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DESIGN AND EXPERIMENTAL VALIDATION OF A CONTROL 
SYSTEM FOR DYNAMIC POSITIONING OF A SHUTTLE TANKER 

Summary 

In this paper, a dynamic positioning performance evaluation procedure for a shuttle 
tanker is discussed through experimental and numerical analyses. A dynamically positioned 
shuttle tanker with six thrusters (three tunnel thrusters, two azimuth thrusters, and one main 
propeller with a rudder), operated in deep water condition was considered. A conventional 
proportional-derivative control algorithm was adopted for the main feedback control 
algorithm to reduce the position error, and an anti-windup integral control algorithm was 
introduced to suppress the steady-state error in the dynamic positioning operation. A 
minimum power consumption algorithm, based on the Lagrange multiplier method, was 
utilised in the thrust allocation for the thruster systems. An extended Kalman filter was used 
in the experiment to separate the low-frequency motion from the measured vessel motion. A 
set of experiments and numerical analyses were conducted in this study under the same 
environmental conditions and with the same control methodology. The dynamic positioning 
operation results obtained by the experiments and numerical simulations were compared to 
evaluate the station-keeping performance of the dynamically positioned shuttle tanker.  

Key words: Dynamic positioning, shuttle tanker, anti-windup integral control, model 
test, simulation, deep water condition 

1. Introduction 
The offshore industry faces challenges of moving toward deeper waters in order to find 

more abundant reservoirs. Moreover, marine operations in the offshore industry are getting 
more complicated to achieve better operability. Under these circumstances, dynamic 
positioning (DP) techniques are becoming more common and necessary in the offshore 
industry. A moored floating production storage and offloading (FPSO) unit offloads oil and 
gas to a DP shuttle tanker, which then transfers them to the primary storage near the 
consumer. A supply vessel that is normally a shuttle tanker uses dynamic positioning 
techniques to follow the moving target vessel, i.e. an FPSO. The FPSO switches from a 
mooring configuration mode with a submerged turret loading (STL) system to a dynamic 
positioning mode in case of heavy environmental conditions. These are typical examples of 
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the usage of DP techniques [1]. To perform the offloading of oil and gas from an FPSO to a 
shuttle tanker, it is important to have enough stand-alone station-keeping performance using 
the DP system for any vessel. In this study, a systematic and comprehensive performance 
evaluation procedure of a DP system for a shuttle tanker is presented.   

Experiments on DP vessels are commonly combined with simulations in order to 
evaluate the DP performance of the vessels in irregular waves, current, and wind conditions. 
The evaluation of DP performance is an element of the design procedure for DP vessels. In 
the first stage of designing a DP vessel, a static capability examination of the DP system is 
performed under pre-specified environmental conditions to decide on the capacity of the 
thruster systems. Then, model testing and time-domain simulations are carried out with the 
decided thruster systems to assess the dynamic performance of the DP vessel. Through this 
procedure, the DP vessel is designed, and the performance of the DP system is evaluated [2]. 

In general, a DP control system consists of a low-frequency (LF) motion estimator, a 
controller, and a thrust allocator. The LF motion estimator separates LF motion from the 
measured motion of a vessel. When a vessel experiences external ocean forces induced by 
wind, current, and waves, the vessel is influenced by the wave frequency motion, the slow 
varying motion, and the mean drift motion. The DP system attempts to reduce the slow 
varying motion and the mean drift motion components; these two combined motions are 
called the LF motion of the vessel. It is known that the control of the high-frequency (HF) 
motion (or wave frequency motion) requires an enormous amount of power and causes extra 
wear and tear in the mechanical system of the thrusters, which is not a practical solution at all. 
Thus, the DP control system does not need to treat the HF motion. Therefore, the LF motion 
estimator is required in the DP control system. In this study, an extended Kalman filter (EKF) 
was implemented in the DP control system for the model test.  

A proportional-derivative (PD) control loop with a wind feed-forward control algorithm 
is commonly used in DP control systems. Such a wind feed-forward control is achieved using 
wind sensor measurements; it can compensate for steady wind force effects which would 
otherwise cause a steady-state error in DP operation [3-5]. Current force effects are generally 
not considered explicitly in the feed-forward control loop because measurements of current 
cannot be obtained within a sufficient margin of error by using existing current sensors. Since 
the current and the waves are strongly coupled near a floating vessel, it is difficult to measure 
the current independently. Nowadays, techniques for estimating LF force components (which 
are caused by the wind, current, and 2nd order wave forces) from the measured vessel motion 
can sometimes be used [6, 7]. An anti-windup integral (I) control algorithm was introduced in 
this study to avoid the steady-state mean drift error which is caused by the wind, current, and 
2nd order wave forces [8].  

A DP vessel usually has a larger number of thrusters than the degrees-of-freedom 
(DOFs) of the vessel motion. This overdetermined characteristic of the DP vessel means that 
there is more than one solution to the thrust allocation problem. Thus, the thrust allocation 
problem is considered as an optimization problem under several constraints. In this study, a 
minimum power consumption algorithm, based on the Lagrange multiplier method, was 
implemented for the thrust allocation problem. 

The aim of this study is to present a systematic and comprehensive performance 
evaluation procedure of a DP system for a shuttle tanker, which includes control system 
design, numerical simulations, and model experiments. The remainder of this paper is 
organized as follows. The equations of motion for a DP vessel are briefly summarized in the 
next section. The DP control algorithm and thrust allocation algorithm used in this study are 
introduced. The model test setup and the framework for the numerical simulation are also 
given. The results obtained by the model testing and numerical simulation are discussed. 
Furthermore, the station-keeping performance of the DP shuttle tanker is discussed with 
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reference to the experimental and numerical simulation results. A series of model tests was 
conducted in the Ocean Engineering Basin (OEB) of Korea Research Institute of Ships and 
Ocean Engineering (KRISO). 

2. Equations of motion for a DP vessel 
Low-frequency equations of motion for a floating vessel are generally used in the 

design and simulation of DP vessels. The DP operation is a function of a vessel which makes 
the vessel keep its position in a designated, specific area, and overcome environmental forces 
by using the action of the thruster system. Thus, only horizontal motions in three degrees of 
freedom (3 DOF; the surge, sway, and yaw motions) were considered in the DP analysis in 
the deep water condition. 

 
Fig. 1  Coordinate system for the dynamic positioning vessel: the earth-fixed frame {e}, the body-fixed frame 

{b}, and definition of the environmental force directions 

In this paper, a mathematical model of a shuttle tanker was considered for DP operation. 
An earth-fixed frame {e} and a body-fixed frame {b} were defined, as shown in Figure 1, to 
establish the low-frequency equations of motion of a vessel. It has been assumed that the 
origin of the body-fixed frame coincides with the centre of gravity of the vessel while its axes 
are along the principal axes of inertia of the vessel. Hence, the kinematic equation of a vessel 
on the horizontal plane can be written as equation (1). Here, 𝜼 is a column vector representing 
the position of the vessel in {e} and the elements 𝑥, 𝑦, 𝜓 represent the position and the 
heading angle in the 𝑥 -axis and 𝑦 -axis and about the 𝑧 -axis. The vector 𝝂 is also a column 
vector, meaning 3 DOF velocities in {b}, and the elements 𝑢, 𝑣, 𝑟 represent the velocity in the 
surge, sway, and yaw directions, respectively. The variable 𝑱 is a Jacobian matrix defining the 
transform from the motion in {b} to the motion in {e}. Finally, 𝜼 is the time derivative of 𝜼. 𝜼 = 𝑱𝝂  (1) 

where, 𝜼 = 𝑥 𝑦 𝜓 ,  
 𝝂 = 𝑢 𝑣 𝑟 , 

 𝑱 = cos 𝜓 − sin 𝜓 0sin 𝜓 cos 𝜓 00 0 1  .  
It is assumed that the velocity of the DP vessel is near zero. This assumption ensures 

that the added mass and damping at zero frequency affect the whole DP operation. Hence, the 
dynamic equation of the DP vessel can be formulated as follows:   
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Assuming the longitudinal 𝑥 𝑧 -plane symmetry in {b}, the individual components in the 
dynamic model can be written as follows:  

𝑴 + 𝒂(0) = 𝑚 0 00 𝑚 𝑚𝑥0 𝑚𝑥 𝐼 + −𝑋 0 00 −𝑌 −𝑌0 −𝑌 −𝑁 ,    (3) 

𝑪 (𝝂) = 0 0 − 𝑥 𝑟 + 𝑣0 0 𝑚𝑢𝑥 𝑟 + 𝑣 −𝑚𝑢 0 ,  (4) 

𝑪 (𝝂 ) = 0 0 𝑌 𝑣 + 𝑌 𝑟0 0 −𝑋 𝑢−(𝑌 𝑣 + 𝑌 𝑟) 𝑋 𝑢 0 ,  (5) 

where,     𝝂 = 𝑢𝑣𝑟 = 𝑢 − 𝑢𝑣 − 𝑣𝑟 = 𝑢 − 𝑉 cos(𝛽 − 𝜓)𝑣 − 𝑉 sin(𝛽 − 𝜓)𝑟 ,  

𝑫(0) = −𝑋 0 00 −𝑌 −𝑌0 −𝑁 −𝑁 ,  (6) 

𝒅𝑵𝑳(𝝂 ) = − 𝜌  𝑉 𝐵𝑇𝐶 (𝛾 )𝐿𝑇𝐶 (𝛾 )𝐿 𝑇𝐶 (𝛾 ) + 0𝑑𝑑 .   (7) 

In equation (3), 𝑴  is the rigid body mass matrix expressed in {b}, 𝑚 is the rigid body 
mass, 𝑥  is the position of the center of gravity (COG) expressed in {b}, and 𝐼  is the rigid 
body inertia with respect to the 𝑧 axis of the body-fixed frame {b}. It should be noticed that 
the body-fixed frame has not been positioned in the COG. Then 𝒂(0) is the added mass 
matrix at the zero frequency which is calculated from the 3D potential code of the Korea 
Research Institute of Ships and Ocean Engineering (KRISO) [9]. The variables 𝑋 , 𝑌 , 𝑌 , 𝑁  
are coefficients for the surge added mass due to surge acceleration, sway added mass due to 
sway acceleration, sway added mass due to yaw acceleration, and yaw added mass due to yaw 
acceleration, respectively. This added mass coefficient expression is in accordance with the 
notation of the Society of Naval Architects and Marine Engineers (SNAME) [10]. The term 𝑪 (𝝂) in equation (4) is the coefficient matrix of the Coriolis and the centrifugal force 
caused by the rigid body motion. In equation (5), 𝑪 (𝝂 ) is the Coriolis and centrifugal force 
coefficient matrix due to the added mass, which generates the nonlinear Munk moment by 
multiplication with the relative velocities of the vessel. The Munk moment is known to have 
destabilizing effects on the yaw motion of the vessel. The vessel velocity relative to the 
current flow is expressed as 𝝂  while the variables 𝑢  and 𝑣  are the ocean current velocity 
components expressed in {b}. The current speed and the direction in {e} are defined as 𝑉  and 𝛽 , respectively. In equation (6), 𝑫(0) is the linear damping coefficient matrix. The 
coefficients in the matrix are in accordance with the notation of the SNAME; 𝑋 , 𝑌 , 𝑌 , 𝑁 , 𝑁  are respectively the surge damping coefficient due to surge velocity, sway damping 
coefficient due to sway velocity, sway damping coefficient due to yaw velocity, yaw damping 
coefficient due to sway velocity, and yaw damping coefficient due to yaw velocity. In 
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equation (7), 𝒅𝑵𝑳(𝝂 ) is the nonlinear damping force vector calculated by the Oil Companies 
International Marine Forum (OCIMF) method and the cross-flow drag theory [11-14]. Here, 𝜌  is the density of water, 𝑉  is the relative speed of the current, and 𝐿, 𝐵, 𝑇 are the length, 
breadth, and draft of the vessel, respectively. The terms 𝐶 (𝛾 ), 𝐶 (𝛾 ), 𝐶 (𝛾 ) are the 
current force and moment coefficients for the surge, sway, and yaw directions with the  angle 
of attack of the current 𝛾 . Note that the current force coefficients should be estimated before 
applying nonlinear current damping; this can be done through the basin model test, the wind 
tunnel test, or proper estimation, such as interpolation with the length and width of a vessel 
based on the OCIMF data and calculation by computational fluid dynamics. Here, the relative 
speed of the current   𝑉  and the angle of attack of the current 𝛾  are defined as follows:  𝑉 = 𝑢 + 𝑣 = (𝑢 − 𝑢 ) + (𝑣 − 𝑣 ) ,    (8) 𝛾 = tan = tan     .      (9) 

The nonlinear damping forces caused by the cross-flow along the vessel hull are given as  𝑑  
and 𝑑 . Here,  𝑑  and 𝑑  are the cross-flow damping force and moment in the sway and yaw 
directions, respectively, and the formulations are given as follows:  𝑑 = 𝜌 𝑇𝐶 (𝑣 − 𝑟𝑥)|𝑣 − 𝑟𝑥| − 𝑣 |𝑣 |  d𝑥⁄⁄ ,    (10) 

𝑑 = 𝜌 𝑇𝐶 𝑥 (𝑣 − 𝑟𝑥)|𝑣 − 𝑟𝑥| − 𝑣 |𝑣 |  d𝑥⁄⁄ .    (11) 

In these equations, 𝐶 (𝜋 2⁄ ) is the current force coefficient, i.e. drag coefficient, in the sway 
direction at a 90° incident flow angle.  

The wind force 𝝉  has highly nonlinear characteristics. Generally speaking, the 
OCIMF method is used for wind force generation as shown in equation (12).  

𝝉 = − 𝜌  𝑉 𝐴  𝐶 , (𝛾 )𝐴 𝐶 , (𝛾 )𝐴 𝐿𝐶 , (𝛾 ) ,     (12) 

where,  𝑉 = (𝑢 − 𝑢 ) + (𝑣 − 𝑣 ) ,  

 𝛾 = 𝑡𝑎𝑛     ,  

 𝑢 = 𝑉 cos(𝛽 − 𝜓), 
 𝑣 = 𝑉 sin(𝛽 − 𝜓). 

Here, 𝜌  is the air density, 𝑉  is the relative speed of the current, and 𝐴 , 𝐴  are the 
projection areas of the vessel hull above the water line at the front and the side, respectively. 
The terms 𝐶 , (𝛾 ), 𝐶 , (𝛾 ), 𝐶 , (𝛾 ) are the wind force and moment coefficients for the 
surge, sway, and yaw directions with the angle of attack of the wind 𝛾 . It should be noted 
that the wind force and moment coefficients can be similarly estimated through the wind 
tunnel test, or proper estimation, such as interpolation with the length and width of a vessel 
based on the OCIMF data and calculation by computational fluid dynamics. The variables 𝑢  
and 𝑣  used in expressing 𝑉  and 𝛾  are the wind velocity components expressed in {b}. 
The variable 𝑉  is the wind speed and 𝛽  is the wind direction expressed in {e}.  

In the simulation, slow-drift 2nd order wave forces are considered. The slow-drift 2nd 
order wave force is constructed with the quadratic transfer functions (QTFs), difference 
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frequencies, and phases [15]. The QTFs are calculated from the KRISO 3D potential flow 
solver. Most of the hydrodynamic codes generate QTF sets with discrete heading angles. 
Thus, an interpolation method for QTFs should be considered for use in the simulation code. 
The frequency differences and phase differences are calculated from a wave generation 
module. The equation of the slow-drift 2nd order wave force 𝝉  in the deep water condition 
is formulated as follows:  𝜏 = ∑ ∑ 𝐴 𝐴 𝑄𝑇𝐹 𝜔 , 𝜔 , 𝜓 cos(𝜔 𝑡 + 𝜀 )+𝑄𝑇𝐹 𝜔 , 𝜔 , 𝜓 sin(𝜔 𝑡 + 𝜀 ) ,     (13) 

where,  𝜔 = 𝜔 − 𝜔 ,   
 𝜀 = 𝜀 − 𝜀 ,   
 𝜓 = 𝛽 − 𝜓,   

The term 𝜏  represents the slow-drift 2nd order wave forces and moment for the 𝑖  motion 
among surge, sway, and yaw; 𝐴  and 𝐴  are the wave amplitude components at the 𝑗  
frequency and 𝑘  frequency components, respectively. These wave amplitude components 
are defined in the generation of irregular waves from a given wave spectrum. The term  𝑄𝑇𝐹 𝜔 , 𝜔 , 𝜓  is the real part of QTF for the 𝑖  motion and 𝑄𝑇𝐹 𝜔 , 𝜔 , 𝜓  is the 
imaginary part. Note that QTF is a function of the two frequency components 𝜔 , 𝜔 , and the 
relative vessel heading 𝜓  with respect to the wave direction. The frequency components, 𝜔 , 𝜔 , are the wave frequency defined in the generation of irregular waves, like 𝐴  and 𝐴 . The 
term 𝛽  is the wave direction expressed in {e}. On the other hand, the vessel heading 𝜓 is 
not predefined. Therefore, generally, the interpolation of QTF with respect to 𝜓  is required in 
the wave generation in the time domain simulation. The variables 𝜔  and 𝜀  are the frequency 
difference and the phase difference between the 𝑗  component and 𝑘  component of 
frequency and phase. It should be noticed that all the frequencies and phase components are 
the same frequency and phase components in the generation of wave. According to equation 
13, it can be easily seen that the 2nd wave force is proportional to the square of the wave 
amplitude.  

3. DP control algorithm 
In the experiment, the extended Kalman filter (EKF) was used for the LF motion 

estimator. The LF motion of the vessel estimated by the EKF was used as the input to the DP 
controller. On the other hand, in the numerical simulation, only the 2nd order wave force was 
considered. Therefore, it should be noted that there was no need to use any filtering 
technology to get the low-frequency motion of the vessel in the simulations. 

PD control algorithms are commonly used in DP control systems. The proportional (P) 
control action behaves like stiffness, and the derivative (D) control action works like a 
damping effect in the mooring system of the vessel. Thus, it is reasonable to estimate the PD 
gains from the expected system responses by using calculations for a mass-spring-damper 
system in the first step of gain tuning for the DP controller. However, an unaltered integral (I) 
controller is rarely used in DP control systems because the I controller easily makes the 
system divergent. This characteristic of the I controller is a result of the integration of 
fluctuating errors; the I controller response is more rapid than the response of the control 
system. Thus, in this study, an anti-windup I controller was introduced to suppress steady-
state errors. Equation 14 gives the error definition in the DP control. In the case of the DP 
operation of the shuttle tanker, the bow loading system (BLS), which is generally located in 
the fore of the vessel, was the control target point for maintaining a designated position in 
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{e}. Equation 15 shows a standard PID control algorithm while equation 16 shows the PD 
control algorithm with the introduced anti-windup I control algorithm. The proposed anti-
windup I control algorithm uses the average of errors in a confined time window, and thus it 
did not respond to fast varying error components. It is recommended that the size of the 
confined time window 𝑇  of the anti-windup I controller should be set to a larger value than 
the natural period of the control system response to avoid instability of the system. 𝒆 = 𝜼 − 𝜼,    (14) 𝝉 = 𝑲 𝒆 + 𝑲 𝒆 + 𝑲 𝒆 d𝑡,    (15) 𝝉 = 𝑲 𝒆 + 𝑲 𝒆 + 𝑭 ,      (16) 

where,  𝑭 = 0, 𝑖𝑓   𝑡 = 0      ,𝑭 + (𝑲 𝑇⁄ ) 𝒆 d𝑡 , 𝑖𝑓   𝑡 = 𝑛𝑇   , 𝑛 = 1,2,3, ⋯𝑭 𝑖𝑓   𝑡 𝑛𝑇   , 𝑛 = 1,2,3, ⋯      
The term  𝒆 is the position error of the vessel, and 𝜼  is the target position vector of the BLS; 𝝉 represents  the calculated control forces and the moment in {b}, which is a combination of 
the counteracting forces and moment needed to maintain the  planar position of the vessel 
under the varying ocean environmental conditions;  𝒆 is the derivate of position error with 
respect to time; 𝑲 , 𝑲 , and 𝑲  are the P, D, and I gains for the PD control algorithm; 𝑭  
represents I control forces and the moment with the proposed anti-windup I control algorithm; 
the variable 𝑇  is the size of the time window of the error integration for the I control 
algorithm; the variable 𝑛 is the number of the time window repeats. 

4. Thrust allocation algorithm 
A minimum power consumption algorithm based on the Lagrange multiplier method is 

used for thrust allocation in this study. The counteracting forces and moment required to 
maintain the position of the DP vessel within the predefined area for safe marine operations 
were calculated from the PD control algorithm with an anti-windup I control algorithm. Most 
DP vessels are over-actuated, which implies that the vessel has a larger number of actuators 
than the number of DOFs of the vessel motion. In this over-actuated case, there is more than 
one solution to matching the required forces and the forces generated by the action of the 
thrusters. Therefore, the thrust allocation problem is regarded as an optimization problem.  

 
Fig. 2  Example of a simple thruster configuration: two azimuth thrusters 

Figure 2 shows a simple thruster configuration with two azimuth thrusters. As stated 
above, the equilibrium condition between the required forces and moment calculated by the 
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controller and the forces and moment generated by the action of the thrusters can be 
formulated as in equation 17. This equation is called the actuator model.  𝝉 = 𝑋 𝑌 𝑁 = 𝑻𝒇 = 𝑻𝑲𝒖,             (17) 

where,  𝑻 = 1 0 1 00 1 0 10 𝑙 0 −𝑙 ,    

 𝒇 = 𝑓 𝑓 𝑓 𝑓 , 

 𝑲 = ⎣⎢⎢⎢
⎡𝑎 0 0 00 𝑎 0 00 0 𝑎 00 0 0 𝑎 ⎦⎥⎥⎥

⎤
, 

 𝒖 = 𝑢 𝑢 𝑢 𝑢 . 

The term 𝝉 is the required forces and moment vector expressed in {b}, the elements X, Y, and 
N are the required forces and moment calculated by the DP controller for the surge, sway, and 
yaw directions, respectively; 𝑻 is the thruster configuration matrix and the variables 𝑙 , 𝑙  
are the distances of the azimuth thruster force vectors 𝒇 , 𝒇  in the 𝑥  direction from the 
centre of {b}. In order to consider all kinds of thrusters in the thruster allocation, the 
generalized thrust that represents thrust in the x- and y- components in {b} is defined as 𝒇. 
Here, the variables 𝑓 , 𝑓 , 𝑓 , and 𝑓  are the force components in the 𝑥  and 𝑦  directions 
in {b} for the azimuth thruster force vectors 𝒇  and 𝒇 , and 𝑲 is the thrust coefficient matrix. 
The variables 𝑎 , 𝑎  in 𝑲 are the  thrust-revolutions per second  (RPS) relationship 
coefficients of the thruster. Generally, the propeller rotational speed has a quadratic 
relationship with the thrust generated by the propeller. The thrust-RPS relationship coefficient 
is generally obtained by the bollard pull test. Finally, 𝒖 is the control input command for 
thrusters in the 𝑥  and 𝑦  directions in {b}. It should be noted that the propeller rotational 
speed (𝑢 , 𝑢 ) and the azimuth angle (𝛼 , 𝛼 ) are calculated from 𝑢 , 𝑢 , 𝑢 , and 𝑢 , as 
shown in equations 18a and 18b.  𝑢 = 𝑢 + 𝑢  , 𝛼 = tan 𝑢 𝑢 ,          (18a) 

𝑢 = 𝑢 + 𝑢  , 𝛼 = tan 𝑢 𝑢 ,        (18b) 

From the actuator model, note that the thruster configuration matrix 𝑻 can be square or 
non-square. This implies that the number of control inputs is equal to or greater than the 
number of DOFs of the vessel motion. It is possible to find an optimal distribution of control 
forces for each direction by using the explicit method. This thrust allocation problem can be 
considered as an unconstrained least-squares optimization problem, which is written in 
equation 19.  𝐽 = min𝒇 𝒇 𝑾𝒇 subject to: 𝑻𝒇 − 𝝉 = 𝟎,         (19) 

where 𝑾 is a diagonal positive definite weighting matrix. Normally, the weighting matrix 𝑾 
has an inverse relationship with the maximum thrust for each thruster. Thus, the weighting 
effect can distribute the required thrust within the capability of each thruster.  
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To solve the optimization problem, let’s consider the Lagrange function for the cost 
function formulation. 𝐿(𝒇, 𝝀) = 𝒇 𝑾𝒇 + 𝝀 (𝑻𝒇 − 𝝉),        (20) 

where 𝝀 is a vector of Lagrange multipliers.  

To find the extreme value of the Lagrange function, set  (𝒇,𝝀) 𝒇 𝝀 = 2𝑾𝒇 − 𝑻 𝝀𝝉 − 𝑻𝒇 = 0.      (21) 

After rearranging equation 21 with the vectors 𝒇 and 𝝀, the linear matrix equation can be 
obtained as  2𝑾 −𝑻𝑻 𝟎 𝒇𝝀 = 𝟎𝝉 .       (22) 

Hence, the optimal generalized thrust can be calculated with an inverse of the matrix as 
follows:  𝒇𝝀 = 2𝑾 −𝑻𝑻 𝟎 𝟎𝝉 .      (23) 

Considering the relationship of the generalized thrust 𝒇 and the control input command 𝒖, 
equation 23 can be reformed as equation 25.  𝒇𝝀 = 𝑲𝒖𝝀 = 2𝑾 −𝑻𝑻 𝟎 𝟎𝝉 ,     (24) 𝒖𝝀 = 𝑲 𝟎𝟎 𝑰 2𝑾 −𝑻𝑻 𝟎 𝟎𝝉 .    (25) 

Therefore, the control input command 𝒖 can be simply calculated by using equation 25 and 
the azimuth angle, and the rotational speed of each propeller is calculated using equation 18. 
However, this thrust allocation law should be changed in the case of a thruster failure or a 
thruster configuration change. If the azimuth thruster in the fore part was changed to a side 
tunnel thruster, which generated force in sway only, then equation 17 would change as shown 
in equation 25. The same thrust allocation algorithm from equation 18 through equation 25 
can be applied. There is only one difference in applying equation 18 because the thrust of the 
tunnel thruster is not defined as the Euclidian norm. 𝝉 = 𝑋 𝑌 𝑁 = 𝑻𝒇 = 𝑻𝑲𝒖,      (26) 

where,   𝑻 = 0 1 01 0 1𝑙 0 −𝑙 ,    

 𝒇 = 𝑓 𝑓 𝑓 , 

 𝑲 = 𝑎 0 00 𝑎 00 0 𝑎 , 

 𝒖 = 𝑢 𝑢 𝑢 . 
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The term 𝒇 𝑾𝒇 in equation 20, which is the cost function for the thrust allocation in 
this study, is the square of the force and is often considered as power. Let’s consider a 
negative damping force, where the force is a product of the negative damping coefficient and 
the velocity of the body as shown in equation 27.  𝒇 = 𝑨𝝂,        (27) 

where 𝑨 is the negative damping coefficient matrix, which is assumed to be a diagonal matrix, 𝝂 is the time derivative of the velocity vector 𝝂 of the vessel . Thus, the term 𝒇 𝑾𝒇 in the 
cost function can be regarded as equivalent to the product of force and velocity, as shown in 
equation 28. 𝑫 = 𝑾𝑨 is a constant and diagonal matrix and the vectors 𝒇 and 𝝊 are in 
parallel. This clearly shows that the square of forces 𝒇 𝑾𝒇 is proportional to the mechanical 
power 𝒇 ⋅ 𝝂. Therefore, the thrust allocation law in this study can be regarded as a minimum 
power consumption algorithm. 𝒇 𝑾𝒇 = 𝒇 𝑾𝑨𝝂 = 𝒇 𝑫𝝂 = 𝑫𝒇 ⋅ 𝝂.     (28) 

For the thrust allocation of the main propeller with the rudder, an iterative thrust 
allocation algorithm is developed. In the previous discussion of thrust allocation, two azimuth 
thrusters were considered. There was no constraint on the azimuth angle. However, the 
constraint on the azimuth angle does exist in the main propeller with the rudder operation, as 
illustrated in Figure 3. The simplest way of considering this propeller in the thrust allocation 
is to regard it as two large tunnel thrusters which generate forces in the surge and sway 
directions, respectively. However, in reality, this is not the case. Notably, the forces in the 
surge and sway directions generated by the main propeller with the rudder have strong 
coupling effects from the rudder angle. This means that if the surge force is increased by the 
main propeller with a significant rudder angle, then an undesirable sway force is also 
increased naturally, and vice versa. Moreover, this strong coupling effect sometimes causes 
unstable performance of the DP system. In this study, an iterative thrust allocation algorithm 
is used to deal with the highly coupled nonlinear characteristics of the main propeller with the 
rudder. The main idea of this algorithm is that the propeller and rudder are treated as one 
azimuth thruster with constraints on the azimuth angle as shown in Figure 3. The algorithm 
followed the procedure proposed below:  

 
 Find the optimal thrust allocation solution considering the main propeller with the 

rudder as one virtual azimuth thruster. 
 Check whether the azimuth angle of the virtual azimuth thruster exceeds the 

limitation on the rudder operation. 
 If the azimuth angle of the virtual thruster exceeds the limitation, then set the 

azimuth angle of the virtual thruster to the closest limitation.  
 Calculate the component forces and moment of the virtual azimuth thruster with the 

closest azimuth angle limitation. 
 Extract the effects of the calculated component forces and moment of the virtual 

thruster from equation 19 to create a reduced order problem.  
 Find a new optimal solution for the thrust allocation with the reduced order problem.  

72 TRANSACTIONS OF FAMENA XLV-3 (2021)



Design and Experimental Validation of a Control System for YS Kim, JP Hong, YH Kim 
Dynamic Positioning of a Shuttle Tanker HG Sung, J. Kim 

  
Fig. 3  Local coordinates of azimuth thruster and main propeller with rudder 

5. Model test and numerical simulation 
A set of experiments was conducted in the ocean engineering basin (OEB) of KRISO to 

estimate the station-keeping performance of a DP shuttle tanker with the PD and anti-windup 
I controllers and the thrust allocation algorithm, including the rudder considerations 
introduced in the previous section of this paper. The main particulars of the DP shuttle tanker 
are shown in Table 1. The DP shuttle tanker had six thruster systems: two side tunnel 
thrusters and one azimuth thruster at the fore, and one azimuth thruster, one side tunnel 
thruster, and one main propeller with a rudder at the aft of the vessel, as shown in Figure 4. 

  
Fig. 4  Layout of thruster systems of the dynamic positioning shuttle tanker 

The environmental conditions were selected after the consideration of the 
PETROBRAS requirements for DP vessels operating in the Brazilian waters. Three 
environmental conditions were selected in this study: 

 
  

TRANSACTIONS OF FAMENA XLV-3 (2021) 73



YS Kim, JP Hong, YH Kim Design and Experimental Validation of a Control System for 
HG Sung, J. Kim Dynamic Positioning of a Shuttle Tanker 

 Env-I: No current-off condition (collinear condition), 
             𝐻 = 0.5m,  𝑇 = 8.64s,  JONSWAP(𝛾 = 1),  𝛽 = 180°,  𝑉 = 21.0m/s,  𝛽 = 180°, 𝑉 = 1.1m/s,  𝛽 = 180°; 
 
 Env-II: 20° current-off condition, 
             𝐻 = 0.5m,  𝑇 = 8.64s,  JONSWAP(𝛾 = 1),  𝛽 = 180°,  𝑉 = 21.0m/s,  𝛽 = 180°, 𝑉 = 1.1m/s,  𝛽 = 160°; 
 
 Env-III: 35° current-off condition, 
             𝐻 = 0.5m,  𝑇 = 8.64s,  JONSWAP(𝛾 = 1),  𝛽 = 180°,  𝑉 = 21.0m/s,  𝛽 = 180°, 𝑉 = 1.1m/s,  𝛽 = 145°; 

 
where 𝐻 , 𝑇  are the significant wave height and peak period of the wave. In the simulation 
and experiment of the DP analysis in this study, long crested waves are used and the wave 
spectrum for the collinear current condition is given in Figure 5. The JONSWAP wave 
spectrum with the peakedness parameter 𝛾 value 1 is used in the experiment and numerical 
analysis.  
 
 
 

Table 1  Main particulars of the dynamic positioning shuttle tanker 

Item Unit Value 
Length overall (𝑳)  m 278.0 
Breadth (𝑩)  m 48.7 
Draft in full load condition (𝑻)  m 17.0 
Displacement in full load condition m  1.78× 10  
Block coefficient 𝑪𝒃 - 0.77 

 
KRISO developed three DP thruster systems for the model test: the azimuth thruster, the 

tunnel thruster, and the main propeller with the rudder. An azimuth thruster system is shown 
in Figure 5; it consists of the mechanical thruster and its electrical controller. All thruster 
systems communicate with the DP controller using the RS-232 protocol or the TCP/IP 
protocol. 
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Fig. 5  An azimuth thruster system: thruster and its controller 

The model test for the evaluation of the station-keeping performance of a DP vessel 
consists of several individual experiments. The procedure for the DP model test is shown 
below:  

 Model fabrication; 
 Ocean environment calibration; 
 Bollard pull test; 
 Wind load adjustment; 
 Gain tuning test; 
 Main test, including the worst single failure case. 
In the model fabrication, a model of the vessel was made of wood and fibre-reinforced 

plastic and other materials. The thruster systems, power distribution system, and other 
equipment used to run the DP system were installed inside the vessel model. Before 
conducting the DP model test, all ocean environmental conditions, i.e. the wind, waves, and 
current conditions, were calibrated to have the designated characteristics. The bollard pull test 
was conducted to find out the characteristics of the thruster system. The wind field generated 
in the DP model test was not the same as the real wind field in the ocean. Thus, the wind load 
acting on the DP vessel was adjusted by adding or extracting a superstructure model of the DP 
vessel model or by changing the wind speed. The DP control gain tuning procedure was 
carried out in calm water conditions to have designated station-keeping performance. Then, 
the main DP model tests were conducted in various environmental conditions, and under 
several failure cases of the DP system, such as a no failure case, thruster failure cases, and the 
worst single failure case. The DP shuttle tanker model during the main DP model tests is 
shown in Figure 6. 
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Fig. 6  The dynamic positioning shuttle tanker model during the model test in the ocean engineering basin of 

KRISO 

6. Results and discussion 
A set of experiments and numerical analyses for the evaluation of the station-keeping 

performance of a DP shuttle tanker was conducted in KRISO’s OEB. A PD controller with an 
anti-windup I control algorithm and a thrust allocation method, including considerations for 
the main propeller with the rudder, were utilized in both the experiments and the numerical 
simulations. A fairly good overall agreement was observed between the results of the 
experiment and the numerical analysis, with the same PD gain setting for the DP control 
system as listed in Table 2. It should be noted that the I gain 𝑲  and the corresponding time 
window size 𝑇  slightly differed in the model test and the simulation. The I gain settings for 
the simulation are intentionally selected to have similar steady-state errors in the surge 
direction under Env-I (no current-off condition) as shown in Table 3. This intentional gain 
tuning of I controller is for direct comparison of the motion responses of the DP vessel in the 
experiment and simulation results. It is reasonable to have a minimum basis of condition for 
comparison. The footprints of the vessel motion under various failure conditions of a DP 
system were acquired in experiments and numerical simulations, as shown in Figure 7 
through Figure 9; they were used for the failure mode effect analysis (FMEA). When all 
thrusters were working properly under the Env-I condition, in which all environmental forces 
were acting in the same direction, the DP shuttle tanker maintained the position of the bow 
loading system (BLS) within a predefined watch circle, with minor motion as shown in Figure 
7. Note that the radius of the BLS motion circle was about 13.1m in the experiment and 6.8m 
in the numerical simulation, which are both reasonably small radii compared to the radius of 
the predefined watch circle, i.e. 50m. The worst single failure case from the FMEA, which is 
the failure case of No.1 bow tunnel thruster and No. 3 bow azimuth thruster, did not make the 
DP shuttle tanker drift-off under the Env-I condition, and even showed similar station-
keeping performance to the no thruster failure case as shown in Figure 8. However, when the 
main propeller system was out of order, the DP shuttle tanker showed the drift-off response in 
the experiment, and a significantly big motion response in the simulation, as shown in Figure 
9. The radii of the BLS motion circles were observed to be 37.0m in the experiment and 
32.7m in the simulation.  

It is noticeable that quite different sway and yaw motions are observed in the 
experiment and simulation results. Significant sway and yaw motions are observed in the 
experimental result; on the other hand, no sway and yaw motions are shown in the simulation 
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result. This significant differences between the model test and the simulation are caused by 
several factors. Firstly, uncertainty in the modelling of the environmental forces created by 
wind, wave, and current is the main cause of the differences. In the simulation, the uniform 
environmental field is considered, such as the same wind and current speed and direction are 
assumed and modelled. However, in the model test, which is closer to the real sea condition 
than the simulation, such uniform environmental field could not be realized in the space and 
time domain. Only the mean value concept can represent the uniformness of environmental 
field. Therefore, in the experiment, even in the collinear environment condition of Env-I, 
excitation forces in the sway and yaw directions possibly exist and these caused the 
significant motion in these directions. Secondly, uncertainty in the modelling of the thruster 
system is the other cause of the differences. In the simulation, a simple 1st order thruster 
system model is used. This 1st order model could not fully represent the thruster system used 
in the experiment. The transient status of the thruster in between serial commands in 
particular can be quite different. When an azimuth thruster is commanded to change its 
azimuth angle from 90° to -90° with a certain propeller rotational speed, the thruster produces 
forces in all directions during the azimuth angle change; and this can cause the excitation in 
the sway and yaw directions.  

Table 2  Main particulars of the dynamic positioning shuttle tanker 

Item 
𝑲𝑷  𝑲𝑫  𝑲𝑰  𝑻𝑰 

[kN/m]  [kN ∙ s/m] [kN/m] [s] 
[kN ∙ m/rad] [kN ∙ m ∙ s/rad] [kN ∙ m/m]  

Model test 
Surge 5.1× 10  4.4× 10  8.0× 10  71 
Sway 7.6× 10  6.6× 10  8.0× 10  71 
Yaw 3.5× 10  3.1× 10  2.0× 10  71 

Simulation 
Surge 5.1× 10  4.4× 10  5.1× 10  100 
Sway 7.6× 10  6.6× 10  7.6× 10  100 
Yaw 3.5× 10  3.1× 10  3.6× 10  100 
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(a) Model test 

  
(b) Numerical simulation 

Fig. 7  Footprints of the vessel motion and trajectory of the bow loading system (BLS): Env-I / no thruster 
failure 
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(a) Model test 

 
(b) Numerical simulation 

Fig. 8  Footprints of the vessel motion and trajectory of the bow loading system (BLS): Env-I / the worst single 
failure (No.1 bow tunnel thruster and No. 3 bow azimuth thruster failure)  
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(a) Model test 

 
(b) Numerical simulation 

Fig. 9  Footprints of the vessel motion and trajectory of the bow loading system (BLS): Env-I / No. 6 main 
propeller with a rudder failure  

The station-keeping performance of the DP shuttle tanker under the current-off 
conditions was examined. Two current-off conditions were considered: the 20° current-off 
condition (Env-II) and the 35° current-off condition (Env-III). When all thrusters were 
working under the Env-II condition, the DP shuttle tanker was stable and showed good 
station-keeping performance in both the model test and the simulation, as shown in Figure 10. 
The radii of the circles of the BLS motion were observed at 12.8m in the model test and at 
7.0m in the simulation. On the other hand, under the Env-III condition, the DP shuttle tanker 
showed fairly stable station-keeping performance with all thrusters working, as shown in 
Figure 11. The radii of the circle of the BLS motion differed significantly in the experiment 
and in the simulation. The radius of 33.5m was observed in the model test, while only that of 
7.3m was observed in the simulation. This significant difference between the model test result 
and the simulation result was mainly caused by the effect of the 1st order wave force, which 
was not considered in the simulation but was naturally considered in the model test. The 
dynamics of the thrusters also had a role in causing this difference. In the simulation, a simple 
1st order model for thrusters was utilized without any consideration for the thruster 
interactions. However, in the model test, the dynamics of the thruster system has apparent 
effects at a certain level; only the power system dynamics was not considered in the model 
test.  
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The distance of the BLS from the centre of the watch circle and the planar motion of the 
vessel are shown in Figure 12. A maximum distance of 45.4m and a mean distance of 15.2m 
were observed in the experiment, while a maximum distance of 10.27m and a mean distance 
of 2.22m were observed in the simulation. A sudden change in the BLS distance was 
observed in the experiment when a big wave hit the vessel. On the other hand, no such rapid 
BLS distance change was observed in the numerical simulation because the slow-drift 2nd 
order wave force was the only wave force considered in the numerical simulation.  Although 
this is the limitation of the numerical simulation for evaluating the station-keeping 
performance of the DP system, the results of the time-domain simulation show the overall 
behaviour of the DP system, as shown in the above comparison between the experimental 
results and the numerical simulation results. 

 

 
(a) Model test 

 
(b) Numerical simulation 

Fig. 10  Footprints of the vessel motion and trajectory of the bow loading system (BLS): Env-II (20° current-off 
condition), no thruster failure  
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(a) Model test 

 
(b) Numerical simulation 

Fig. 11  Footprints of the vessel motion and trajectory of the bow loading system (BLS): Env-III (35° current-off 
condition), no thruster failure  

The statistical results of the vessel motion are given in Tables 3 and 4. The mean values 
of the surge and sway motions in the model test and in the numerical simulation were similar. 
On the other hand, the mean values of the yaw motion in the experiment were slightly greater 
than those in the simulation. It is thought that the 1st order wave force and the thruster 
dynamics in the experiment caused these yaw motion differences. Though these were small 
differences, their effects on the distance from the BLS to the centre of the watch circle were 
significant, as shown in Figure 12. This implies that the yaw motion control in the DP shuttle 
tanker operation was very important. The standard deviation (STD) values of all the motions 
and distances in the experiment were slightly greater than those in the simulation. This 
implies that greater oscillatory motions take place in the experiment, and that the 1st order 
wave force, which did not exist in the numerical simulation, caused these oscillations. 
Especially, the STD value of the surge motion in the 35° current-off condition was much 
bigger than the one in the 35° current-off condition because larger wave forces acted on the 
vessel. So it can be stated that the consideration of the 1st order wave force should be required 
in the numerical simulation for having closer similitude with real situations in DP operation.  
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Table 3  Mean values of the vessel motion 

Condition Surge Sway Yaw Distance 
[m] [m] [ ° ] [m] 

Model test 
No current-off -0.42 0.02 -2.08 7.43
20° current-off -0.14 0.17 -0.97 6.24
35° current-off -0.78 -0.07 -0.97 15.20

Simulation 
No current-off -0.42 0.00 0.00 1.75
20° current-off -1.13 -0.46 0.36 2.11
35° current-off -1.13 -0.71 0.57 2.22

Table 4  Standard deviations of the vessel motion 

Condition Surge Sway Yaw Distance 
[m] [m] [ ° ] [m] 

Model test 
No current-off 4.90 4.24 0.83 3.53
20° current-off 5.11 3.68 0.49 2.50
35° current-off 11.00 5.53 1.05 6.22

Simulation 
No current-off 2.26 0.00 0.00 1.49
20° current-off 2.27 0.58 0.54 1.63
35° current-off 2.27 0.77 0.85 1.81

 
Figure 12  Distance of the BLS from the centre of the watch circle, and planar motion of the vessel: Env-III (35° 

current-off condition), no thruster failure  
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7. Conclusions 
A method for the evaluation of dynamic positioning (DP) performance for a shuttle 

tanker has been discussed in this paper through experimentation and numerical analysis. This 
paper has presented a methodology for the model testing and numerical analysis for the 
station-keeping performance evaluation of a DP shuttle tanker. A review of the numerical 
model for the DP simulation has been given. A new anti-windup I control algorithm for the 
suppression of the steady-state error has been introduced, and a thrust allocation algorithm, 
including the treatment of the main propeller with a rudder, has been developed. From the 
experimental and numerical simulation results, the DP control algorithm, including the thrust 
allocation method, has been validated. Reasonable agreement between the experimental 
results and the time-domain simulation results is provided in this paper. 
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