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 To acquire transient response of a drive train, we consider more 

detailed mathematical model including variable gear mesh. The 

gear mesh is represented by the Fourier series. In transient 

analysis, gear’s angular velocity is considered as constant. It 

makes sense when we consider steady-state. However, the gear 

mesh is the only part which vary according to angular 

displacement. It should be considered not only by the Fourier 

series model but also as a modified system displacement. To 

establish the gear mesh model, we use a curve fitting theorem. 

Equations of motion are derived by the Lagrange’s equation, 

constrained equation and gear relation. The equations are solved 

by numerical integration method, the Newmark method. Through 

these processes, we get dynamic results including angular 

displacement, velocity, acceleration, gear mesh contact forces. 

Also, the Fourier transform is used to see signals more detailed. 

At last, we compared the variable gear mesh and constant gear 

mesh, gave physical meaning, and analyzed cause of the 

phenomenon. 
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1 Introduction 
 

The wind turbine systems are moving from land to sea to ensure high energy efficiency. Especially, it is 

spurring on the development of a floating system on the sea, coupling with the floating body instead of the 

installation of the jacket type fixed wind power generator, for installation in the deep sea where the wind 

resources are abundant. Hywind, an offshore wind turbine complex, jointly developed by Masdar and 

Startoil, was the first demonstration project to solve various problems such as vibration, noise and radio 

interference which are major drawbacks in existing wind power generators.  

However, as the degree of freedom increases at the foundation of the wind power generator and the 

external force due to environmental conditions increases, many vibrations are generated, which makes 

analysis of the dynamic characteristics of the wind power system more important. In the analysis of the 

rotational dynamic characteristics of the drive train, a mathematical model capable of analyzing the steady 

state is developed. It is difficult to analyze the transient state when the operation or interruption of the wind 

turbine or various external forces act.  

Therefore, it is necessary to utilize the mathematical model to identify the cause of the specific vibration 

in the operation process by considering the geometrical characteristics of the mechanical parts in the existing 

mathematical model.  

In this research, we considered torsional drive train model that has the gear mesh model. In the previous 

research, the torsional and 3 dimensional model which has steady gear mesh [1, 2] and more detailed 3 
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dimensional model which considered bending stiffness of shaft and translational stiffness of bearing [3] were 

modeled. 

 The research analyzed the dynamic responses of the rotors according to the gear mesh force in the time-

frequency domain. However, the research assumed that gear mesh is determined by constant angular velocity 

for steady state. Using these results, we can find repeated vibrations. However, it is not useful in view of 

general motion. Actually, the gear mesh model is affected by not only defined concept but also system 

displacement. And there is a limit to express relationship between mechanical components using repeated 

assumption in coupled dynamics. Through these facts, it is necessary to consider variable system definitions 

especially gear mesh. In order words, we need to improve the mathematical model to do transient analysis. It 

can show instantaneous dynamic results. 

To represent variable gear mesh, we used the curve fitting theorem to define gear mesh as a function.  

We also rearranged the gear mesh data from time domain to angular displacement especially carrier, gear 1, 

gear 3. Regarding an equation of motion, the Lagrange’s equation was used with constraints equation and 

gear relationship. Mathematical model is composed of a non-linear term. So, it is hard to get analytical 

solution. Using the Newmark method, we obtained the numerical solution, compared to constant gear mesh 

model, and analyzed vibrations, phenomenon.      

 

2 Mathematical model 
 

2.1 Gear mesh 
 

Before defining a variable gear mesh model, basic gear mesh model should be established from the 

previous work. Generally, gear mesh stiffness can be established by the Fourier series with constant angular 

velocity. Stiffness will be determined by angle of attack and contact ratios. [1,2,4] Through these facts, we 

defined the gear mesh stiffness using gear angular velocity and contact ratio. To generate stiffness model, we 

used rotor’s angular velocity, 6 rpm, as reference. So, an average angular velocity in the planetary stage and 

parallel stages were defined by equation (1), (2), (3). And using the Fourier series, we established the gear 

mesh stiffness Equation (4), (5).  
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As shown, these stiffness models are function of time variable. It means that gear mesh stiffness will not 

change by other system variables. Actually, gear mesh stiffness is affected by angular displacement, velocity. 
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This is because gear mesh stiffness is determined by gear’s rotation and geometry. So, It should be 

considered not only in time, but also in displacement.  

To represent gear mesh stiffness according to displacement, we defined gear mesh stiffness as a function 

of displacement. In the basic model, we used constant angular velocity. Using this angular velocity, we 

rearranged the gear mesh model according to angular displacement as input domain. In other words, input, 

output variables are angular displacement, gear mesh stiffness. Using this data, we can determine the gear 

mesh function. Curve fitting is deriving representative mathematical model to express given data. There is a 

lot of expression, including polynomial, exponential, Fourier and so on. In this research, we selected the 

Fourier curve fitting method because we used it in defining gear mesh stiffness. Equation (6) is the 8th 

Fourier series expression which we used. 
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The advantage of the function is that it is easy to represent output when input variable is not steady or 

regular. In the drive-train system, there is a phase difference because of coupled motion especially caused by 

shaft torsional displacement. As a result, phase affects differently angular displacement and velocity. It 

means that gear mesh stiffness should be variable, not a steady gear mesh model. 

Through these processes, we derived to the gear mesh stiffness model regarding the drive-train. Figure 1 

is example of gear mesh stiffness in a real drive-train system. As shown in Figure 1, gear mesh stiffness is 

not regular. It shows that the changes of gear mesh stiffness go fast as component’s angular velocity go fast. 

 

2.2 Equation of Motion using torsional dynamics 
 

As presented in Figure 2, the wind turbine drive train was modeled rotor, carrier, planetary stage, parallel 

stages, and generator. [5-12] Each component was considered rigid body. There are three main shafts which 

exist between rotor and carrier, sun gear and gear 1, gear 3 and generator. System properties including 

moment of inertia, mass and stiffness were referred according to the previous research [1]. Equation of 

motion is represented by mass, stiffness, and damping matrix. Especially, mass matrix, stiffness matrix is 

related to each moment of inertia, mass and relative displacement of two points that are connected by 

stiffness. 

 

0 5 10
4

6

8

10

12
x 10

7 Sun-Planet

Time(s)

S
ti
ff

n
e
s
s
(N

/m
)

0 5 10
6

7

8

9

10

11
x 10

7 Planet-Ring

Time(s)

S
ti
ff

n
e
s
s
(N

/m
)

0 5 10
1.5

2

2.5

3
x 10

9 Gear1-Gear2

Time(s)

S
ti
ff

n
e
s
s
(N

/m
)

0 5 10
0.6

0.8

1

1.2

1.4

1.6
x 10

7 Gear2-Gear3

Time(s)

S
ti
ff

n
e
s
s
(N

/m
)

 
 

Figure 1. Gear mesh stiffness model. 
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Figure 2. Mathematical model of wind turbine drive-train. 

 

To derive motion of equation, the Lagrange’s equation method was used. [13] It is more efficient using 

the Lagrange’s equation in the constrained system. This is because the number of generalized coordinates is 

smaller than the Newton’s method. In defining system properties, gear mesh stiffness will change in every 

time. So we reflected these change in the stiffness matrix. Sometimes, singularity problem happens because 

of mass, stiffness matrix components position and values. At deriving matrix using the Lagrange’s equation, 

the fact that the entire matrix is symmetrical should be checked. 

 Regarding relative displacement, examples of rotation and translation about z-axis in Equations (7)-(13) 

were shown. 

 

LSS rotor carrier  = −  (7) 

 

planet sun carrier carrier planet planet sun sunr r r   − = − + +  (8) 

 

planet ring carrier carrier planet planetr r  − = +  (9) 

 

1IS sun G  = −  (10) 

 

1 2 1 1 2 2  G G G G G Gr r  − = +  (11) 

 

2 3 2 2 3 3G G G G G Gr r  − = +  (12) 

 

3HSS G GN  = −  (13) 

 

  

Equations (14), (15) are total kinetic, potential energies in the system. We substituted relative displacement 

into potential energy terms.  
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Using kinetic, potential energy terms, we can derive to the Lagrange’s equation and equation of motion. 

Equations (16)-(18) are the process of determination motion of equation. Q vector is generalized forces 

including gravity and external force. 

 
L T V= −  (16) 

 

(T: kinetic energy, V: potential energy) 

˙
      j 1,2,3 36j

j
j

d L L
Q

dt qq

 



 
  − =
 
 




=  
(17) 

 

 

where ( ( ) ( ))j g extQ Q t Q t= +  

 

      jJ C K Q  + + =  (18) 

 

                                                       

2.3 Numerical Analysis 
 

If equation of motion cannot be integrated as closed form, it is difficult to get analytical solution. [14-16] 

Numerical analysis is approximated solution using assumptions. There are lots of numerical integration 

methods. We can use different numerical integration methods according to the governing equation. There are 

two main characteristics in numerical integration. First, the Numerical integration methods don't satisfy the 

time region. It is designated to satisfy divided time region Δt=T/n. Second, there are assumptions specifying 

reasonable displacement, velocity, acceleration in Δt region. Through these assumptions, we can classify 

numerical integration methods. Generally, initial displacement and velocity are known. The aim of the 

numerical method is getting responses from the start time 0 to the end time T.  

The Numerical integration method can be divided into explicit method and implicit method. Implicit 

methods include finite differential method and Runge-kutta determine present response using the Taylor 

series equation or modified equation with previous response. However, there is error and divergence 

possibility because it doesn’t consider motion of equation. Per contra, implicit methods including Houbolt, 

Wilson and Newmark method use motion of equation with previous responses when we solve differential 

equation. This method can be applied multi-degree of freedom system and non-linear system.  

According to these facts, we chose the Newmark method to solve equation of motion. The Newmark 

integration method assumes the accelerations between consequent times. Through this assumption, t+Δt of 

displacement and velocity of t+Δt can be determined equation (19), (20) 

 

( )Δ Δ1 Δt t t t t tu u u tu  + += +  − +    (19) 
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The parameters α, β represent that how acceleration of end time T affect velocity and displacement of end 

time Δt. To satisfy stability and accuracy, we can select parameters value. The sets which α = 1/6, β = 1/2 are 

same as linear acceleration method. In this research, we chose the sets which α = 1/4, β = 1/2. It means that 

the response is a constant acceleration between t and t+Δt.  
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Equation (21) is motion of equation at t+Δt. By using substituting (20), Δt tu + can be arranged into ut+Δt. And, 

substituting it into (19), we can arrange Δt tu +  into ut+Δt. Finally, we have equation Δt tu + and Δt tu + which are 

represented in ut+Δt. Through this results, we can determine ut+Δt by substituting these equations into (21). 
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Equation (22) is ut+Δt. As referred, we can determine Δt tu +  and Δt tu + as Equations (23) and (24) 

 

Δ Δ2

1 1 1
( 1

( ) 2(
(

)
) )t t tt t t tu u uu

tt
u

 
+ + − − −= −


 

 

(23) 

 

Δ (1 )t t t t t tu t tu u u + = + −  +   (24) 

 

 

2.4 Simulation 
 

Table 1 [3] shows basic information about the drive train. It was assumed that the aerodynamic torque is 

Taero = 15000 Nm, and electromagnetic torque is -30 % of aerodynamic torque which correspond 30 % wind 

turbine efficient.  

 

3 Results and discussion 
 

3.1 Angular displacement comparison between variable gear mesh and steady gear mesh 
 

There is no difference of end angular displacement values between variable gear mesh and steady gear 

mesh. In addition, general shape of angular displacement is similar, we cannot notify difference. However, 

not like regular vibration phenomenon. It has irregular pattern of difference. Figure 3 shows angular 

displacement difference between the two gear models. 
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Table 1. Data for the drivetrain configuration. 
 

Parameter Value 
Jrz – inertia of the rotor (kg∙m2) 4.18∙106 

Jcz – inertia of the carrier (kg∙m2) 57.72 

Jpz – inertia of the planet (kg∙m2) 1.12 

Jsz – inertia of the sun (kg∙m2) 0.86 

Jg1z – inertia of the gear 1 (kg∙m2) 14.32 

Jg2z – inertia of the gear 2 (kg∙m2) 1.62 

Jg3z – inertia of the gear 3 (kg∙m2) 0.20 

JGNz – inertia of the generator (kg∙m2) 93.22 

kLSSz – torsional stiffness about 

z-axis of the LSS  (Nm/rad) 
7.19∙107 

kISz – torsional stiffness about  

z-axis stiffness of the IS (Nm/rad) 
1.40∙107 

kHSSz – torsional stiffness about  

z-axis of the HSS (Nm/rad) 
0.15∙107 

krp, ksp – stiffness of the engaging tooth 

pairs in the low speed planetary gear 

stage (N/m) 

0.73∙108 

kg12 – stiffness of the engaging tooth 

pairs in the 1st high-speed parallel gear 

stage (N/m) 

2.02∙109 

kg34 – stiffness of the engaging tooth 

pairs in the 2nd high-speed parallel 

gear stage (N/m) 

0.11∙108 

rc – radius of carrier (mm) 270 

rp – radius of planet (mm) 160 

rs – radius of sun (mm) 110 

rg1 – radius of gear 1 (mm) 290 

rg2-1– radius of gear 2_1 (mm) 95 

rg2-2 – radius of gear 2_2 (mm) 185 

rg3 – radius of gear 3 (mm) 80 

α – pressure angle (°) 20 

Gear ratio 34.654 

 

The vibrations are up and down according to 0-axis line until 27 sec. On the way, irregular vibration is 

shown and the reference axis is moved from 27 sec. These phenomenon come from the coupled motion. If 

the system does not coupled each other, we cannot see the similarity between each dynamic result. The 

irregular vibration should be considered in more details, but we can find the same time point which similar 

vibration happen in Figure 3. Particularly, there are symmetric vibrations between gear mesh parts and same 

vibrations between the two parts which are connected by shaft. [17-18] 

When the drive-train operates, the stiffness matrix changes. If there is a problem including system 

defects, the stiffness matrix has singular values or components which can occur non-symmetry or non-

invertible. This fact makes sense with Figure 3.  Unlike steady gear mesh model, variable gear mesh gives 

abnormal motions. Abnormal motions affect not only system behavior, but also gear mesh contact force. So, 

it is necessary to see phenomenon about gear mesh contact force and analyze causes of abnormal motions. 
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Figure 3. Angular displacement difference between variable gear mesh and steady gear mesh model. 

 

3.2 Contact force comparison 
 

The gear mesh contact force takes place when two gear teeth meet and fall away repeatedly. According 

to gear geometry or type, the definition of contact force can be different. Generally, it derived by angular 

displacement and gear mesh stiffness. As shown previously, variable gear mesh model affects angular 

displacement. In other words, it affects the gear mesh contact force directly.  

Figure 4 shows the gear mesh contact force. There are some characteristics. First, two models have 

characteristic frequencies. Variable gear mesh has arbitrary frequency not the same as steady gear mesh. This 

phenomenon comes from angular displacement. In the steady gear mesh model, each gear’s angular 

displacement has regular intervals which means vibrations in Figure 4. However, it doesn’t make sense in 

real operations. Particularly, irregular gear mesh happens frequently, when each gear’s angular velocity goes 

fast. 

The second characteristic is magnitude of gear mesh. Variable gear mesh model shows no rules for 

magnitude of gear mesh. Especially, it does not have the gear mesh frequency. Although gear mesh 

stiffness’s phase is different, mesh stiffness’s magnitude ranges are same. This fact shows that angular 

displacement give sensitive effects on the gear mesh contact force. This fact can be well-shown by Figure 3.  

Regarding analyzing in frequency domain, gear mesh frequencies disappears in Figure 5. Instead of the 

gear mesh frequency, there are lots of small peaks which seem like noises in the range of 0-10 Hz. As each 

rotor has not constant angular velocity, the gear mesh is not periodic. In other words, gears meet irregularly, 
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so the gear mesh frequency should not be shown in Figure 5. However, the result with the steady gear mesh 

shows mesh frequencies. Even though angular velocity of the gear is not steady, the steady gear mesh cannot 

show real meshing, because it is modelled with specific angular velocity. Consequently, the gear mesh 

contact force that is function of time and angular displacement respectively, makes different plots in Figure 

5. Table 2 shows how differences in gear mesh affect dynamic results. 

As previously stated, variable gear mesh is function of angular displacement. In other words, gear mesh 

is defined by angular displacement. Actually, when an external torque applies to the rotor, each angular 

displacement doesn’t increase steadily. Gear mesh and torsional shaft stiffness make rotational delay or fast. 

In contrast to the steady gear mesh, variable gear mesh interacts more on angular displacement. As shown in 

Table. 2, each step of the angular displacement, velocity, and acceleration are function of previous values. Of 

course, Δu, Δv, and Δa are also added by previous step u, v and a in steady gear mesh model. However, these 

Δ values are not exactly considered. In the Newmark method, every terms is determined by the Taylor series 

and assumption of linearization of acceleration. If we use steady gear mesh, it means that the Newmark 

conditions are not satisfied. Through these facts, it is imperative to include variable gear mesh concept to get 

exact solution. 
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Figure 4. Angular displacement difference between the variable gear mesh and steady gear mesh model. 
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Figure 5. Fourier transformation about gear mesh contact force. 

 

Table 2. Gear mesh function effect on the system. 
 

 Steady gear mesh Variable gear mesh 

Variable of gear mesh t θ=ωt 

Effective stiffness Keff=Keff(t) Keff=Keff(θ) 
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4    Conclusion  
 

Gear mesh is one of the main characteristics in the drive-train. This affects the system by composing 

stiffness matrix. In previous work, the gear mesh model was considered by the function of constant angular 

velocity. It was used in the steady-state analysis which is designed to see results in a short time. However, 

this assumption doesn’t make sense from the real operation. This is because the transient analysis considers 

arbitrary environments such as variable angular velocity to get the real response. 

In this research, we suggested variable gear mesh model. It was derived by converting previous gear 

mesh stiffness model from constant angular velocity and time concept to angular displacement concept. 

Through this process, we obtained the complicated dynamic results. It is hard to give exact physical meaning 

but, we showed which factor makes such results and behaviors trend. As angular velocity goes fast, the gear 

mesh contact force goes irregular and is concentrated on particular values which are defined by the angular 

displacement.  

Using this gear mesh concept, we can expand it to 3-dimensional or applied model. Especially, the 

aerodynamic torque it depends on the wind velocity and blade’s drag, lift position. It means that the external 

force which applies rotor is not constant. Therefore, it should be researched by combining detailed torque 

and a drive train model including variable gear mesh in the future. 

 

Nomenclature 
T = Kinetic energy 

V = Potential energy 

L = Lagrange equation 

N = Gear ratio 

Crp, Crs = Gear contact ratio 

γrp = Planet Gear’s gear mesh angle 

q = Generalized coordinate 

[J] = Mass matrix 

[K] = Stiffness matrix 

[C] = Damping matrix 

[Q] = Generalized force 

Φ = Degree of freedom 
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