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1 Introduction
Apricot is the fruit of the common apricot tree, Prunus ar-
meniaca L., of the Rosaceae family (subfamily Pomoides).1 
In 2019, Algerian apricot production amounted to 256.890 
tons.2 For most fresh produce, high humidity over a very 
short time is one of the most critical factors that affect their 
physical, chemical, and nutritional quality after harvesting. 
Therefore, for their consumption, they must be appropri-
ately stored. Several industrial technologies are used in the 
industry to preserve fruits and vegetables. The most im-
portant methods include canning, freezing, deep-freezing, 
and drying. The drying technique is a very old process for 
preserving agricultural and food products. Several methods 
based on air drying, vacuum drying, solar drying, and mi-
crowave drying have been used to date for drying fruits and 
vegetables. Microwave drying method belongs to the type 
of boiler drying and obeys heat transfer by radiation. Be-
fore microwave drying, fruits and vegetables are generally 
subjected to different pre-treatments, such as blanching, 
osmotic dehydration in sucrose and salty solutions, and im-
mersion in a sodium bisulphite solution. These treatment 
methods are commonly used to reduce the rate of fruit 

browning during drying and storage. They play a critical 
role in stabilising carotenes, preserving colour, and delaying 
the product of Maillard reactions. Several researches have 
focused on the drying of halved apricots and thin layers of 
apricots treated in solutions (sucrose and sulphide) or un-
treated. However, to the best of our knowledge, there are 
no investigations on the effect of dipping the whole apricot 
in NaCl, sucrose, and sodium bisulphite solutions. Investi-
gations of drying behaviour and kinetics data modelling are 
reported in the literature for eggplant3, banana4, apricot5, 
quince6, potato7, cranberry8, apple9, and beetroot slices10. 
Today, artificial intelligence is also used to solve problems 
related to process modelling. Artificial neural networks 
(ANNs) and adaptive neuro-fuzzy inference system (ANFIS) 
models are machine learning-based methods, which apply 
knowledge to predict complex system outcomes such as 
drying technology. ANFIS is a system capable of analysing 
complicated drying processes using the educational power 
of neural networks and linguistic fuzzy systems.11 The im-
portance of prediction of process or property cannot be 
overemphasized. Since many real life processes or proper-
ties investigations can be expensive and time-consuming, 
modelling and prediction from a small experimental data 
set is a suitable option to forecast a process or properties.12 
Amini et al. used ANFIS to predict the drying time of basil 
seed mucilage.13 Using artificial intelligence, a number of 
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studies have been reported on the prediction of moisture 
ratio and drying time for various agricultural products, such 
as apricot slices,5 quince,6 onions,11 basil seed mucilage,13 
green peas,14 potatoes,15 and white mulberry.16 However, 
there is still very little data reported on drying time predic-
tion of apricot slices by ANFIS and genetic algorithm-artifi-
cial neural network (GA-ANN).5

Due to the large-volume production of apricot in Algeria, 
there are significant losses of this fruit as it is perishable. 
In order to increase its shelf life, decrease the losses of the 
harvest, encourage local produce and limit the import of 
this fruit, apricots are dried in the microwave oven, be-
cause of its shorter drying time (seconds), low energy cost, 
and less loss of nutritional elements. The ANN and ANFIS 
system are used to predict moisture ratio (MR) and drying 
kinetics, in order to reduce drying time (DT) and minimize 
chemical losses in the laboratory. 

The objective of this study was: (1) to monitor the dry-
ing kinetics of whole apricots pre-treated by solutions: 
sucrose, NaCl, and sodium bisulphite in microwave oven 
at different powers (200, 400, and 800 W), (2) to predict 
the DT and MR of drying kinetics of apricot by ANN and 
ANFIS, (3) to simulate experimental data by 20 mathemat-
ical models, (4) to propose a new mathematical model for 
drying kinetics of treated whole apricot, (5) to compare the 
results of time prediction by ANN and ANFIS model, and 
(6) to compare the results of MR prediction by the three 
best models simulated in literature, the model which was 
created by us, the ANN model, and ANFIS.

2 Experimental
2.1 Sample preparation

The apricot variety used for the experimental study was 
Mnaa from the Bouzina region, Wilaya of Batna, Algeria. 
Sampling was done on two to three homogeneous plots. 
Fruits were randomly selected from several clusters at dif-
ferent heights and orientations, harvested at full maturity 
(July), and stored in a cold room at 4 °C. Upon arrival at 
the laboratory, the fruit was sorted according to maturi-
ty in order to ensure uniform quality characteristics. The 
average initial sample weight was 16.420 ± 1.649 g, av-
erage width was 33.964 ± 1.915 mm, average length was 
33.497 ± 2.138  mm, and moisture ratio of the apricots 
was determined by vacuum drying at 105 ± 1 °C to a con-
stant weight. The average moisture content of apricots on a 
wet basis was about 85.93 %. These samples must undergo 
several pre-treatments before being dried in a microwave 
oven.

2.2 Pre-treatment of apricot

Before drying, the fruit must undergo several pre-treat-
ments:

•	 Apricot washing and removal of the stone without open-
ing the fruit (whole apricot).

•	 Osmotic dehydration: dipping whole apricots in sucrose 
syrup at 60  °Bx and in 6 % NaCl solution for 18 h at 
room temperature, then rinsing with hot and cold water 
to remove the sucrose and salt and inhibit biochemical 
reactions.

•	 Sodium bisulphite (NaHSO3) is a microbial stabilizer 
that protects against mould and insects, anti-browning 
enzyme: protection against oxidants is used to stabi-
lize colour and taste; whole apricots are immersed for 
30 min in 6 % pure anhydrous sodium bisulphite solu-
tion, and then rinsed with water to remove excess sodi-
um bisulphite. 

•	 Drainage of whole fruits.
•	 Drying and monitoring the drying kinetics of whole 

apricots treated in microwave oven at different powers 
(200, 400, and 800 W), was conducted according to 
the following method: In 10 watch glasses, previous-
ly cleaned, dried and cooled in a desiccator, we put 
16.420 ± 1.649  g of pitted whole apricots (14.110  g 
wet weight and 2.31  g dry weight). These were then 
placed in the microwave oven. For the study of micro-
wave drying kinetics, three different powers, 200, 400, 
and 800  W, were used. After 30  s, each sample was 
weighed with a precision balance. This operation was 
repeated regularly at 30-second intervals. Drying was 
stopped when the residual moisture content of the pro-
duce was about 5 %. This operation was repeated for all 
powers and each type of apricot processing. The curves 
representing the drying kinetics obtained experimen-
tally were obtained by following the evolution of the 
MR during the drying process by successive weighing 
until a residual moisture of 5  % was obtained. Using 
the moisture content of the wet base at any given time, 
the initial moisture content of the sample’s wet base 
and equilibrium moisture content, the wet base mois-
ture ratio can be calculated using the following formula 
Eq. (1):4 

MR = 
−
−

e

0 e

M M
M M (1)

where:
M = moist base moisture content at any time t.
M0 = initial moisture content of the wet base of the sam-
ple.
Me = equilibrium moisture content.

The values of Me are relatively low compared to those of 
M or M0. The error involved in the simplification is negligi-
ble,4 thus moisture ratio (MR) was calculated as:

MR = 
0

M
M (2)

During the drying process, we monitored the evolution of 
the mass loss of the whole apricot, to describe the drying 
kinetics by plotting the curves of the variation of moisture 
ratio as a function of time MR = f(t).
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2.3 Time prediction methods by ANN and ANFIS

Two methods (ANN, ANFIS) were used for time prediction. 
The database was normalised once in the interval [−1, 
+1], and divided into two sections: 70 % of the dataset 
for training, and 30 % of the final samples that were not 
currently involved in the model training, were used for ver-
ification to perform model prediction.17 The determination 
coefficient (R2) and root mean square error (RMSE) were 
used to assess the performance of the models.

R2 = 1− =
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∑
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where MRexp and MRpred are the experimental and predict-
ed dimensionless MR, respectively, and N is the number of 
observations.17,18

2.3.1 ANN modelling

Artificial neural networks (ANNs) are non-linear empirical 
models. In general, they are composed of many units (neu-
rons) operating in parallel. The functioning of this network 
is largely determined by the connections between these 
elements.19 The neurons are distributed on three layers: 
input layer, output layer, and hidden layer. The number of 
neurons in the input layer is related to the number of input 
variables, and the number of neurons in the output layer 
is the same as the number of output variables. Between 
these two layers, there is at least one hidden layer whose 
number of neurons depends on the application of the net-
work (Fig. 1).17,20 Optimised neuronal regression through 
the network architecture is based on the distribution of the 
database into three sets: (learning, testing, and validation), 
the transfer functions, the number of neurons in the hid-
den layer, and the training algorithm.21
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Fig. 1 – Presentation of multilayer neural network

The neuron’s output is calculated using relation (Eq. 5): 

( )=
= +∑ 1

N
J ij i ji

S f w X b (5)

where wij is synaptic weight, bi is bias input, and Xi is the 
ith input. f is the activation function which can usually be 
sigmoid or hyperbolic tangent.22

The activation functions tansig and logsig can be described 
as follows:

( ) ( ) −= = −
+ 2

2tansig 1
1 af a a

e (6)

( ) ( ) −= =
+

1logsig
1 af a a

e (7)

In this study, ANN was used as a fast and reliable technique 
to model the drying process. In the ANN, all available data 
were divided into two parts: one for training and one for 
model validation. ANN was used to model the moisture 
ratio of whole apricots, dried in a microwave oven and 
treated with saccharose, NaCl, and sodium bisulphite. 
It consisted of several interconnected artificial neurons 
where each of them gave a single output (Y) induced from 
all inputs (Xi).23 The activation functions were in the hidden 
layer (logsig and tansig). The best final model was select-
ed on the basis of the minimum root mean square error 
(RMSE) and the maximum coefficient of determination 
(R2). Simulation studies were performed using the MATLAB 
R2013a software.

2.3.2 ANFIS modelling 

ANFIS is a technical calculation software that integrates 
the concept of fuzzy logic in neural networks. The ANFIS 
model is a kind of neural network that first recognizes dry-
ing patterns, and then uses fuzzy inference systems to im-
plement decision-making and differentiation. An adaptive 
structure of neuro-fuzzy inference system (ANFIS) consists 
of 5 layers. (1) The fuzzification layer, (2) the rule layer, 
(3) the normalization layer, (4) the defuzzification layer, 
and (5) the output layer (Fig. 2).6 In its theory, ANFIS has a 
structure including a return propagation algorithm linked 
to a multilayer fuzzy cum Sugeno neural network with hid-
den three-layer input and output layers.

Fig. 2 – Structure of ANFIS
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In this study, the ANFIS tool was used to predict the time 
of drying kinetics of whole apricots treated with sucrose 
solution, NaCl, and sodium bisulphite in microwave oven 
at different powers (200, 400, and 800 W). There were 
five input parameters, including microwave power, total 
weight of whole apricots, water content, dry matter con-
tent, and MR, and the output was the DT.

2.4 Mathematical modelling of drying whole apricots 

In this section, we proposed a new semi-empirical mod-
el. This model was compared to twenty models in the lit-
erature that were studied by the researchers. In order to 
describe the moisture ratio of whole apricots treated with 
sucrose, NaCl, and sodium bisulphite, and to determine 
the most appropriate empirical equation, the parameters 
of the mathematical model were optimised using a sigma 
plotting program version 10. Our model and the other 20 
models are presented in Table 1.

The correlation coefficient (R2) is the first criterion used to 
select the best model that defines the experimental dry-

ing data17 In addition, a reduction in the chi-square (χ2) 
and the mean square error of the square root (RMSE) were 
used to determine the quality of the fit.31 These parameters 
are calculated by the Eqs.  (3) and (4) and the following 
Eq. (8):

χ2 = =
 −
 
 −
 

∑ 2
exp pre1

(   )
 

N

i
MR MR

N n
 (8)

where MRexp and MRpred are the experimental and predict-
ed dimensionless MR, respectively, N is the number of ob-
servations, and n is the number of model constants.18

2.5	 Moisture ratio (MR) prediction methods 
by ANN and ANFIS

In this section, models (ANN, ANFIS) were also used for 
predicting MR. The coefficient of determination (R2) and 
adjusted coefficient were used for the performance of the 
models Eqs. (4)–(6).

Table 1 – Mathematical models applied to the drying curves

Model name Model Reference
Lewis MR = exp(−kt) 24

Page MR = exp(−ktn) 25

Modified Page MR = exp(−(kt)n) 26

Wang and Singh MR = 1 + a1t + a2t2 27

Henderson & Pabis MR = aexp (−kt) 28

Logarithmic MR = aexp (−kt) + c 29

Two Term MR = aexp(−kt) + bexp(−k’t) 14

Midilli MR = aexp(−ktn) + bt 30

Verma et al. MR = aexp(−kt) + (1−a) exp(−k’t) 31

Modified Henderson & Papis MR = aexp (−kt) + bexp (−k’t) + cexp (−k”t) 31

Two_term exponential MR = aexp (−kt) + (1−a) exp(−kat) 32

Diffusion approach MR = aexp (−kt) + (1−a) exp(−kat) 26

Simplified Fick’s diffusion MR = aexp(−k(t/ L2)) 33

Modified Page III MR = aexp(−k(t/ L2)n) 33

Demir et al. MR = aexp (−ktn)+bt 27

Weibull MR = aexp (−(t/a)n) 34

Hii MR = aexp(−ktn) +bexp(−k1tn) 34

Keskes et al. MR = aexp(−kt) + bexp(−kt1/n) + c 34

Geometric MR =at−1 35

Logistic MR = ( )(1 exp
a

a kt+ )
35

Proposed model MR = 
( )

( )
+

+ + 21
a bx
ct dt This study

a, a1, a2, b, c, d, coefficients and n, specific exponent of each drying equation; k, k’, k”, k1 specific coefficients of each drying equation, t is the drying 
time.
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3 Results and discussion
3.1 Drying kinetics

During the drying process, the evolution of the apricot 
moisture ratio (MR) was monitored as a function of time (t) 
with: MR = f(t) with a type of microwave drying; knowing 
that every 30  s of microwave drying corresponds to one 
cycle.

3.1.1 Influence of power on kinetics of microwave drying

The changes in moisture ratio (MR) as a function of drying 
time (t) for the three microwave powers (200, 400, and 
800 W) are shown in Fig. 3.

The moisture content of fresh apricots was approximately 
85.93 %. Whole apricots were dried to a moisture con-
tent of 5 %. The drying curves for the pre-treated micro-
wave-dried apricots are shown in Fig.  3. In general, the 
drying kinetics of microwave-treated apricots were similar 
to those found by Toğrul and Pehlivan.36 One can notice 
regularly decreasing curves. This decrease corresponds to 
the elimination of free water. Initially, the water content 
was high in the apricot and less microwave energy was ab-

sorbed; the apricot was heated by the radiation, and there-
fore, the evaporation of water was accelerated.37 However, 
as drying progresses, water must move from the interior of 
the plant tissue to the surface, which depends on liquid 
diffusion, capillary movement, and surface diffusion, and 
slows the rate of the water evaporation.38

Drying kinetics at 800 and 400 W were the shortest times 
(270 and 420  s, respectively), whereas, drying kinetics 
at 200 W were the longest (570 s). Therefore, our frame 
shows a remarkable influence of power on microwave 
drying kinetics (Fig. 3). These results are similar to those 
found by Horuz et al.,39 who studied the microwave drying 
kinetics of apricots at three powers 120, 150, and 180 W. 
These authors revealed that the drying time increased from 
157 to 409 min.

Apricots dried in microwave oven at 400 and 800 W pow-
er, treated with sucrose solution and NaCl had the shortest 
duration compared to the sodium bisulphite treatment, 
because a considerable amount of water from the tissue 
immersed in concentrated aqueous solutions had already 
been removed by osmotic dehydration (osmosis phenom-
enon). The osmotic pressure difference caused a mass 
transfer between the fruit tissue and the osmotic agent. 

Fig. 3 – Evolution of MR over time for apricots treated in a solution of: (a) sucrose, (b) NaCl, and (c) sodium bisulphite in a 
microwave oven
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Two opposite flows appeared: diffusion of water from fruit 
cellular tissue (water loss, WL), and diffusion of osmotic 
agent into cells (solid gain, SG). The intensity of mass trans-
fer depends on the type of osmotic agent, temperature, 
and concentration of the osmotic solution, the power of 
the microwave, speed of agitation, ratio between the fruit 
and the osmotic agent, and the mass ratio between the 
fruit and the osmotic agent, which justifies the long dry-
ing time of whole apricots treated with sodium bisulphite 
compared to apricots treated with sucrose and NaCl.40

At 200 W power, the shortest drying time was recorded 
for NaCl-treated apricots (510  s), followed by the other 
treatments. The longest time was recorded for drying apri-
cots treated with sodium bisulphite (510 to 570  s). This 
difference was due to the treatment agent used. The use of 
pre-treatment improved the moisture migration of whole 
apricots and reduced the drying time. This is confirmed by 
blanching and dipping in a saline solution that promotes 
moisture migration from the inner regions of the food 
crop.41 The increase in microwave power decreased dry-
ing time. The probability analysis of each factor indicated 
that treatments investigated, and sodium and microwave 
power had a significant effect on apricot water loss.

3.2 Time prediction methods by ANN and ANFIS 

3.2.1 ANN modelling 

In this study, ANN was used to predict the drying time. In 
order to obtain a better result, the feedback propagation 
network with Levenberg–Marquard (LM) learning algo-
rithm was chosen, after which this network was optimised 
with three activation functions (tansig, logsig, and purelin), 
and with many neurons of the hidden layer (3 : 15). Five 
input parameters, including microwave power (W), total 
apricot weight (g), moisture content (%), dry matter con-
tent (%), and moisture ratio (MR), while the output param-
eter was the drying time (s).

The results of modelling ANN for MR time prediction are 
presented in Table 2.

Table 2 reveals that the results are almost equal from the 
point of view of correlation coefficient and RMSE in the 
three phases (training, validation, and all data). Therefore, 
the 1st architecture was chosen since a small increase in 
the correlation coefficient and a small decrease in RMSE 
was found compared to the 2nd architecture. The results 
of Table 2 are graphically presented in Figs. 4 and 5. Fig. 6 
again shows the efficiency of our model which was chosen 
in this part.

Fig. 4 – Predicted values relative to experimental time tansig 
values of the ANN validation phase and training phase 
model

Fig. 5 – Predicted values relative to experimental time logsig 
values of the ANN validation phase and training phase 
model

Table 2 – Performances of the different ANN architectures of time

Activation function Coefficients of determination RMSE · 10−6

Learning 
algorithm Network architecture Hidden layer Output layer Training Validation All Training Validation All

Levenberg–
Marquard

[5-15-1] tansig purelin 0.99864 0.99919 0.99875 7.8056 6.0607 7.4892

[5-15-1] logsig purelin 0.99844 0.99891 0.99856 8.0176 7.8217 7.9788
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Fig. 6 – Relationship between experimental data and predicted 
data of samples

3.2.2 ANFIS modelling

In this work, the drying time (DT) prediction technique 
of microwave-treated whole apricots by ANFIS was used. 
There were five input parameters, including microwave 
power, total apricot weight, moisture content, dry matter 
content, and moisture ratio (MR). Table 3 reveals the best 
algorithms for ANFIS. The correlation coefficient (R2) is 
very high; on the other hand, the statistical indicator is very 
low (RMSE), which indicates a good fit or performance, 
and suggests that ANFIS can be used effectively to predict 
the drying time. The result is better (R2 = 0.9921) than that 
obtained by Satorabi et al., who found a correlation coeffi-
cient of R2 = 0.973. Knowing that the only difference was 
in the volume of the dried apricot fruit, we used the whole 
fruit. On the other hand, Satorabi et al. used apricot slices.5

Table 3 shows that the results are almost equal in terms 
of the correlation coefficient and the RMSE in all three 
phases (training, validation, and all data). Therefore, the 
training phase was chosen as a slight increase in the corre-
lation coefficient (0.99414), and a small decrease in RMSE 
(16.2664) was found compared to the phases of all data 
and validation (R2: 0.99211, RMSE: 18.7286), and (R2: 
0.98304, RMSE: 26.6716), respectively. The results in Ta-
ble 3 are graphically shown in Fig. 7. Fig. 8 shows the DT 
values as a function of the ANFIS estimate for unseen data 
points (test data). It can be seen that the system was well 
trained to model these parameters. The calculated R value 
for the DT estimate was 0.9921, showing a high correlation 
between the predicted and experimental values. In gener-

al, this model simply explains the highly nonlinear process, 
including microwave drying, without the need to establish 
the complicated mechanisms involved. 

Fig. 7 – Predicted values relative to experimental time values of 
the ANFIS validation phase and training phase model 
samples

Fig. 8 – Relationship between experimental data and predicted 
data of samples

Table 3 – Performance of the different ANFIS architectures of time

ANFIS Membership 
function type Train FIS Coefficients of correlation RMSE · 10−6

Number of membership 
functions Input Output Optimisation 

method Training Validation All Training Validation All

[2 2 2 2 2] gbellmf linear hybrid 0.99414 0.98304 0.99211 16.2664 26.6716 18.7286
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3.2.3	 Comparison between the drying times 
of ANN and ANFIS

Comparison between the ANN model and the ANFIS 
model was based on the statistical parameters (R2 and 
RMSE). Table 4 shows the comparison between the dry-
ing times (DT) of ANN and ANFIS. According to Table 4, 
the ANN model contains a higher correlation coefficient 
(0.99919) and a low RMSE value (6.0607) by contribution 
ANFIS (R2 = 0.99414, RMSE = 16.2664). The ANN model 
is the most appropriate for the prediction of drying time of 
whole apricot.

Table 4 – Comparison between the drying times (DT) of ANN 
and ANFIS

Model RMSE · 10−6 R2

ANN(DT) 6.0607 0.99919
ANFIS(DT) 16.2664 0.99414

3.3 Modelling of the drying kinetics of apricots 

In this work, the drying kinetics were modelled by three 
mathematical models (Modified Henderson–Pabis, Hen-
derson-Pabis, and Two Term), and proposed model. Fig. 9 
illustrates the obtained results. The calculated values of the 
used statistical parameters are shown in Tables 5–7 with 
the most suitable model marked in bold.

The three models and the proposed model were compared 
in terms of the values of the coefficient of determination 
(R2), the reduced chi-square (χ2), and the square root mean 
square error (RMSE). Under the studied experimental con-
ditions, the values of R2, χ2, and RMSE range from 0.9407 
to 0.9989, 3.05 · 10−7 to 1.82 · 10−3, and 2.23 · 10−7 to 
1.21 · 10−3, respectively. The high values of R2 and the low 
values of χ2 and RMSE for the three simulated models, and 
the model proposed in this study indicate a good consist-
ency between these models and the experimental results. 
The proposed model was chosen to adequately describe 
the drying behaviour of whole apricots treated with NaCl, 
sucrose, and sodium bisulphite at microwave powers of 
200 and 400 W, respectively, due to a high value of R2 and 
low values of χ2 and RMSE (see Tables 5–7).
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Fig. 9 – Modelling of drying kinetics of whole apricots by microwave oven: (a) Modified Henderson 
& Pabis model, (b) Henderson–Pabis model, (c) Two Term model, and (d) proposed model
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Table 5 – Modelling of drying kinetics of sucrose-pre-treated apricots in a microwave oven

MN Power
Parameter Parameter statistics

A k B k’ C k’’ D R2 χ2 RMSE

1
200
400
800

64.425
24.533
0.114

9.13 · 10−5

0.000183
0.0477

19.467
−6.174
−0.801

0.00025
0.00050

6.03 · 10−10

−43.979
−17.419

1.686

2.50 · 10−15

2.90 · 10−13

0.0015

0.992
0.983
0.996

1.26 · 10−4

1.23 · 10−5

1.03359 · 10−5

8.59 · 10−5

7.38 · 10−6

4.134 · 10−6

2
200
400
800

1.0232
0.9874
0.9724

0.0015
0.0024
0.004

0.969
0.9595
0.9911

0.0005514
0.00020229
2.04 · 10−5

0.00049
0.00017

1.63 · 10−5

3
200
400
800

0.145
−0.083
−7.296

0.8998
2.31 · 10−5

2.2859

1.0317
−65.508

0.945

0.0015
8.71 · 10−16

0.0038

0.9702
0.9833
0.9947

0.00067468
3.05 · 10−7

7.54 · 10−5

0.00053
2.23 · 10−7

4.52 · 10−5

4
200
400
800

0.997
0.946
0.990

−0.0017
−0.0018
−0.003

−0.0003
−0.0001
−0.002

−1.826 · 10−6

−1.74 · 10−6

−1.24 · 10−6

0.9985
0.9846
0.9946

4.79388 · 10−5

    3.448 · 10−6

        4.6 · 10−4

3.84 · 10−5

1.72 · 10−5

4.48 · 10−3

MN: Model name; 1: Modified Henderson–Pabis model; 2: Henderson–Pabis model; 3: Two Term model; 4: Proposed model

Table 6 – Modelling of drying kinetics of NaCl-pre-treated apricots in a microwave oven

MN Power
Parameter Parameter statistics

A k B k’ C k’’ D R2 χ2 RMSE

1
200
400
800

−0.0238
8.436

−7.263

0.6307
0.0006

7.12 · 10−17 

0.8982 
−2.5024 
18.2469

0.0011 
0.0017 
0.0001

0.1256 
−4.9394
0.0162 

0.0085
1.96 · 10−13

11.5651

0.9873
0.993

0.9952

0.00025785
4.01 · 10−6

0.00037777

0.0001719
2.41 · 10−6

0.0001888

2
200
400
800

0.9872
1.0561
1.0251

0.0014
0.0019
0.0028

0.9831
0.9527
0.9808

3.86 · 10−5

0.00060574
0.0003971

3.43 · 10−5

0.000524
0.0003309

3
200
400
800

0.145
−0.0836
−7.2965

0.0058
0.7102

1.26 · 10−6

0.8628
1.0836
8.2874

0.0011
0.002 

0.0002

0.9868
0.9614
0.9949

0.00012188
0.00059726
0.00182246

9.479 · 10−5

0.0004379
0.0012149

4
200
400
800

1.0124
0.9964
0.9887

−0.002
−0.0016
−0.0018

−0.0001
−0.0007
0.0001

−3.70 · 10−6

7.35 · 10−7

9.02 · 10−7

0.996
0.993

0.9949

8.97 · 10−4

1.99299 · 10−7

3.1865 · 10−6

6.98 · 10−4

1.46 · 10−7

2.12 · 10−6

MN: Model name; 1: Modified Henderson–Pabis model; 2: Henderson–Pabis model; 3: Two Term model; 4: Proposed model

Table 7 – Modelling of drying kinetics of sodium bisulphite-pre-treated apricots in a microwave oven

MN Power
Parameter Parameter statistics

A k B k’ C k’’ D R2 χ2 RMSE

1
200
400
800

−0.0238
8.4369

−7.2631

2.33 · 10−5

3.05 · 10−16

0.8498 

0.0889
−78.503
1.0924

29.6903
1.01 · 10−16

0.0024

−44.7549
158.0939
−0.0588

1.64 · 10−15

7.67 · 10−6

1.72 · 10−11

0.9596
0.9829
0.990

1.32 · 10−4

2.11 · 10−3

4.87 · 10−6

9.26 · 10−5

1.37 · 10−3

2.62 · 10−6

2
200
400
800

1.0925
0.9623
1.0237

0.0016
0.0017
0.0025

0.9407
0.9442
0.988

0.00037274
0.00064805 
5.2162 · 10−5

0.0003313
0.0005718

4.1729 · 10−5

3
200
400
800

−0.1255
0.0535

−0.0389

0.7402
84.5644
15.0223

1.1255
0.9465
1.0389

0.0017
0.0016
0.0026

0.9899
0.9484
0.9899

0.00026758 
0.00026758 
1.513 · 10−5

0.0002140
0.0007403
1.048 · 10−5

4
200
400
800

0.9905
0.9635
1.0201

−0.0009
−0.002

−0.0019

−0.0007
−8.92 · 10−5

  0.0008

2.55 · 10−6

7.9 · 10−7

−3.03 · 10−6

0.9895
0.9811
0.9895

4.79388 · 10−5  
0.006270471  
4.70535 · 10−5

3.84 · 10−5

4.80 · 10−3

3.26 · 10−5

MN: Model name; 1: Modified Henderson–Pabis model; 2: Henderson–Pabis model; 3: Two Term model; 4: Proposed model
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3.4 Predictive time testing

After testing the MR values for experimental time and pre-
dicted time of the proposed model with three treatments, 
it was concluded that the same values for MRexp, MRpre, and 
MRpreT were obtained, confirming the effectiveness of the 
time model (see Fig. 10).

3.5 MR prediction methods by ANN and ANFIS

3.5.1 Artificial neural network modelling

In this study, ANN was used to predict MR. In order to ob-
tain better results, the feedback propagation network with 
learning algorithms (LM) was chosen, after which this net-

Fig. 10 – Evolution of the moisture ratio (MR) exp, pre, and preT by the proposed model as a function of time at powers (200, 400, 
and 800 °C) and treatments. Cases: a: sucrose and b: NaCl.
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work was optimised with three activation functions (tansig, 
logsig, and purelin) (see Figs. 11 and 12), and with many 
neurons of the hidden layer (3 : 15). Five input parameters, 
including microwave power, total apricot weight, moisture 
content, dry matter content, and drying time, and one out-
put parameter is the moisture ratio. This model was al-
lowed to mix the three treatments (sucrose solution, NaCl, 
and sodium bisulphite), create a unique model suitable for 
each treatment, and test each treatment alone. The results 
of ANN modelling for the time prediction to the mixture of 
three MR treatments are presented in Table 8.

Table 8 and Fig. 13, reveal that there is not much difference 
between the obtained results, since the results are almost 
equal. The architecture [5-12-1] was chosen according to 
the logsig activation function in the hidden layer and the 
purelin function in the output layer.

The architecture [5-12-1] was chosen as their parameter 
numbers were 85 as the architecture [5-15-1], which was 
106.

Fig. 10 – (continued) Case: c: sodium bisulphite

Table 8   – Performances of the different ANN architectures of MR

Activation function Correlation coefficient RMSE

Learning 
algorithm

Network 
architecture

Hidden 
layer

Output 
layer Training Validation All Training Validation All

Levenberg–
Marquard

[5-15-1] tansig purelin 0.9996 0.9997 0.99962 0.0058 0.0052 0.0057

[5-12-1] logsig purelin 0.99958 0.99942 0.99956 0.0059 0.0062 0.0059
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Considering the very high estimated R2 value and the low 
RMSE value for logsig and tansig MR, it was concluded that 
ANN can be used effectively to predict MR. 

3.5.3 ANFIS modelling 

In this work, the weighting algorithms and functions (gbell-
mf), were chosen for the input and linear for the output as 
well as many nodes for each input to get the right result. Five 
input parameters, including microwave power, total apricot 
weight, moisture content, dry matter content, and drying 
time, and one output parameter is the moisture ratio. The 
ANFIS predictive technique was used to predict MR. 

Table 9 reveals the best algorithms for the ANFIS array, and 
the high R2 and low RMSE values for logsig and tansig RMS 
indicate good fit or performance, and suggest that ANFIS 
can be used effectively to predict MR. In addition to data 
quality, the effectiveness of a typical ANFIS prediction also 
depends on the number of rows and columns of input 
data. The results of ANFIS modelling for the time predic-
tion to the mixture of three MR treatments are presented 
in Table 9. It was found that the architecture of [2 2 2 2 2] 
Training ANFIS (MR) model gave the lowest RMSE (0.0063) 
and a high value of R2 (0.99951) for the All ANFIS (MR) and 
Val ANFIS (MR), respectively, but these values were closer 
to the others. The predicted results were plotted against 
the experimental values as shown in Figs. 14 and 15.

Fig. 11 – Predicted values relative to experimental MR tansig 
values of the ANN validation phase and training phase 
model

Fig. 12 – Predicted values relative to experimental MR logsig 
values of the ANN validation phase and training phase 
model

Fig. 13 – Relationship between experimental data and predicted 
data of samples

Table 9 – Performances of the different ANFIS architectures of MR

ANFIS MF Type Train FIS Coefficient of correlation RMSE
No. of membership 

functions Input Output Optimisation 
method Training Validation All Training Validation All

[2 2 2 2 2] gbellmf linear hybrid 0.99951 0.99867 0.99937 0.0063 0.0096 0.0071



664   A. BOUSSELMA et al.: Artificial Intelligence and Mathematical Modelling of the Drying..., Kem. Ind. 70 (11-12) (2021) 651−667

3.6 Comparison between the moisture ratio 
of proposed model, ANN and ANFIS

The comparison between the three models was based on 
the statistical parameters (R2 and RMSE) and the number of 
epochs of each model. Tables 10 and 11 show the three 
models mixed and associated with the three treatments 
(sucrose, NaCl and sodium bisulphite) and unmixed, re-
spectively. 

According to Table 10, the ANN model contained a higher 
correlation coefficient (0.9991) and low RMSE (0.0059) val-
ue followed by ANFIS (R2 = 0.9950, RMSE = 0.0071), and 

Fig. 14 – Predicted values relative to experimental MR values of 
ANN validation phase and training phase model

Fig. 15 – Relationship between experimental data and predicted 
data of samples

Table 11 – Comparison between the proposed models, ANN and ANFIS had three unmixed treatments at 200, 400, and 800 W

Pre-treatment and 
microwave power Proposed model ANN ANFIS

Sucrose
200 W

400 W

800 W

RMSE       0.29334845
R2                    0.99817254

RMSE       1.1306 · 10−5

R2                     0.99999993
RMSE      8.57052 · 10−8

R2                   0.999999998
RMSE        4.1564 · 10−7

R2                      0.99999998
RMSE       0.00864375
R2                   0.99998547

RMSE       0.00051987
R2                     0.9999739

RMSE         0.37801268
R2                        0.95952499

RMSE       0.00400916
R2                     0.99999456

RMSE       2.29682 · 10−7

R2                   0.999999975

NaCl
200 W

400 W

800 W

RMSE         6.3983 · 10−5

R2                       0.99999957
RMSE       0.12055309
R2                     0.99999098

RMSE       0.00149693
R2                     0.99995703

RMSE         1.7896 · 10−5

R2                        0.99999933
RMSE       0.00041066
R2                     0.99998454

RMSE      0.00020181
R2                     0.9999924

RMSE         0.00048178
R2                        0.9999515

RMSE       0.00264449
R2                   0.99999845

RMSE       0.00010973
R2                    0.99999298

Sodium bisulphite 
200 W

400 W

800 W

RMSE        0.00981046
R2                  0.99974863

RMSE      0.0041978
R2                   0.99999783

RMSE       0.00087767
R2                     0.99997751

RMSE       0.10634142
R2                 0.99583571

RMSE       0.00116169
R2                     0. 99995451

RMSE       0.00127885
R2                    0.99994992

RMSE      0.00273393
R2                 0.99984963

RMSE      0.18713204
R2                   0.99999751

RMSE    0.00036377
R2                 0.99997999

Table 10 – Comparison between the proposed models, ANN, 
and ANFIS had three mixed treatments (sucrose, 
NaCl, and sodium bisulphite)

Model RMSE MAE R R2 R2
adj

PM(MR) 0.0878 0.0215 0.9973 0.9947 0.9909

ANN(MR) 0.0059 0.0039 0.99956 0.9991 0.9991
ANFIS(MR) 0.0071 0.0046 0.99937 0.99500 0.9987
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finally the proposed model (R2 = 0.9947, RMSE = 0.0878), 
but these values are closer to each other and there is no 
significant difference between them. According to the 
number of epochs, the proposed model was the most suit-
able for the drying of processed whole apricot since it con-
tained 4 epochs, followed by ANN (85) and finally ANFIS 
(309). 

According to Table 11 and the R2 and RMSE values, the AN-
FIS model is the most suitable for describing sucrose-treat-
ed dried apricots, the proposed model for NaCl-treated 
apricots, and the ANN model for sodium bisulphite treat-
ed apricots. However, according to the number of epochs, 
the proposed model is the most suitable for drying treated 
whole apricots since it contains 4 epochs. The proposed 
model may be mainly used in future studies in the agri-
food production industries, as it is inexpensive (4 epochs).

These results were comparable to those found by Jahan-
bakhshi et al., who used ANN and ANFIS models to predict 
the drying behaviour of pistachio kernel in microwave dry-
er using US pre-treatment by Midilli et al. model, ANN and 
ANFIS, and analysing the effect of indirect independent 
variables in predicting the moisture ratio in pistachio ker-
nel. They reported that the ANFIS model was better than 
the ANN model in terms of its higher R2 and lower MSE.41 
Abbaspour-Gilandeh et al., predicted the kinetics, energy, 
and exergy of quince under the hot air dryer using ANN 
and ANFIS. The ANFIS model showed better ability to pre-
dict these parameters than artificial neural networks.6

4 Conclusion
The results obtained showed that the drying time de-
creased with the increasing microwave power. Impregna-
tion of apricots in a salty solution (6 %) as an innovative 
and inexpensive pre-treatment method gave the shortest 
drying time compared to the other treatments. Simula-
tion of experimental data indicated that, out of the twenty 
semi-empirical models used, the best fit was obtained for 
three models named Modified Henderson–Pabis, Hender-
son–Pabis, and Two Term. The comparison of these models 
with the proposed new model, ANN, and ANFIS, based on 
R2 and RMSE values, confirmed that the kinetic drying data 
were perfectly described by the latter three models. The 
proposed model, ANN, and ANFIS were closer to each 
other by the R2 and RMSE epochs. The proposed model 
used fewer epochs (4 epochs) than the other models, in-
dicating that this model would be more applicable in agri-
food industries.
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SAŽETAK
Umjetna inteligencija i matematičko modeliranje kinetike sušenja 

prethodno obrađenih cjelovitih plodova marelice
Abla Bousselma,a* Dalila Abdessemed,b Hichem Tahraoui c i Abdeltif Amrane d

Ovim istraživanjem obuhvaćeno je praćenje i modeliranje kinetike sušenja cjelovitih plodova ma-
relice prethodno obrađenih otopinama saharoze, natrijeva klorida i natrijeva bisulfita. Sušenje je 
provedeno u mikrovalnoj pećnici pri različitim snagama (200, 400 i 800 W). Za predviđanje vre-
mena sušenja (DT) i omjera vlage (MR) primijenjena su dva modela umjetne inteligencije: umjetna 
neuronska mreža (ANN) i prilagodljivi sustav neizrazitog zaključivanja zasnovanog na neuronskoj 
mreži (ANFIS). S druge strane, za predviđanje MR-a upotrijebljeno je 20 postojećih poluempirij-
skih modela te jedan koji su autori izradili sami. Rezultati su, kod sve tri primijenjene obrade, po-
kazali redukciju vremena sušenja s povećanjem snage mikrovalne pećnice. Tretman otopinom na-
trijeva klorida pokazao se najpogodnijim. Koeficijenti korelacije ANN modela za vrijeme sušenja 
(0,9992) i omjer vlage (0,9997) bili su viši nego kod ANFIS modela (0,9941 i 0,9995). Za dvadeset 
primijenjenih polu-empirijskih modela, tri modela pokazala su se podudarnim s rezultatima ovog 
istraživanja (modificirani model Hendersona i Pabisa, model Hendersona i Pabisa te model dvaju 
pojmova). Uspoređujući tri spomenuta modela i model predložen u ovom radu, kao i predviđa-
nje MR-a ANN-om, uočeno je da je model predložen u radu najprikladniji za opisivanje kinetike 
sušenja marelice tretirane otopinom natrijeva klorida. Takvi rezultati ukazuju da bi se predloženi 
model potencijalno mogao ubuduće primjenjivati za simulaciji kinetike sušenja voća i povrća.

Ključne riječi 
Marelica, kinetika sušenja, mikrovalna pećnica, modeli, ANN, ANFIS
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