delivery, and even payment. The whole process was presented as an 
operational improvement that will help medical systems become smarter with patients. This may not be 
the first time the idea of information technologies has been used in the context of medicine but it has most 
definitely sealed the direction in which modern medicine was inclined to go. 
Radiation therapy is a branch of medicine that has been heavily dependent on information technologies since 
1970s and 1980s, which are considered as the age when orthovoltage era has ended and the new innovative 
era began. The next milestone in development happened in 1990s when the use of sophisticated computer 
technology allowed for the development of 3D conformal radiotherapy and later other types of more complex 
treatment options. Use of computers has not only helped develop treatment options but has also found its use 
in the radiotherapy process. 
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Introduction

In order to deep dive into the subject, we need to adopt 
some of the widely used definitions:

Artificial Intelligence (AI) and Machine Learning 
(ML). AI is defined as the potential for a machine to per-
form the task that would require human intelligence [1], 
while machine learning is the implementation of the com-
pute methods that support AI. [2].

Deep Learning (DL). A subset of ML allowing com-
putational models composed of multiple processing lay-
ers to represent data with multiple levels of abstraction 
through backpropagation algorithm [3]. Basically, DL 
could be defined as the process of learning data that are 
not provided by human operators but are derived by use 
of statistical calculation algorithms. 

Deep Neural Networks (DNN). DNN are a family of 
learning algorithms in which networks of simple units are 
interconnected to perform a more extensive computation, 
and where learning involves simultaneously training the 
parameters of all units in the network [4]. Figure 1 depicts 
the above-mentioned scenario.

The radiotherapy process consists of 5 steps: patient 
positioning and immobilization, simulation, treatment 
planning (TP), patient-specific quality assurance (PSQA) 
and treatment delivery. Each is either IT dependant or 
greatly impacted by IT. 

Radiological Journal / Radiološki vjesnik 2021/1 	 37

Figure 1. Artificial intelligence, machine learning, and 
deep learning; Source: Nadia Berchane (M2 IESCI, 2018)



Segmentation of target 
and organs at risk
Main approach to test AI for target and organ at risk seg-
mentation is based on the training of an ML system fol-
lowed by the assessment of its performance compared to 
a gold standard (e.g., manually delineated expert cases) 
by means of a known metrics of overlapping comparison 
(Figure 2). Several authors applied AI to target volume 
definition in different anatomical sites: head and neck 

cancer [6], prostate cancer [7][8], lung cancer [9], rectal 
cancer [10], brain metastases [11], and breast cancer 
[12]. Fifty-two patients affected by oropharyngeal can-
cer were used at the MD Anderson Cancer Center on the 
subject of developing a deep learning algorithm able to 
identify physician contouring pattern and voxels forming 
high-risk target volume. Authors concluded that predicted 
contours could have been clinically implemented with 
only minor changes [13]. McCarroll et al. study showed 
that half of the autocontours obtained were not edited 
for use in planning, while contours of normal structures 
generated by autocontours algorithm were deemed ac-
ceptable for clinical use [14]. 

Treatment planning

TP may be the most computer dependant step in the ra-
diation therapy chain and one part of it is already based 
on the AI as it consists of dose calculation which is solely 
done by means of computer technology and Monte Carlo 
(MC) simulations. Radiotherapy treatment planning is a 
laborious process, sometimes taking hours or even days 
to complete. Plan improvements often require many 
iterations: physicians may need to interact with human 
planners back and forth what leads to tremendous human 
efforts and time consumption. ATP (automated treatment 
planning – Figure 3), on the other hand, has successfully 
reduced plan generation time and repetitive human inter-
actions allowing human planners to devote more time to 
explore the optimal dosimetry for individually optimized 
treatment planning [15, 16].

Revision of the past cases is the practice used to im-
prove manual treatment planning efficiency and quality. 
The approach known as the knowledge-based planning 
(KBP) is used wherein statistical models are developed 
with the aim to pinpoint important elements from the prior 
good cases. This approach is particularly helpful in reduc-
ing repetitive activities that consume time in the process 
of making a treatment plan. In dose-volume histogram 
(DVH) based inverse optimization, DVH constraints have a 
crucial role in the process of producing good quality plans. 
If they are consistent, the algorithm will quickly find an 
optimal solution with a well-balanced dosimetric outcome. 

38	 Radiological Journal / Radiološki vjesnik 2021/1

Figure 2. Autocontours generated by Mirada’s Deep 
Learning Contouring, “neural networks” image

Downloaded from: https://mirada-medical.com/wp-content/
uploads/2018/05/DLCExpert-1.pdf (accessed 25.10.2020.)

Figure 3. Dose distributions for a head-and-neck cancer patient. Left : predicted plan; centre: automatically 
generated plan; right: voxel-by-voxel difference maps. (Courtesy: Med. Phys. 10.1002/mp.13271)
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DVH-based knowledge modelling has therefore been the 
source for many new studies. Those automated systems 
use predicted DVH curves that can be further used in two 
ways by planner as an input for dosimetric constrains for 
manual optimization or as an input for automatic treat-
ment planning system. 

Yuan et al. research study presented models for pros-
tate and head and neck intensity-modulated radiation 
therapy treatments saying “The geometry of an organ at 
risk (OAR) relative to the planning target volume (PTV) was 
represented by the distance-to-target histogram (DTH), 
and characteristic geometry and dosimetric features 
were derived from DTH and DVH by principal component 
analysis (PCA), respectively”. This approach gives a pre-
cise dose prediction in both modeled sites [17]. However, 
due to lack of special information, DVH-based approach 
is still not a perfect solution as the planners might need 
additional time to handle certain cases with complicated 
OAR/target geometry [18]. 

An additional limitation to successful AI-based ATP 
implementation is a requirement for a large patient 
base that can be primarily achieved through large mul-
ticentric trials based on rigid trial inclusion criteria. Still, 
even though the future of AI in ATP remains in motion, 
radiotherapy treatment planning is not likely to become 
“human-less” in the next coming years as requirement for 
control and oversight of treatment planning process in the 
clinical treatment planning workflow will remain.

Treatment delivery

Modern radiotherapy requires high precision stand-
ards and methods to predict deviations from expected 
dose distribution occurring during treatment dliverty and 
that may increase certainty about delivery and improve 
overall quality of treatment. In simple terms, AI could be 
used to extrapolate a prediction of dose truly delivered 

to the patient. Tumor and anatomical changes that occur 
during the course of radiotherapy treatment can dramati-
cally affect the planned isodose distribution and alter the 
outcome of overall treatment. Another important source of 
deviation is discrepancy between planned and delivered 
movements of multi-leaf collimators. An ML approach has 
been developed to predict these discrepancies from the 
plan files (i.e. leaf position and velocity, movement toward 
or away from the isocenter of MLC etc.). Results showed 
that predicted leaf position was significantly closer than 
planned if compared to delivered position, yielding a more 
realistic representation of plan delivery, and reflected in 
a closer agreement in terms of dose volumetric param-
eters in comparison to delivered dose [19]. Another issue 
that could be solved by use of AI is the need for accu-
rate pretreatment quality assurance procedure. A DNN 
was tested in this area by Mahdavi et al. using Electronic 
Portal Imaging Device fluence maps of the anteroposterior 
prostate and nasopharynx RT fields as an input, evaluating 
dose map as output. Results showed excellent agreement 
between output and dose maps predicted by the treat-
ment planning system [20]. The next big step achieved by 
introduction of AI in treatment delivery was automatiza-
tion of adaptive radiotherapy. 

Adaptive therapy involves the ability to alter a radio-
therapy treatment plan based on tumour and anatomical 
changes over a course of therapy. The goal is to better 
target the tumour based on daily anatomical changes, re-
duce dose to healthy tissue and potentially improve overall 
outcomes. Without AI, achieving this has typically required 
time-consuming re-planning between treatment sessions 
or monopolizing a linac for an extended period while a 
patient waits on the treatment couch for new plans to be 
generated. Neither of these alternatives has been deemed 
practical or affordable at scale, as very often clinics do 
not have the resources even if they have the tools. In the 
years to come many challenges will remain to be tackled 
for the successful delivery of adaptive radiotherapy. 
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Figure 4. Assisted contour generation; Varian Medical Systems, Palo Alto USA. Combining multimodality imaging

Downloaded from: https://varian.widen.net/view/pdf/pm2uamrxjg/Ethos_Brochure_RAD10737_Mar2020.pdf?u=bmxzem
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Conclusion

Even though these approaches will most definitely 
bring impressive speed and accuracy to the radiotherapy 
process, all researchers agree that the transition is not ex-
pected to be easy. Bridge and Bridge list three areas that 
will suffer the greatest damage: creativity, innovation, and 
patient safety (Pete Bridge, 2019). They additionally stress 
the importance of considering moral and ethical issues in 

using AI as well as the potentials of lack of empathy and 
intuition that place a patient to a position of being a mere 
“diagnosis” instead of a person who requires a holistic 
treatment approach. Additional problems identified also 
include system unreliability and making mistakes that a 
human would not make, as well as maintaining such a com-
plex system what inevitably raises an issue of increased 
costs. Still, it is expected that the AI will in the future be 
more implemented in the radiotherapy workflow and take 
many responsibilities away from the clinical team. n

Sažetak

Još 1999.g., Bill Gates je u svojoj knjizi “Poslovanje brzinom misli” pisao o napretku koji se očekuje u zdravstvu 
budućnosti. Opisao je cjelovit protok informacija vezano uz pacijenta kojeg je preuzeo zdravstveni tim hitne 
pomoći, od ambulante pa sve do otpusta iz bolnice, uključujući prikaz stanja pacijenta, potpisivanje potrebne 
dokumentacije, analizu mogućeg liječenja na temelju digitalnih nalaza prije dolaska u bolnicu, digitalnog 
odlučivanja, odabir lijekova i procesa liječenja, pa čak i plaćanje. 
Radioterapija je grana medicine koja je u velikoj mjeri ovisna o informacijskim tehnologijama, od 1970.-ih i 
1980.-ih, koje se smatraju dobom kada je završilo ortovoltažno doba i započelo novo inovativno doba. Sljedeća 
prekretnica u razvoju radioterapije dogodila se 1990.-ih kada je upotreba sofisticirane računalne tehnologije 
omogućila razvoj trodimenzionale konformalne radioterapije i ostalih složenijih mogućnosti terapije ionizirajućim 
zračenjem. Računala nisu samo pomogla u razvoju, nego su postala neizostavnim dijelom radioterapijskog 
procesa. 
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