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1 Introduction
In the process industry, many heat exchangers-condensers 
are used for refrigeration. The accumulation of unwanted 
deposits on the heat exchanger surfaces is generally called 
fouling. Fouling is a major problem in condensers and 
heat exchangers. The existence of these deposits resists 
the transfer of heat, and thus decreases its effectiveness. 
All industrial circuits cooled with water are affected by the 
phenomenon of biological fouling consisting of the growth 
of biofilms and the settlement of several types of living or-
ganisms. 

There are few articles published in the literature to identify 
the fouling phenomenon and its impacts, and few have 
tried to quantify them.

Eguía et al.1 attempted to show the growth of biological 
fouling inside the cooling tubes of an exchanger-condens-
er, keeping the temperature of the wall constant and using 
seawater. Zubair et al.2 presented a discussion based on the 
economic aspects of the fouling of heat exchangers, fol-
lowed by the thermoeconomic analysis based on the risks 
of the heat exchanger. Casanueva et al.3 studied the devel-
opment, growth, and control of marine biological fouling 
in condenser heat exchangers in order to assess the impact 
of new regulations on the particular plant and site. Qureshi 
et al.4 studied the effect of fouling on the thermo-hydrau-

lic characteristics of the heat exchanger. Durmayaz et al.5 
proposed a theoretical model to determine the functional 
relationship between the temperature of the cooling water 
and the pressure of the condenser on the efficiency of a 
pressurized water reactor nuclear power plant. Nebot et 
al.6 presented a model for predicting the maximum value 
of the thermal resistance of the fouling layer on the steam 
condensers of power plants cooled with seawater under 
different conditions: effect of the water velocity and the 
material of the tube. Walker et al.7 presented a study with 
three specific objectives: (1) to quantify the economic im-
pact of the fouling condensers for a 550 MW power plant 
with moderate temperature and demand profiles, (2) to 
determine the relative impact on the same power plant 
knowing the high temperature and demand profiles, and 
(3) assessing the relative impact on the condensers with 
varied design parameters and cleaning schedules. Ibrahim 
et al.8 presented a parametric study that illustrates the im-
pact of the fouling factor of the seawater-cooled condenser 
in a range of 1.5–3.5 cm2 K W−1, and the temperature in a 
range of 15–30 °C. Zhang et al.9 proposed a novel method 
to calculate the effective thermal conductivity of particu-
late fouling based on the Image-Pro-Plus image processing 
and calculated its thermal conductivity using the finite el-
ement method.

The artificial neural network (ANN) technique has been 
used in many scientific domains, such as in solar ener-
gy10,11 and in solubility of solid drugs.12 The ANN was used 
by Melzi et al. to develop the predictive models to esti-
mate the molecular diffusion coefficients of various gases 
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at multiple pressures over a large field of temperatures.13 
They experimentally illustrated two optimisation objectives 
through developing two neural network models. The cal-
culation of maximum flux as well as minimum resistance 
to fouling throughout ultra-filtration of industrial waste-
water was anticipated by means of the genetic algorithm 
and assembled ANNs by Soleimani et al.14 They provided a 
review consisting of three objectives on the thermal analy-
sis of heat exchangers: (1) summarising the studies carried 
out by ANN, (2) comparing the network architectures, and 
(3) identifying the supplementary research boundaries and 
needs of ANN. In the work of Mohanraj et al.15 ANN gave 
an exceptional alternative methodology for the thermal 
analysis of heat exchangers. From the experimental data, 
Jradi et al.16 developed three accurate and reliable models 
of fouling phenomenon in three types of heat exchangers 
using three methods: Kern and Seaton model, Partial Least 
Squares model, and Artificial Neural Network model, in 
order to make a comparative study based on some statis-
tical indices among these different models in regard to the 
modelling, and the losses prediction of heat exchangers 
performances due to the fouling phenomenon. The inputs 
to the ANN model used for the three types of exchangers 
were inlet and outlet temperatures, steam temperature, 
volume flow rate, density, and time. Davoudi and Vaferi17 
developed an ANN model for the estimation of the degree 
of fouling. The inputs for the network were density, surface 
temperature, fluid temperature, diameter of fluid passage, 
velocity of fluid, concentration of dissolved oxygen in flu-
id, and time. Kashani et al.18 developed an ANN model 
to estimate the online monitoring and prediction of crude 
oil fouling behaviour for industrial shell and tube heat ex-
changers. The input data to the network were tube-side 
crude oil flow rate, tube-side inlet temperature, and shell-
side inlet temperature. Aminian and Shahhosseini19 em-
ployed an ANN model for developing a set of mathemat-
ical formulations in order to identify regions where there 
was less/no fouling for pre-heat exchangers of a crude oil 
by using input variables such as Reynolds number (Re), 
Prandtl number (Pr), and surface temperature.

Hence, the scientific contribution of this research is to pre-
dict the fouling resistance in heat exchanger-condenser 
(FR*) using the ANN approach, and based on dimensionless 
inputs and output. To facilitate the use of the developed 
ANN model, MATLAB graphical interface was developed 
to facilitate the calculation for users.

Furthermore, a strategy will be developed to estimate the 
optimal operating conditions (inputs) from fouling resist-
ance (FR*) using inverse artificial neural network (ANNi). 

2 Artificial neural networks approach
A neural network is an extremely parallel distributed pro-
cessor that has a natural propensity for storing experiential 
knowledge and availing it for use.20

ANN is an adaptive non-linear statistical data modelling 
technique consisting of interconnected artificial neurons 
processing data in parallel. In this study, the multi-layer 

perceptron (MLP) network type was employed (Fig. 1), and 
the supervised learning process was used for the network 
parameters adjustment.

The input and output data were normalised within the 
range of [−1, 1] using a Mapminmax algorithm given by 
Eq. (1) that performs a normalisation of the maximum and 
minimum value of each row:21

( ) ( )( )
( )
− −

= = +
−

max min min
min

max min

Mapminmax
y y x x

y x y
x x (1)

After examination of a considerable number of differently 
structured neural networks, the adequate ANN selected in 
this paper has a single hidden layer with seven neurons, 
and an output layer with one neuron. The hidden layer has 
a tansig transfer function. The output layer has a purelin 
transfer function. Typical structure of the ANN is shown in 
Fig. 1.
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Fig. 1 – Structure of the constructed three-layer feed-forward 
back-propagation ANN to predict FR*

3 Modelling procedure
3.1 Database collection

The experimental database regarding the fouling of con-
denser tubes cooling seawater of a pressurized water re-
actor nuclear power plant was collected from the litera-
ture.8 Based on the effect of the environmental conditions 
and the change in fouling on the thermal performance 
of the condenser and the thermal efficiency of a nuclear 
power plant, the dimensional experimental inputs were 
transformed into dimensionless form. This base was trans-
formed to dimensionless numbers including the different 
values of condenser cooling seawater temperature, in-
side overall heat transfer coefficient, outside overall heat 
transfer coefficient, condenser temperature, condenser 
pressure, output power, overall thermal efficiency, and the 
fouling resistance. 
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In this paper, a methodology was given for selecting ANN 
model to predict the fouling resistance of condenser. The 
objective of this paper was to select the best model. The 
methodology started with an extensive search in order 
to select a model with minimal complexity and optimal 
performance. The number of observed data used in the 
ANN was 600, which were divided into three sections: the 
training set (480 data), the test set (60 data), and the vali-
dation set (60 data). Training, test, and validation subsets 
of the ANN were obtained by selecting 80 % of the dataset 
as training, 10 % of the dataset as test, and 10 % of the 
dataset as validation subsets. A summary of the range of 
different variables is shown in Table 1.

Table 1 – Range of dimensionless variables8

Parameter Unit Min Max
different values of dimensionless 
condenser cooling seawater 
temperature (T*

seawater)
–   0.6   1.2

dimensionless inside overall heat 
transfer coefficient (U*

ic)
– 0.49459 0.85544

dimensionless outside overall heat 
transfer coefficient (U*

oc)
– 0.67473 0.86058

dimensionless condenser 
temperature (T*

c)
– 1.04271 1.17221

dimensionless condenser pressure 
(P*

c)
– 1.14258 1.44513

dimensionless output power(PW*
c) – 0.97831 0.99251

dimensionless overall thermal 
efficiency (η*

c)
– 0.97738 0.99154

dimensionless fouling  
resistance (FR*) – 0.00015 0.00035

The difference between the observed and predicted values 
was filtered back through the system and used to adjust the 
connections between the layers, thus the performance im-
proved. The root mean square error (RMSE) was the main 
criterion to evaluate the performance of ANN, which is 
defined as follows:22,23
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The statistical quality of the ANN for the three training, 
test, and validation sets was then evaluated using the coef-
ficient of determination (R2), relative absolute error (RAE), 
mean absolute percentage error (MAPE), mean square er-
ror (MSE), precision factor (Af), bias factor (Bf), and accepta-
bility criteria K and K’.
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Ross24 proposed two different indices for determination 
of the model performance. The bias factor Bf (Eq. (8)) is a 
measure of overall agreement between the predicted and 
the observed values. It will indicate whether and to what 
extent the forecasts are above or below the equivalence 
line. A perfect agreement between the observed and the 
predicted values would give a Bf = 1. (Bf = 0.90 – 1.05 
means good model).

The accuracy factor value, Af (Eq. (9)), will always be equal 
to or greater than one as all variances are positive.
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In addition, to ensure greater validity of the developed 
models, some statistical criteria were used as follows:
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where 0.85 ≤ K ≤ 1.15; 0.85 ≤ K’≤ 1.15 was accepta-
bility criteria.

yi represents the ith trained test or validation output value, 
and yi

t represents the corresponding target value, with n 
being the number of input vectors.

3.2 Modelling with neural networks

The objective of this work was to build a model to pre-
dict the resistance of fouling in heat exchanger-condenser. 
ANN was chosen as the main modelling tool to perform 
the task. 

Different values of dimensionless condenser cooling sea-
water temperature, dimensionless inside overall heat trans-
fer coefficient, dimensionless outside overall heat transfer 
coefficient, dimensionless condenser temperature, dimen-
sionless condenser pressure, dimensionless output power, 
and dimensionless overall thermal efficiency were input 
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arguments for network (independent variables), while di-
mensionless fouling resistance was a target argument (de-
pendent variable). The structure of the database used for 
the model is shown in Table 2 and Fig. 2.

In this part, listed are all the important stages that led to the 
solution of the optimisation of neural networks. The fol-
lowing parameters were examined and optimised during 
the development of the best network for prediction of foul-
ing resistance: selection of input and output data, possible 
transfer functions, learning mode, stopping criteria, learn-
ing algorithm, normalisation technique, number of hidden 
layers, number of hidden nodes, and performance evalua-
tion measures. The results are summarised in Table 3.

Observed and predicted (dimensionless fouling resistance) 
breakthrough curves shown in Fig. 3 indicate that the ANN 
describes the experimental data well.

4 Results and discussion
4.1 Neural networks

A learning algorithm is defined as a procedure of adjusting 
the coefficients (weight and bias) of a network to minimise 
an error function (usually quadratic) between the outputs 
of the network for a given set of inputs and the correct 
outputs (already known). If nonlinearities are used, the 
gradient of the error function can be calculated by the 
conventional backpropagation procedure.25 To establish 
the best algorithm of backpropagation learning, a set of 
fourteen backpropagation algorithms were studied. In ad-
dition, thirty neurons were used in the hidden layer for 
all backpropagation algorithms. Table  4 presents a com-
parison of different retro-propagation training algorithms. 
In the present study, the Levenberg–Marquardt algorithm 
was considered as the learning algorithm because it might 
have a smaller maximum relative absolute error (RAEmax) 
compared to the other learning algorithms.

Table 2 – Structure of the 1st ANN

Type of 
network

No. of neurons in 
the hidden layer

Transfer function  
in the hidden layer

Transfer function  
in the output layer Learning algorithm No. of 

iterations
MLP 

2 layers 7 tangential sigmoid identity Levenberg–Marquardt 631

631 epochs

Training performance is 1.2632 · 10−5 at epoch 631
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Fig. 2 – Training with TRAINLM function diagram

Table 3 – Statistical performance of the ANN model

RAEmin ⁄ % RAEmax ⁄ % MAPE ⁄ % MSE RMSE Af Bf k k’ R2

training 8.3227 · 10−4 0.4781 0.1211 1.3051 · 10−13 3.6127 · 10−7 1 1 1.0000 1.0000 0.99996
testing 2.6989 · 10−5 0.5952 0.1393 2.3354 · 10−13 4.8326 · 10−7 1 1 0.9995 1.0005 0.99993

validation 0.0055 0.3146 0.1295 1.3386 · 10−13 3.6588 · 10−7 1 1 0.9998 1.0002 0.99996
all 2.6989 · 10−5 0.5952 0.1238 1.4116 · 10−13 3.7572 · 10−7 1 1 0.9999 1.0001 0.99996
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ANN regression validation: 
FRpred = (FRexp) + (1.5e−07), R = 0.99998

ANN regression all: 
FRpred = (FRexp) + (3.3e−08), R = 0.99998

ANN regression test: 
FRpred = (FRexp) + (2.7e−07), R = 0.99997

ANN regression training: 
FRpred = (FRexp) + (8.3e−09), R = 0.99999
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Fig. 3 – Plot between experimental and ANN predicted dimensionless fouling resistance for training data set, 
for testing data set, for validation data set, and for all data set

Table 4 – Comparison of 14 back propagation algorithms with 30 neurons in the hidden layer

Backpropagation algorithm Function
Relative 
absolute 

error  
(RAEmax) ⁄ %

Number 
of 

epochs
R2 Best linear fit

Levenberg–Marquardt backpropagation trainlm 0.314 1000 0.99996 Y = 1X+1.5 · 10−7

Bayesian regularization backpropagation trainbr 0.317 1000 0.99996 Y = 1X−4.6 · 10−10

Powell–Beale conjugate gradient backpropagation traincgb 0.354 1000 0.99985 Y = 1X+8.9 · 10−8

Fletcher–Reeves conjugate gradient backpropagation traincgf 0.989 1000 0.99984 Y = 1X+4.6 · 10−8

Polak-Ribiére conjugate gradient backpropagation traincgp 1.142 1000 0.99982 Y = 1X+1.9 · 10−7

Scaled conjugate gradient backpropagation trainscg 0.954 1000 0.99987 Y = 1X+1.9 · 10−8

Batch gradient descent traingd 2.840 1000 0.99739 Y = 0.99X+1.4 · 10−6

Gradient descent with adaptive learning rate backpropagation traingda 2.604 1000 0.99831 Y = 1X+8.8 · 10−7

Batch gradient descent with momentum traingdm 3.085 1000 0.99684 Y = 0.99X+1.5 · 10−6

Variable learning rate backpropagation traingdx 2.589 1000 0.99884 Y = 1X+6.3 · 10−7

One step secant backpropagation trainoss 1.068 1000 0.99982 Y = 1X+1.2 · 10−7

Resilient backpropagation trainrp 0.759 1000 0.99980 Y = 1X+4.7 · 10−8

BFGS Quasi-Newton backpropagation trainbfg 0.341 1000 0.99997 Y = 1X−2.5 · 10−10

Random order incremental training trainr 2.001 1000 0.99938 Y = 0.99X+1 · 10−6
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However, the performance of the ANN model was sta-
tistically measured by RAEmax and R2 according to Eq. (3), 
which was calculated using the experimental values and 
network predictions. As a result, RAEmax was used as an 
error function that measures network performance. The 
network RAEmax and maximum R2 were selected as the best 
ANN model.

To obtain the optimal number of neurons in the hidden 
layer, a series of topologies were used, using the scaled 
conjugate gradient algorithm such as the number of neu-
rons ranging from 1 to 30 (Fig.  4) in order to maximise 
RAEmax by looking for a set of weights and connection bias 
that cause the ANN to produce outputs equal or close to 
the target values.

To approximate the actual data points, a statistical measure 
that gives the quality and efficiency of the fit of the re-
gression line of a model was verified by R2. R2 of 0.99996 
means that the regression line matches the data.

The forecasts of the results by ANN with respect to the 
experimental results for training, test, and validation data 
sets are plotted in Fig. 5 for the fouling resistance. The per-
formance of the selected networks {7-7-1} is described in 
Fig. 5. The ANN was well formed because R2 was greater 
than 0.9999 for the forecast network.

4.2 Sensitivity analysis

In order to study the effects of the selected input parameters 
on the planned outputs, a sensitivity study was performed, 
where the model that was chosen to study had 7 inputs, 
1 output, and 7 neurons in its hidden layer. The Min-Max 
method was used as a normalisation technique and the 
Levenberg–Marquardt as the learning algorithm. Once the 
network had been trained and optimised, weights matrix 
was generated (Table 5).

In order to evaluate the relative importance of the input 
variables, the weights matrix was exploited in Eq. (12) pro-
posed by Garson:26
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where Ij represents the relative importance of the jth input 
variable on the output variable, Ni and Nh are the set of in-
put and hidden neurons, respectively, W is the connection 
weights, the exponents ‘i’, ‘h’ and ‘o’ refer to the input, 
hidden and output layers, respectively, and ‘k’, ‘m’ and ‘n’ 
refer to the input, hidden, and output neurons, respective-
ly. Note that the numerator in Eq. (12) describes the sum of 
the products of the absolute weights for each entry. How-
ever, the denominator in Eq. (12) represents the sum of all 
the weights feeding the hidden unit, taking the absolute 
values.26 A summary of the results obtained is presented in 
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Fig. 6, where it was found that all the input variables had 
strong effect on the estimation of the fouling resistance.
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Fig. 6 – Relative importance (%) of input variables on the value 
of the calculated fouling resistance

4.3 Interface for dimensionless fouling resistance

Our model based on the mathematical non-linear formu-
la of the optimised neural network (ANN) is presented by 
Eq. (13) linking the inputs to the output (Table 2).
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After having optimised the neural network model, a com-
puter program was developed in MATLAB (Fig.  7). This 
allows the user to have all the inputs needed to run the 
model in order to calculate the fouling resistance in the 
condenser. The interface was designed to provide more 
flexibility in the use of ANN model for quick and easy cal-
culation of fouling resistance.

4.4 Optimal performance by means of ANNi

According to the ANN model, developed was a method of 
estimating input parameters that influence the resistance of 
fouling when the input parameters are well known.12,27,28

Table 5 gives the obtained parameters (wi, wij, bi, and bj) 
of the best fit for seven neurons in the hidden layer. These 
parameters are used in the proposed model to simulate 
the FR* value.

Fig. 7 – MATLAB interface for dimensionless fouling resistance

Table 5 – Statistical parameters obtained for the ANN model

No. of 
neurons w1 Bias w2 Bias

T*
seawater U*

ic U*
oc T*

c P*
c PW*

c η*
c 1 FR* 2

1 0.500326 −0.969916 1.198230 0.712472 −2.217929 −0.598790 −0.462936 −1.072256 −0.386981

0.22485

2 −0.459379 0.476224 1.087681 0.718236 0.505942 1.242267 −0.362146 −2.384026 −0.138044

3 −1.096048 1.655369 −1.384254 −0.949099 −0.624925 0.343710 −0.243276 0.895478 −1.982093

4 1.537030 −4.655751 2.070056 0.953992 0.937874 0.074150 1.044117 0.176574 −1.911302

5 0.007095 2.364086 0.371170 0.270999 0.265573 −0.15699 −0.302598 −0.324478 −0.613290

6 0.551937 −0.085535 0.465512 0.321671 −0.687249 −0.163053 0.021205 0.793517 −0.960898

7 0.204665 −1.372054 0.482392 0.34565 −0.615597 −0.187586 −0.149514 0.868911 1.084011

w1: weight matrix between the input and hidden layers.
w2: weight matrix between the hidden and output layers.
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A general network is constituted by transfer function (tansig 
and purelin). Then, the output is given as function of inputs 
Eq. (14), where n is the number of neurons in the hidden 
layer (n = 7), m is the number of the input (m = 7), w is 
the weight, and b is the bias.

Eq. (13) can be expressed as:

( )
( )

( ) ( )( ) ( )( )( )
 
 = − +  
+ − +  

∑ ∑
∑

.*
1.

.

2

1 exp 2 In

ij i n
j ij n

n s
i n m m i nm

w
FR b w

w b
(14)

At this step, the function was obtained that had to be mini-
mised at zero to obtain optimal input parameters (n) In(m=x):

( )( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )( )≠
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b w
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(15)

where x are the different values of dimensionless condens-
er cooling seawater temperature value to be computed. 
The proposed ANN model had seven neurons in the hid-
den layer. It was therefore essential to apply an optimisa-
tion method.29,30

Optimised input parameter was established using Nel-
der-Mead simplex algorithms under the different condi-
tions to prove the feasibility of using ANNi. A test was 
done with different data to optimise one of the inputs – 
for instance, different values of dimensionless condenser 
cooling seawater temperature (T*

seawater) on the one hand, 
and on the other hand, the simulated parameters were 
compared to the experimental data in order to check 
the accuracy of ANNi at way of the error given in the 
Eq. (16).

−
= ⋅

exp sim
error 100

exp
(16)

Case1. A group of parameters was provided for fouling re-
sistance predicted process with k = 1, n = 7, and m = 7. 
The input value (for example T*

seawater) can be calculated 
through ANNi. The experimental conditions for this test, for 
a required output value FR* = 0.00015, with input values: 
U*

ic  =  0.855440, U*
oc  =  0.860584, T*

c  =  1.07401318, 
P*

c = 1.161460, PW*
c = 0.991597, η*

c = 0.991542, by 
minimising the nonlinear function given in Eq. (17).

(17)

where

( ) ( ) ( ) ( ) ( ) ( ) ( )= − + + + + + + +*
1.1 1.2 1.3 1.4 1.5 1.6 1.7j ij ij ij ij ij ij ijA FR b w w w w w w w (18)

( )= − + + + + + +1 (1.2) 2 (1.3) 3 (1.4) 4 (1.5) 5 (1.6) 6 (1.7) 7 12 i i i i i ix w v w v w v w v w v w v b (19)

( )= − + + + + + +2 (2.2) 2 (2.3) 3 (2.4) 4 (2.5) 5 (2.6) 6 (2.7) 7 2i i i i i ix w v w v w v w v w v w v b (20)

( )= − + + + + + +3 (3.2) 2 (3.3) 3 (3.4) 4 (3.5) 5 (3.6) 6 (3.7) 7 32 i i i i i ix w v w v w v w v w v w v b (21)

( )= − + + + + + +4 (4.2) 2 (4.3) 3 (4.4) 4 (4.5) 5 (4.6) 6 (4.7) 7 42 i i i i i ix w v w v w v w v w v w v b (22)

( )= − + + + + + +5 (5.2) 2 (5.3) 3 (5.4) 4 (5.5) 5 (5.6) 6 (5.7) 7 52 i i i i i ix w v w v w v w v w v w v b (23)

( )= − + + + + + +6 (6.2) 2 (6.3) 3 (6.4) 4 (6.5) 5 (6.6) 6 (6.7) 7 62 i i i i i ix w v w v w v w v w v w v b (24)

( )= − + + + + + +7 (7.2) 2 (7.3) 3 (7.4) 4 (7.5) 5 (7.6) 6 (7.7) 7 72 i i i i i ix w v w v w v w v w v w v b (25)

v1:	 Different values of dimensionless condenser cooling 
seawater temperature; 

v2:	 Inside overall dimensionless heat transfer coefficient;
v3:	 Outside overall dimensionless heat transfer coefficient;
v4:	 Dimensionless condenser temperature;
v5:	 Dimensionless condenser pressure; 
v6:	 Dimensionless output power;
v7:	 Overall dimensionless thermal efficiency.

With weights and biases, the optimum T*
seawater of the 

process can be calculated for the required output, using 
MATLAB software with the optimisation Toolbox.31 The 
outcome value (T*

seawater) simulated by ANNi was 0.6. Fur-
thermore, using Eq. (17), the calculated value had an error 
of 0 % regarding the experimental result (Table 6).
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Table 6 – Error between experimental inputs and those calculat-
ed by ANNi

ANNi
inputs Experimental Calculated error ⁄ %

Input 1 0.6000 0.6000 0.00
Input 2 0.8554 0.8528 0.30
Input 3 0.8605 0.8605 0.00
Input 4 1.0740 1.0740 0.00
Input 5 1.1615 1.1615 0.00
Input 6 0.9916 0.9908 0.07
Input 7 0.9915 0.9985 0.30

5 Comparison with other models
In order to evaluate the importance of the obtained results, 
they were compared with similar studies cited in the Intro-
duction,16–19 especially with the models that had the same 
or mostly the same inputs as we used. It was found that, 
in most models, the goal was to predict the fouling in heat 
exchangers. The results obtained from these mentioned 
models and results in this work are collected in Table 7.

6 Conclusion
The ANN modelling method has many advantages, such as 
speed, adaptability, generalisation and simplicity, making it 
an interesting choice for the modelling of nonlinear com-
plex systems (fouling of heat exchanger-condenser).

During the training process, several configurations of neural 
networks were used. It started with the use of 14 training 
algorithms by observing the effect of each of them on the 
network performance. Therefore, the top three of them 
(trainlm, trainbr, trainbfg) were chosen, and improvement 
of their performance was attempted by using one normali-
sation technique. Among the three obtained networks, the 

best predicting network was selected, which had also been 
tested with one hidden layer and several hidden nodes. It 
was found that one hidden layer with 7 neurons can pro-
vide a better prediction.

Our model was developed by MLP back-propagation archi-
tecture with direct action with the Levenberg–Marquardt 
training algorithm. The results confirm that the MLP neural 
networks are competent enough to predict fouling resist-
ance when using the heat exchanger-condenser operating 
conditions as inputs.

It was observed that the network with a hidden layer of 
{7-7-1} gave a correlation coefficient greater than 0.9999 
with a small error (RMSE = 3.6588 ∙ 10−7) for the whole 
database, meaning that the neural network was well 
formed. The ANN is an adequate interpolation tool for the 
non-linear behaviour of FR* for all the operating conditions 
mentioned above, in which an excellent prediction was 
obtained. Based on the sensitivity analysis, it was found 
that all the input variables had a significant effect on the 
estimation of fouling resistance. In addition, based on the 
model, a methodology was developed to estimate the op-
timal operating conditions from ANNi when necessary to 
obtain an optimal result for the known inputs for the re-
quired fouling resistance FR* by applying the Nelder-Mead 
simplex optimisation method. Nevertheless, the mathe-
matical calculation of ANNi was carried out in Case 1.

All ANN inputs were estimated using ANNi with an average 
relative deviation not exceeding 0.095 %. By comparing 
these results to other studies in the same context, it may be 
concluded that our model gave better performance com-
pared to many other models.
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exchanger (B)

–

–

–

–

–

–
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List of abbreviations and symbols

AE – absolute error
Af – precision factor
ANN – artificial neural network
ANNi – inverse artificial neural network
B – bias of artificial neural model
Bf – bias factor

FR* – dimensionless fouling resistance (
∞

= =cexp exp*

1
FR FR

FR
FR

)

I – relative importance
K, K’ – acceptability criteria
LM – Levenberg–Marquardt
MAPE – mean absolute percentage error
MLP – multi-layer perceptron
MSE – mean square error 

P*
c – dimensionless condenser pressure ( = cexp*

0
c

P
P

P
),  

   P0 = 0.04569

PW*
c – dimensionless output power ( = cexp*

c
0

PW
PW

PW ),  
   PW0 = 999644.52

R – correlation coefficient
RAEmax – maximum relative absolute error 
RAEmin – minimum relative absolute error
RMSE – root mean square error
R2 – determination coefficient

T*
c – dimensionless condenser temperature ( = cexp*

c
0

T
T

T
),  

   T0 = 31.6268

T*
seawater – different values of dimensionless condenser cooling  

   seawater temperature ( = seawater exp*
seawater 25

T
T )

U*
ic – inside overall dimensionless heat transfer coefficient  

   ( icexp*
ic

0

=
U

U
U

), U0 = 1236.45

U*
oc – outside overall dimensionless heat transfer coefficient 

   ( ocexp*
oc

0

=
U

U
U

), U0 = 1178.502

W – input layer–hidden layer synaptic weights of artificial 
neural model

η*
c – dimensionless overall thermal efficiency ( ), 

   η0 = 37.117
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SAŽETAK
Doprinos modeliranju otpora prljanja u izmjenjivaču  

topline-kondenzatoru izravnom i inverznom umjetnom neuronskom 
mrežom

Ahmed Benyekhlef,a,* Brahim Mohammedi,b Salah Hanini,a  
Mouloud Boumahdi,a Ahmed Rezrazi a i Maamar Laidi a* 

Cilj ovog istraživanja bio je predvidjeti otpor prljanja primjenom umjetnih neuronskih mreža 
(ANN). Baza podataka za ANN modeliranje preuzeta je iz dostupne literature i sadrži podatke ve-
zane uz prljanje kondenzacijskih cijevi u sustavu hlađenja morskom vodom u nuklearnoj elektrani. 
Sedam parametara korišteno je kao ulaz u neuronske mreže: bezdimenzijska temperatura morske 
vode, bezdimenzijski unutarnji ukupni koeficijent prijenosa topline, bezdimenzijski vanjski uku-
pni koeficijent prijenosa topline, bezdimenzijska temperatura kondenzatora, bezdimenzijski tlak 
u kondenzatoru, bezdimenzijska izlazna snaga i bezdimenzijska ukupna toplinska efikasnost. Kao 
izlaz uzet je bezdimenzijski otpor prljanja. Točnost modela potvrđena je statističkom analizom 
podudarnosti predviđenih i eksperimentalno dobivenih podataka. Rezultati su pokazali izvrsno 
slaganje u slučaju neuronske mreže sa 7 ulaza, 7 neurona u skrivenom sloju i 1 izlazom, uz ko-
rijen srednje kvadratne pogreške (RMSE) od 3,6588 ∙ 10−7, srednju apsolutnu postotnu pogrešku 
(MAPE) od 0,1295 % te visoki koeficijent determinacije (R2 = 0,99996). Nakon provedene analize 
osjetljivosti (sve ulazne varijable imale su snažan utjecaj na procjenu otpora prljanja), s ciljem kon-
trole prljanja, uspostavljen je model inverzne umjetne neuronske mreže (ANNi); model je pokazao 
dobro slaganje za različite vrijednosti bezdimenzijske temperature morske vode.
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