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SUMMARY 

In this paper, we present a novel discrete lattice numerical model for modelling reinforcement in 

concrete structures. Concrete behaviour is represented here by Voronoi cells and Timoshenko 

beams as cohesive links between them. Reinforcement bars are explicitly implemented as 

separate beam elements, while the connection between the concrete and reinforcement is 

established through the bond elements. Each bond element is positioned between the concrete 

node and reinforcement node inside the Voronoi cell that crosses the reinforcement bar. 

Numerical tests are performed to demonstrate the capabilities of the discrete model to predict 

the response of reinforced concrete structures in the linear elastic stage. The paper also covers 

the review of different numerical models for modelling reinforced concrete. The overview of 

research areas in the development of numerical models for reinforced concrete is divided with 

regards to the manner of modelling cracks, discretisation of the concrete domain and modelling 

of reinforcement. 

KEYWORDS: discrete lattice model; reinforced concrete; bond elements; Timoshenko beam. 

1. INTRODUCTION 

The development of reinforced concrete structures began in the 19th century, its expansion 
begins in the 20th century and continues in the 21st century. Many residential buildings, as 
well as infrastructure and energy facilities, such as bridges, power plants, and dams, are built 
from reinforced concrete. In order to make the planning of new and rehabilitation of existing 
buildings as reliable as possible, it is increasingly important to give an as accurate as possible 
description and presentation of the fracture processes within the structure caused by the static 
or dynamic load. Fractures inside the reinforced concrete structures occur due to cracking of 
the concrete accompanied by buckling and pulling out of the reinforcement. In order to 
describe the force transfer mechanisms and fractures inside the reinforced concrete structures 
in the best way possible, it is necessary to model the bond between the concrete and the 
reinforcement as a function of bond-slip, derived from the pull-out test [1, 2]. Generally 
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speaking, a bond is an interactive mechanism enabling the force transfer between reinforcing 
bars and the surrounding concrete, ensuring the composite action between these two 
materials. The bond mechanism has a significant impact on the formation and propagation of 
cracks within the construction, as well as on the ductility of the construction [3]. Therefore, the 
modelling of the bond between the reinforcement and the concrete is an important component 
in obtaining a reliable numerical model for simulating a reinforced concrete structure 
subjected to static and dynamic loads. Understanding and modelling the cracks formation, the 
yielding of reinforcement and the slipping of reinforcement in the concrete is an important 
prerequisite for maintaining and extending the lifetime of existing structures, and thus also for 
planning safer and more reliable new structures [4]. The modelling of the abovementioned 
processes and mechanisms is a complex task due to the nonlinearity and dissipation 
mechanisms accompanying these phenomena. To best describe these nonlinearities, there is a 
constant need in engineering to develop effective and accurate numerical models for solving 
nonlinear problems in the behaviour of reinforced concrete structures. Therefore, the 
development and implementation of more practical and reliable models for describing the 
cracks, discretisation of concrete and reinforcement, and constitutive laws that describe 
behaviours within the material subjected to nonlinear deformations are being worked on 
constantly. 

Accuracy in modelling reinforced concrete structures mostly depends on the manner of 
modelling of the concrete, the reinforcement, and their interaction. Reinforced concrete is a 
heterogeneous composite material with a complex behaviour pattern, which as of the forming 
of new cracks behaves like a continuum, and afterwards as a discontinuum. Each numerical 
model, be it founded in the continuum or discontinuum, has its advantages and disadvantages. 
It has been shown that under dynamic and seismic load, the dominant effect of nonlinearity is 
included in the opening and closing of cracks during the process of cyclic loading and 
reloading, and the therewith connected yielding and buckling of reinforcement, which affects 
energy loss and precise simulation of fracturing mechanisms. Therefore, discontinuum models 
for the analysis of reinforced concrete structures are lately being developed to model as 
realistically as possible the behaviour of the structure in the entire nonlinear regime until the 
fracturing. 

This paper covers the comprehensive review of existing models for modelling cracks, concrete 
discretization, and modelling of reinforcement for reinforced concrete, as well as their 
advantages and disadvantages (Section 2.). 

The novel discrete lattice model for the analysis of reinforced concrete structures in the linear 
elastic stage is presented in Section 3. Section 4 provides numerical examples that illustrate 
the new discrete model. 

The conclusion is stated in Section 5. 

2. OVERVIEW OF THE NUMERICAL METHODS APPLIED TO REINFORCED 

CONCRETE (EXISTING KNOWLEDGE IN THE RESEARCH AREA) 

The overview of research areas in the development of numerical models for reinforced 
concrete can be classified with regards to the manner of modelling cracks, discretisation of the 
concrete domain and modelling of reinforcement. 
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In the development of numerical models of concrete and reinforced concrete structures, 
special focus is on the modelling of cracks, which are the main reason fracturing within the 
structure occurs, and they have the largest impact on the durability of the structure. The 
smeared crack approach (cracks are considered to be fictitious) and the discrete crack 
approach (cracks are considered to be real discontinuities) are built into the finite element 
method and discrete models are mostly used for describing cracks that appear within the 
structures. 

Smeared crack models [5] are based on the idea that in the concrete, as a result of material 
heterogeneity and the impact of the reinforcement, many small cracks appear that turn into 
one or more main cracks in a later phase of loading. When the crack in the element appears, 
the stiffness in the direction perpendicular to the crack is reduced. In the smeared crack model, 
the weakening of the concrete is described by constitutive laws, and the local discontinuity is 
distributed (smeared) over the finite element, i.e., it is shown by means of the continuum. 
Smeared crack models can be divided into fixed crack models, where the orientation of the 
cracks remains unchanged during the calculation [6, 7], and rotating crack models, where the 
crack normal coincides with the main deformation during the entire process [8, 9]. Bažant [10, 
11] proposed microplane model for fracture analysis of concrete within the concept of 
smeared crack approach. In this model, constitutive properties are characterized by a relation 
between stress and strain components on planes of various orientations. The model has been 
successfully used for failure analysis of concrete and reinforced concrete [12, 13]. The main 
disadvantage of smeared cracks is the solution which depends on discretisation, i.e., the mesh 
size of finite elements. 

Discrete crack models are developed in parallel with the numerical models of reinforced 
concrete structures in the 1960s [14]. In these models, the cracks are modelled by separating 
the elements at their edges using double nodes which overlap when the load isn’t applied. 
Separation, i.e., crack propagation, occurs when the nodal force exceeds the tensile strength of 
the concrete and the node separates into two nodes [15]. Due to the appearance of double 
nodes, remeshing during the crack propagation is necessary, which is why automated 
remeshing procedures were later developed [16, 17]. 

Using the standard finite element method when simulating the formation of cracks, the results 
we get are mesh dependent [18-20]. In order to get mesh independent results, two different 
approaches are used for regularization. The first approach is the crack band method [21], and 
the second class of approaches is localization limiters, which according to [18] can be roughly 
divided into three main groups. These are limiters that do not require any modification of the 
theoretical formulation and introduce additional model parameters related to the size of the 
process zone, localization limiters with theoretical formulation modifications and limiters that 
enhance the theoretical formulation within the framework of classical continuum mechanics. 
The latter is characterized by the discontinuities of strain and/or displacement fields, such as 
“the extended finite element method (X-FEM)” [22] and “the finite element method with 
embedded strong discontinuities (ED-FEM)” [23]. 

The main difference between X-FEM and ED-FEM is the fact that X-FEM is considered a “nodal 
enrichment method (enriching the displacement field in nodes)” and ED-FEM is considered an 
“element enrichment method (enriching the displacement field in the element)” [24]. In the X-
FEM, the discontinuity is considered globally by adding an enriched displacement field into 
nodes, and it is impossible to obtain a condensed stiffness matrix for the element we assemble 
into a global system of equilibrium equations. There are some additional unknowns in the 
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global system, unlike the ED-FEM where the discontinuity is observed locally and where, by 
enriching the displacement field in the element itself, it is possible to get a reduced stiffness 
matrix which can be transmitted to the standard finite element assembly procedure to provide 
a global system of linearized equilibrium equations. This way, additional unknowns within the 
global system are eliminated. A continuous crack path in X-FEM can cause difficulties in 
simulating the discontinuum problem, in terms of branching and coalescence of cracks. 
Therefore, additional improvements to the method are necessary to show more complex 
cracks [25]. 

In ED-FEM, the discontinuity is implemented into the formulation in such a way that the 
displacement jump always remains localised inside the element. Therefore, “tracking 
algorithms” are not necessary and the complex cracks representation is possible without 
additional interventions within the method itself [26]. 

In discrete models, when choosing the failure criterion for each beam or spring in the domain, 
we check whether the bond has reached its ultimate value. In case it has, we remove elements 
that have reached the critical value, or describe their behaviour using the softening model [27, 
28]. By examining the failure criterion for each element in discrete models, we enable the 
formation (simulation) of numerous small cracks, which merge, coalesce and, eventually, form 
a large crack facilitating the representation (geometry) of complex cracks easier task. Also, by 
implementing ED-FEM within the discrete model, we obtain softening results that are mesh 
independent [29-32]. 

Aside from the abovementioned methods, we also need to mention the finite-discrete element 
method (FEM/DEM), which combines the finite and discrete element method and is used for 
modelling reinforced concrete exposed to dynamic and cyclical load [33]. In the FEM/DEM 
method, the behaviour of materials until the crack appears is modelled the same way as in the 
finite element method, while at the moment the tensile strength is exceeded, a discrete crack 
appears. The appearance of cracks and fragmentations of discrete elements is covered by joint 
elements inserted between those finite [34]. 

For the discretisation of the concrete domain, we can use the continuum model based on 2D 
finite elements (triangles, rectangles) or discrete models. 

The main advantage of discrete models is the adequate display of heterogeneity of material on 
the mesoscale, which enables the simulation of crack formation and propagation. Models of 
this type are suitable for the representation of fractures in heterogeneous materials, such as 
concrete, with significant calculation efficacy [35, 36]. 

Discrete models is divided into lattice models and particle models. Particle models are more 
suited for describing large displacements because, in the particle model, the distribution of the 
nodes can be changed, i.e., when putting on the load, there can be a change in the position of 
the adjacent nodes. Unlike here, in the lattice models, the nodes remain in their positions, and 
there is no change in the position of adjacent nodes within the model itself. Taking this into 
account, the lattice model is better suited for analysing small deformations [37]. 

The lattice model is defined as a discrete model in which the assembly of 1-D elements show a 
structural solid [38]. In terms of interaction between the polygons, the lattice models are 
classified as the “lattice-spring model” or the “lattice-beam model”. In the “lattice-spring 
model”, we create the cohesive bonds with beams either Bernoulli or Timoshenko, which are 
more suitable when the elements in the discrete model are short and deep. Discretisation of 
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the domain is performed using its Voronoi tessellation. Changing material properties by 
cohesive bonds between different Voronoi cells, the heterogeneity of material is achieved. 

In continuum models, regarding the manner of the reinforcement modelling, the numerical 
models of reinforced concrete is divided into three groups: smeared reinforcement model, 
discrete reinforcement model, and embedded reinforcement model. 

In the smeared reinforcement model [39, 40] there is a uniformly distributed (smeared) 
reinforcement at a particular angle over the pertaining concrete element. Such models is 
suitable when there is a complex layout of the reinforcement or the fibres for strengthening 
within the concrete. A disadvantage of this model is the bond between reinforcement and 
concrete which is considered perfect so, we are not able to show the slipping of reinforcement 
in the concrete. 

In the discrete reinforcement model, within the 2D concrete elements, we introduce a 1D 
reinforcement element. In discrete models, truss models of reinforcement match with nodes of 
concrete elements [41]. Such modelling is a problem in the practical work of engineers because 
the concrete mesh must be adjusted to the position of the reinforcement. 

In discrete reinforcement models, individual interface elements, that exhibit characteristics of 
shear bonds between reinforcement and concrete, are used for describing bond-slip behaviour 
between concrete and reinforcement [42]. 

In the embedded reinforcement model [43, 44], inside the concrete, we embed reinforcement 
independent of the finite elements mesh. For the discretisation of reinforcement, we use 1D 
elements by embedding them within 2D or 3D concrete elements. To achieve the stiffness of 
concrete elements with embedded reinforcement, it is necessary to superimpose the concrete 
stiffness matrix and the reinforcement stiffness matrix that we get by using the transformation 
matrix. In these models, the modelling of bond-slip behaviour between concrete and 
reinforcement is possible [45]. 

Besides this basic division, there is also a combination of discrete and embedded 
reinforcement models, where the reinforcement is embedded independently of the nodes of 
the finite concrete element as it is in the embedded model, and using individual interface 
elements, we describe directly the slipping between the reinforcement and concrete, as it is in 
the discrete reinforcement model [46]. 

Some examples of discrete numerical modelling of reinforced concrete or fibre reinforced 
concrete are shown below. 

To analyse the formation and propagation of the cracks in reinforced concrete structures, 
Bolander [47], Saito [28] used the Rigid Body Spring Model with implemented reinforcement. 
The reinforcement bar is positioned independently of the defined mesh. Each reinforcement 
bar is modelled by a series of truss or beam elements. In the generating process, the truss 
(beam) elements and nodes are automatically determined as intersections with springs. The 
bond between reinforcement and concrete is modelled through springs in the interface, so-
called linkage elements in the direction of the tangent to the reinforcement bar, and with bond-
slip characteristics between reinforcement and concrete. 

Schlangen [48] uses the discrete model to describe fibre reinforced concrete constructions. In 
the discrete model of concrete, fibres connected to the concrete nodes by bond elements are 
introduced. Fibres are modelled using truss or beam elements. Characteristics of bond 
elements are obtained from experimental testing by performing the pull-out test, and they 
represent the interaction between the reinforcing fibres and the concrete. 
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Gerstle et al. [49] presented the micropolar peridynamic lattice model for modelling reinforced 
concrete. In this model, each concrete particle is positioned at a distance s to the adjacent 
particles. For spacing between particles, the material grain characteristic size is chosen. 
Reinforcement is represented as the 1D micropolar peridynamic lattice model with the cross-
sectional area. Reinforcement particles are connected with the concrete particle within the 
horizon s using the same elastic interaction model as for the concrete-concrete particles. Bond-
slip is indirectly modelled and arises from the elasticity and damage of the interactions 
between adjacent concrete particles. 

In their work, Aydin et al. [50] use the discrete lattice model for modelling the reinforced 
concrete element. The mesh is created of uniformly distributed nodes separated by certain 
grid size. Each node is in interaction with the other points within a predetermined distance 
called the horizon. The reinforcement within the model is also made as a lattice model. Within 
the impact of the reinforcement node, the reinforcement nodes are connected with the 
concrete nodes. 

Discrete models are also increasingly used for modelling concrete reinforcement with fibres 
from various materials, such as wood or PVA (polyvinyl alcohol) [51, 52], and for 
reinforcement of other materials, such as glass-fibre reinforced polymer [53]. Also, discrete 
models enable us to model repairs of damaged materials by “integrating” new material into the 
existing one and modelling the bonds (bond elements) between the new and old [52]. 

3. THE REINFORCED-CONCRETE MODEL DESCRIPTION 

In this paper, concrete material is discretized with 2D Voronoi cells with Timoshenko beams as 
cohesive links between them. This type of discretization of the domain of quasi-brittle 
materials have already been developed and used in our previous works [29-32]. The novelty in 
this paper is the implementation of the reinforcement in the discrete lattice model and the 
introduction of linkage properties between the concrete and the reinforcement represented by 
new bonding elements. Reinforcement (steel bars) is explicitly modelled and positioned in the 
concrete domain irrespective of the Voronoi cells and it is discretized within the material 
domain, into a series of Timoshenko beams. Reinforcement nodes that define the length of 
each reinforcement beam element are generated in the following way. Inside each Voronoi cell 
along the steel bar that it crosses, we look for the point closest to the Voronoi node to define a 
new reinforcement node. When we get a set of reinforcement nodes, we connect adjacent 
reinforcement nodes to get reinforcement beam elements. 

In order to provide stress transfer between concrete and reinforcement, and to represent 
bond-slip, it is crucial to model the bond between these two materials. In the literature for the 
analysis of reinforced concrete structures different discrete lattice models are used. Regarding 
the manner of the interaction between the Voronoi polygons, the lattice model is classified as 
the rigid body spring “lattice-spring model” and the “lattice-beam model”. Whether “spring” or 
“beam” models are used, the implementation of special linkage elements for the connection of 
concrete and steel and describing bond-slip is common for all. These linkage elements are 
modelled using zero-size spring set in “spring models” or the beam elements in “beam models”. 
In “spring model” stiffness [28, 54] of the uniaxial spring aligned with the reinforcement axis 
controls the relative movement (slippage) between the surrounding material. The stiffness 
normal to the reinforcing bar direction, and in the rotational sense, is set to the large value 
since the relative movement is not predicted in those directions. 
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When it comes to “beam models”, Schlangen et al [48] use bond elements (beams) with 
different angles of reinforcement. The modulus of elasticity of beams representing bond 
elements is used to define stiffness properties of linkage between concrete and reinforcement. 

In the proposed model, the interaction between concrete and reinforcement is modelled with 
new bond elements represented by Timoshenko beams. Bond elements connect Voronoi nodes 
(concrete nodes) and reinforcement nodes representing realistic stress transfer and bond-slip 
between reinforcement and concrete. Bond-slip occurs during the internal cracking of the first 
layer of concrete surrounding the bar and includes the nonlinear behaviour of reinforced 
concrete, which is not taken into account in this work. Bond elements are perpendicular to the 
reinforcement. (Figure 1). Input parameters for their modelling can be determined directly 
from pull-out test or from existing bond stress-slip relationships for steel reinforcing bars. 
Beam shear modulus for bonding elements is used to represent the bonding characteristics. 
Beam elastic modulus is set to a large value, so the relative displacement (between Voronoi 
node and reinforcement node) in longitudinal direction and rotation is not expected. 

In this paper, we only consider linear elastic material behaviour and stress transfer between 
the concrete and reinforcement, so all Timoshenko beams cohesive elements are simulated to 
acquire linear elastic behaviour. Moreover, the cracking of reinforced concrete is not taken 
into account, nor is any kind of nonlinearities. 

 

 

Fig. 1  Discrete lattice model with Voronoi cells as concrete particles and cohesive links between them with 

reinforcement connected to concrete with bond elements 

3.1 KINEMATICS 

All the elements (concrete, reinforcement and bond) in this discrete model are two-node 
Timoshenko beams with length le and cross-section Ae = he ∗ 1 (1 is the thickness of the model), 
where each beam element has axial, shear and rotational degrees of freedom at the nodes 
(Figure 2). The selected Timoshenko beam element has 2-node interpolation and one Gauss 
integration point, making all deformation values constant. We write the standard kinematics 
for 2D Timoshenko beam element with length le, where vector � � �� � ��� represents 
displacement vector and 	 � �
 � ��� is the corresponding strain vector: 
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Fig. 2  Timoshenko beam with standard 6 degrees of freedom 

The finite element interpolations for displacement field is written as: 

 �
�� � ��
���� ���
���� (2) 

where Timoshenko beam displacements are interpolated with shape functions as linear 
polynomials, ��
�� � 1 � �!" , 	��
�� � �!"	. We write the interpolation of the total displacement 

field from Eq. (2) in matrix form: 

 � � %�& (3) 

with % as 3 ( 6 matrix with element shape functions ��
��	and	��
��, �& � ��� ���� . 

In order to get interpolated strain field we need derivates of shape functions -�
�� �	� �
./ , 	-�
�� � �

./	, so interepolated strain field is written as: 

 	 � 0�& (4) 

where B is the standard strain displacement matrix for the Timoshenko beam: 

 0 � 1-� 0 0 -� 0 00 -� ��� 0 -� ���0 0 -� 0 0 -� 3 (5) 

For each beam element (concrete, bond, and reinforcement), explicit form of obtained local 
(element) stiffness matrix is: 

 4
5� � 6 0�708�95:  (6) 

where C is a matrix of Timoshenko beam elastic constants: 

 7 � 1;<=> 0 00 ?<=> 00 0 ;<@>3 (7) 

;A	is a beam elastic modulus, ?A is the beam shear modulus, => � B> ∗ 1 is the beam cross 

sectional and @> � D/∗��� 	is moment of inertia (where for each concrete beam element B>	E 	is 

computed from Voronoi tessalation, for reinforcement elements B>F	 is the height of steel bar 
and for each bond element B>< is computed as the distance of two adjacent intersection points 
between the Voronoi cell and the reinforcement, as shown in Figure 3). 



J. Čarija, M. Nikolić, Ž. Nikolić: A Voronoi based discrete numerical model for reinforced concrete structures 

 ENGINEERING MODELLING 34 (2021) 2, 77-98 85 

 

Fig. 3.  Lattice model constructed from Voronoi cells and Timoshenko beams as cohesive links between 

them with implemented reinforcement connected to concrete matrix with bond elements where B>	E  

represents the height of concrete beam element cross-section and B><  represents the height of bond beam 

element cross-section 

The complete form of element stiffness matrix 4
5� is in the dimension of 6 ( 6. Concrete 
element, reinforcement element and bond element stiffness matrices contribute to finite 
element assembly procedure to provide a global set of linearized equilibrium equations, where 
nodal displacements u are computed by solving following equations: 

 =>G�H/I 
4
5��
5�� � =>G�H/I 
J
5�) (8) 

where J
5� is nodal force vector. 

4. NUMERICAL EXAMPLES 

In this section results of our numerical simulations are compared with analytical results, 
results we got by using the rules of mixtures method [55, 56], and results obtained by 
programme ANSYS [57] to analyse the accuracy of our model for modelling reinforced 
concrete in the linear elastic stage. A concrete domain is meshed with triangles using the 
Delaunay algorithm performed with GMSH [58]. Reinforcement discretization, the introduction 
of bond elements, and cross-sections for all elements (concrete, reinforcement, and bond) 
represented by Timoshenko beams are obtained and computed using a code written in Matlab. 
The first and the second simulations deal with the tension test, and the third and the fourth 
tests consider the bending test for concrete and reinforced concrete cantilever. In all 
simulations, we used the lattice element elastic stiffness parameters (for concrete) as model 
parameters 
;<,?<�, which are chosen to recover the continuum properties [32]. 

It is well known that discrete lattice models are limited in their ability to represent elastic 
continuum properties [47, 59]. Global representation of continuum properties, Young’s 
modulus, and Poisson’s ratio, in the lattice model, are obtained by adjusting local lattice 
element (beam) axial and shear stiffness and their ratio Gb/Eb [59-61]. In our previous work 
[32] uniaxial compression test was conducted in the linear elastic regime to obtain appropriate 
global continuum properties with a lattice model. From [32] we got the relationship between 
Poisson’s ratio for concrete and the ratio of the beam stiffness Gb/Eb (for ν=0.2, Gb/Eb=0.333). 
Gb is the beam shear modulus, and Eb is the elastic modulus defining axial stiffness of the 
Timoshenko beam lattice element. Eb and Gb are considered model parameters. By an 
appropriate selection of the ratio of the beam stiffness Gb/Eb, we obtained Eb/E, where E is the 
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modulus of elasticity of concrete (for Gb/Eb=0.333, Eb/E=1.25). These model parameters Eb and 
Gb extracted from [32] enable the representation of correct global continuum properties of 
concrete. 

The presented model has been implemented into the research version of the computer code 
FEAP, developed by R.L.Taylor at UC Berkeley [62]. 

4.1. TENSION TEST 

4.1.1 TENSION TEST FOR CONCRETE 

Tension tests on concrete cantilever beams of the same geometrical and mechanical 
characteristics represented with three different meshes (Mesh1-189, Mesh2-394, Mesh3-608 
lattice elements) are conducted to prove mesh dependence of the discrete lattice model for a 
different number of elements when tension is dominant (Figure 5). All three meshes are 
subjected to the same monotonic increasing tension load. The material characteristics and 
model parameters of the beam are given in Table 1. Geometry and cross-section of the 
structure are shown in Figure 4. 

Table 1  Tension test concrete: mechanical characteristics, model parameters 

Concrete 

;E � 31400	LMN O � 0.2 

;< � 39250	LMN ?< � 13083.33	LMN 

 

Fig. 4  Concrete beam tension test: Geometry and cross-section 

 
a) 

 
b) 
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c) 

Fig. 5  Tension test meshes: a) Mesh1-189 el b) Mesh2-394 el c) Mesh3-608 el 

Figure 6 shows the comparison of the analytical and numerical results for displacement at the 
end of the beam for three different mesh sizes. We can notice that the results for all three 
meshes are very similar, with that for the finest mesh nearly the same as the analytical. 

 

Fig. 6  Tension test concrete: Force-displacement relations-concrete 

4.1.2 TENSION TEST FOR REINFORCED CONCRETE 

In this example, we performed the tension test to analyse the mesh dependence on the number 
of elements for the discrete lattice model of the reinforcing beam (Figure 7). For concrete 
discretization, the meshes used are the same as in the first example (Figure 5). In each 
concrete mesh, we introduced four steel bars (4Φ12mm), so we got new meshes (Mesh1-255 
el, Mesh2-526 el, Mesh3-840 el) that contain new elements (steel and bond elements), as 
shown in Figure 8. All three meshes are subjected to the same monotonic increasing tension 
load. The material characteristics and model parameters of the beam are given in Table 2. 

Table 2  Tension test reinforced concrete: mechanical characteristics, model parameters 

Concrete Steel Bond(Interface) 

;U � 31400	LMN, O � 0.2 ;V � 210000	LMN, O � 0.3  

;< � 39250	LMN, ?< � 13083.33	LMN 

;< � 210000	LMN, ?< � 80769.23	LMN 

;< � 70000	LMN, ?< � 15000LMN 
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Fig. 7  Reinforced concrete beam tension test :Geometry and load of structure 

 

 
a) 

 
b) 

 
c) 

Fig. 8  Tension test meshes: a) Mesh1-255 el b) Mesh2-526 el c) Mesh3-840 el 

 

With the goal of validating the behaviour of our reinforced concrete beam, we used the rule of 
mixtures (ROM) method. This is a very simple and rationally accurate way of predicting the 
elastic modulus of a composite based on the volume fractions of the components (i.e. fibres 
and matrix) and their corresponding elastic modulus, especially when all the fibres (steel bars) 
are aligned to the loading direction. Elastic modulus of the composite (reinforced concrete) 
obtained using ROM was used to compute horizontal displacement of the beam. We observe a 
very good performance of the proposed model and very satisfying results of the numerical 
simulations with respect to the result we got using the rules of mixtures method (Figure 9). 
Results from all three meshes are very similar and show good agreement with the result 
obtained using ROM. 
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Fig. 9  Tension test reinforced concrete: Force-displacement relations 

4.2 BENDING TEST 

In the following examples, first, we conduct the bending test for the concrete cantilever beam 
and then for the reinforced concrete cantilever beam with the same geometry to analyse mesh 
dependence on numbers of elements for discrete lattice model when the influence of bending 
is dominant. 

4.2.1 BENDING TEST FOR CONCRETE 

In this simulation, the concrete cantilever is subjected to monotonically increasing 
concentrated force at the end of the beam (Figure 10). Geometry and boundary conditions of 
the specimen are given in Figure 11. Three different meshes, the first with 186 (Mesh1), the 
second with 380 (Mesh2), and the third with 655 (Mesh3) Timoshenko beam elements, were 
used in this simulation (Figure 11). The material characteristics and model parameters of the 
beam are given in Table 3. 

Table 3  Bending test concrete: mechanical characteristics, model parameters 

Concrete 

;E � 31400	LMN O � 0.2 

;< � 39250	LMN ?< � 13083.33	LMN 

 

Fig. 10  Concrete beam bending test: Geometry and cross-section 
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a) 

 
b) 

 
c) 

Fig. 11  Bending test meshes: a) Mesh1-186 el b) Mesh2-380 el c) Mesh3-655 el 

In Figure 12, the force-displacement relations for the three meshes and appurtenant analytical 
result are given. As we can see, results for all three meshes are very similar, and the finest 
mesh (Mesh3) result is very close to analytical. These results are equivalent to the results from 
previous simulations in which the accuracy of the result matches the number of the elements 
in a discrete lattice model (for finer mesh we get more accurate results). 

 

Fig. 12  Bending test concrete: Force-displacement relations 

4.2.2 BENDING TEST FOR REINFORCED CONCRETE 

In this example, we study the capabilities of the proposed model to provide a reliable response 
for the bending test. Geometry and boundary conditions of the beam are given in Figure 13. 
This test is an extension of the previous one in which we investigated the concrete cantilever 
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beam. In this simulation, we implemented two steel bars (2Φ12mm) into each concrete mesh 
that were for the bending test of concrete. It results in three new meshes (Mesh1-243 el, 
Mesh2-429el, and Mesh3-724 el) where each mesh contains new elements (bond and steel 
elements represented by Timoshenko beams), as shown in Figure 14. All three meshes are 
subjected to the same force at the end of the beam. The material characteristics and model 
parameters of the beam are given in Table 4. 

Table 4  Bending test reinforced concrete: mechanical characteristics, model parameters 

Concrete Steel Bond(Interface) 

;E � 31400	LMN, O � 0.2 ;F � 210000	LMN, O � 0.3  

;< � 39250	LMN, ?< � 13083.33	LMN 

;< � 210000	LMN, ?< � 80769.23	LMN 

;< � 70000	LMN, ?< � 15000	LMN 

 

 

Fig. 13  Reinforced concrete beam bending test: Geometry and cross section 

 

 
a) 

 
b) 

 
c) 

Fig. 14  Bending test meshes: a) Mesh1-243 el b) Mesh2-429 el c) Mesh3-724 el 
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Fig. 15  Bending test reinforced concrete: Force-displacement relations 

The results of the numerical simulation and corresponding macroscopic responses for three 
different meshes with the numerical result obtained by ANSYS are shown in Figure 15. As we 
can see in Figure 15, the response of the three meshes are pretty similar, and they almost 
match the results obtained by ANSYS. 

5. CONCLUSION 

In this work, we have reviewed some previous research studies on numerical modelling of 
reinforced concrete structures and presented a novel discrete lattice model that can simulate 
the behaviour of reinforced concrete structures in the linear elastic stage. 

In the first part of the paper, we have provided a brief description of existing methods for 
numerical modelling, considering their positive and the negative sides. 

In the second part, we presented a new discrete lattice model in which we introduce 
reinforcement into the concrete matrix in a model of this kind for the first time. Novelty is the 
introduction of bond and reinforcement elements with their geometric and material properties 
into the discrete lattice model. It is based on Voronoi tessellation of the concrete domain and 
Timoshenko beams as lattice elements. Reinforcement is modelled using Timoshenko beams 
and bond elements, which represent stress transfer between concrete and reinforcement. 
Reinforcing bars can be positioned independently of the geometry of the existing concrete 
mesh which makes this approach practical to analyse and design reinforced concrete 
structures. In order to demonstrate the capability of the model, we conducted two tests, the 
tension and the bending test for the cantilever beam. In each test, three different meshes 
(coarse, medium, and fine mesh) were used, and their results were compared with analytical 
results, results obtained using the rule of mixtures method and numerical results obtained by 
programme ANSYS. Also, we compared results in terms of load/displacement for reinforced 
concrete and concrete cantilever beam for tension test and later for bending test. It presents 
how the proper connection of steel and concrete nodes by using bond elements enables force 
transfer between these two materials and enables this model to behave like composite 
material. The discrete lattice model shows a good agreement with analytical results, results 
obtained using the rule of mixtures method and numerical results obtained by programme 
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ANSYS so it can be useful in the future analysis of reinforced concrete structures until the 
complete failure. However, this is the first step in the development of a new discrete lattice model 
for analysis of reinforced concrete structure in whch we presented the introduction of 
reinforcement into the concrete matrix focusing on the geometry of the model and how to connect 
steel and concrete nodes properly. At the next stage, in the development of this model, all 
elements (concrete, bond, and steel) are represented with enhanced Timoshenko beams (we 
introduce discontinuities in the generalized displacement field of the 2D Timoshenko beam), 
providing nonlinear behaviour of all elements and model able to capture concrete cracking and 
tensile stress redistribution from concrete to reinforcement, as well as bond-slip behaviour. 
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