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 This paper is concerned with the analysis of the fracture 

behaviour of a nohomogeneous cantilever beam with two 

concentric longitudinal cracks. The beam has a circular cross-

section with linearly varying radius along the beam length. 

Moreover, the beam exhibits continuously varying material 

inhomogeneity in the radial direction. The fracture is analyzed in 

terms of strain energy release rate assuming nonlinear mechanical 

behaviour of the material. For this purpose, solutions for the 

strain energy release rate are derived by considering the energy 

balance. Two cantilever beam configurations with different 

lengths of longitudinal cracks are analysed. Moreover, the two 

cracks are arranged arbitrarily in the radial direction. The 

longitudinal fracture behaviour of the beam is also analysed by 

considering the complementary strain energy for verification. The 

strain energy release rate solutions are used to investigate the 

influence of varying radius of the cross section along the length 

of the beam on the longitudinal fracture behaviour. The effects of 

crack lengths and the location of the two concentric cracks in the 

radial direction on fracture are also studied. The influences of the 

loading conditions of the beam and the inhomogeneity of the 

material in the radial direction on the fracture behaviour are also 

evaluated. 
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1 Introduction  
 

Technical development is inextricably linked to the extensive use of high performance structural 

members and components in various load bearing applications in mechanical and civil engineering. The 

driving force behind the technical development is often the desire to increase strength and improve stability 

while reducing the weight and the prime cost of structures and equipment. One of the ways to achieve these 

conflicting goals is to use members and components with continuously varying cross-sections in the length 

direction. For example, beam structures with continuously varying cross-section in the length provide an 

efficient distribution of their strength. It is therefore not surprising that the use of beams with continuously 

varying cross-section is widespread in various fields of modern engineering, such as lightweight structures, 

robotics, aircraft, marine structures, automotive industry, turbines and others. 

The efficiency of beam structural members with continuously varying cross-section in the longitudinal 

direction can be further enhanced by using inhomogeneous materials. The microstructure of the 

inhomogeneous materials varies continuously (uniformly) along one or more directions in the solid. Thus, 

the material properties are a function of coordinates. The strong interest of the scientific community in 

inhomogeneous materials is largely due to the fact that certain kinds of inhomogeneous materials, such as 
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functionally graded materials, have been intensively used in the last thirty years [1, 2]. Functionally graded 

materials are advanced inhomogeneous composites prepared by continuously mixing two or more 

constituents according to a certain volume fraction. The technology used to fabricate functionally graded 

materials permit gradual compositional change.  

Thus, one can tailor the spatial variation of the material properties of the functionally graded materials 

during the manufacturing process to achieve optimal performance of the parts and components against 

external loads and influences. Since the distribution of material properties in the solid can be arbitrarily 

designed, functionally graded materials are particularly suitable for meeting the requirements of different 

material properties in different parts of a component. In addition, functionally graded materials are ideally 

suited for structural applications in extreme environments (severe temperature gradients, chemical agents). 

As a result, functionally graded materials have undisputed advantages over classical homogeneous structural 

materials in areas such as aeronautics, nuclear reactors, robotics, microelectronics and biomedicine. 

It should be noted that certain types of inhomogeneous materials, such as functionally graded materials, 

can be built up in layers [3, 4]. One of the weaknesses of these materials is that they are highly susceptible to 

the occurrence of longitudinal cracks between layers. The longitudinal cracks reduce the strength and 

stiffness, degrade the stability behaviour, and can lead to catastrophic failure of the entire structure. 

Therefore, the study of longitudinal cracks in non-homogeneous beams is especially significant for practical 

design.t should be mentioned, however, that fracture analysis of nonhomogeneous structural members and 

components is much more complicated in comparison with that of homogeneous structures due to the fact 

that the material properties of nonhomogeneous materials are functions of coordinates [5 - 13]. Recently, 

several works on longitudinal fracture of nonhomogeneous (functionally graded) beam structures have been 

published [14 - 16]. These works are focussed on analyses of fracture behaviour of nonhomogeneous beams 

of a constant rectangular cross-section along the beam length with one longitudinal crack.  

Therefore, the aim of the present paper is to analyze the fracture behaviour of a cantilever beam with a 

circular cross-section whose radius varies linearly along the length of the beam. Two concentric longitudinal 

cracks of different lengths are located arbitrarily in the radial direction. The beam exhibits continuously 

varying material inhomogeneity in the radial direction. The fracture is studied in terms of strain energy 

release rate assuming nonlinear elastic mechanical behaviour of the material. The strain energy release rate is 

derived by considering the energy balance. The fracture is also analysed considering the complementary 

strain energy in the beam for verification. 

 

2 Calculation of the strain energy release rate 
 

2.1 Consideration of the energy balance 
 

The present paper is focused on analyzing the fracture behaviour of the nonhomogeneous cantilever 

beam configuration with two concentric longitudinal cracks shown in Figure 1. The beam is clamped in 

section, B . The length of the beam is denoted by l .  

 

 
 

Figure 1. Geometry and loading of nonhomogeneous cantilever beam with two concentric longitudinal 

cracks (the outer crack is longer than the inner one). 
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The beam has a circular cross-section. The radius of the cross-section, R , varies linearly from 1R  at the free 

end of the beam to 2R  at the clamped end 
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Where 

lx 0  (2) 

 

In (1), x  is the longitudinal centroidal axis of the beam. Two concentric longitudinal circular cylindrical 

cracks are located arbitrary in radial direction. The lengths of the inner and outer cracks are 1a  and 2a , 

respectively (Figure 1).  The inner and outer cracks are circular cylindrical surfaces of radiuses, 3R  and 4R , 

respectively. Thus, the fronts of the inner and outer cracks are circles of radiuses, 3R  and 4R , respectively. 

The beam is loaded by one concentrated force, F , applied at the free end of the beam. The force, F , is 

located in the vertical coordinate plane, xOz . The orientation of F  is given by angle,  . The beam 

exhibits continuously changing material nonhomogeneity in radial direction. Beside, the material has non-

linear elastic mechanical behaviour.  

The fracture behaviour is studied in terms of the strain energy release rate. In order to derive the strain 

energy release rate, the balance of the energy is considered. For this purpose, first, a small increase, 1a , of 

the length of the inner crack has been given. The balance of the energy is written as    
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where prw  is the projection of the displacement of the application point of F  on the direction of F , U  is 

the strain energy in the beam, 
1aG  is the strain energy release rate due to the increase of the length of the 

inner crack, cfl  is the length of the front of the inner crack. Since the front of the inner crack is a circle of 

radius, 3R , the length of the crack front is found as 

32 Rlcf =  (4) 

 

Form (3) and (4), one obtains 
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In the beam portion OA  (Figure 1) the two concentric longitudinal cracks divide the beam in three parts: 

external, interstitial and internal part. The cross-section of the external part is a ring whose external and 

internal radiuses are R  and 4R , respectively ( R  is determined by (1)). The interstitial part of the beam has 

a ring-shaped cross-section with external and internal radiuses, 4R  and 3R , respectively. The internal part 

of the beam has a circular cross-section of radius, 3R .  

In the beam portion AD , the outer longitudinal crack divides the beam in external and internal parts 

(Figure 1). The external part has a ring-shaped cross-section. The external and internal radiuses of the ring 

are R  and 4R , respectively. The cross-section of the internal part of the beam is a circle of radius, 3R .  

Since the beam is divided in six parts, the strain energy cumulated in the beam is written as 



V. Rizov: Fracture analysis of a nonhomogeneous beam…                                                                                               4 
________________________________________________________________________________________________________________________ 

 
 

UNADAD

OAOAOA

UUU

UUUU

+++

+++=

21

321
 (6) 

 

 

where 1OAU , 2OAU  and 3OAU  are the strain energies in the external, interstitial and internal parts of beam 

portion OA , respectively, 1ADU  and 2ADU  are the strain energies in the external and internal parts of 

beam portion AD , respectively, UNU  is the strain energy in the un-cracked beam portion, DH .     

The strain energy in the external part of beam portion OA  is obtained as 
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where 10OAu  is the strain energy density, r  and   are the polar coordinates. The mechanical behaviour of 

the material is treated by using the following non-linear stress-strain relation [17]: 
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where   is the normal stress,   is the strain, L , g  and t  are material constants. The strain energy density, 

10OAu , in the external part of beam portion OA is obtained by integrating of (8) in boundaries from 0 to    
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Since the beam exhibits continuously changing material nonhomogeneity in radial direction, the material 

property, L , varies in radial direction according to the following power law: 
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where  

 

Rr 0  (11) 

 

In (10), 0L  and PL  are the values of L  at the centre of the cross-section and at the periphery of the 

beam, respectively, f  is a material constant that controls the material nonhomogeneity in radial direction.    

Since a beam of high length to diameter ratio is under consideration in the present paper, the distribution of 

the strains in the cross-section is treated in accordance with the Bernoulli’s hypothesis for plane sections. 

Thus,   is distributed linearly along the height of cross-section of the external part of beam portion OA    

 

( )1111 nOAOA zz −=   (12) 

 

where 1OA  is the curvature, 1z  is the vertical centroidal axis of the cross-section, 11nOAz  is the coordinate 

of the neutral axis of external part of beam portion OA . By using the polar coordinates, (12) is re-written as 
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( )111 sin nOAOA zr −=   (13) 

 

The curvature and the coordinate of the neutral axis are obtained in the following way. First, the 

equations for equilibrium of the stress resultants in the cross-section of the external part of beam portion OA  

are written 
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where 1OAN  and 1OAM  are the axial force and the bending moment in the external part of beam portion 

OA . Figure 1 indicates that 

 

sin1 FNOA =  (16) 

 

The stress,  , in (14) and (15) is expressed by (8) where the distribution of   is presented by (13). 

Thus, there are three unknowns, 1OAM , 1OA  and 11nOAz , in equations (14) and (15). Other four equations 

are written by considering the equilibrium of the stress resultants in the cross-sections of the interstitial and 

internal part of beam portion OA   
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where 2OAN ,  2OAM  and 2OA  are, respectively, the axial force, the bending moment and the normal stress 

in the cross-section of interstitial part, 3OAN , 3OAM  and 3OA  are, respectively, the axial force, the bending 

moment and the normal stress in the cross-section of internal part. It follows from Figure 1 that 

 

02=OAN                                                                      (21) 

 

03=OAN                                                                      (22) 

 

The distribution of the strain, 2OA , in the cross-section of interstitial part is written as 
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( )2122 sin nOAOAOA zr −=   (23) 

 

where 2OA  is the curvature, 21nOAz  is the coordinate of the neutral axis. The normal stress, 2OA , is 

obtained by substituting of (23) in (8). Formula (24) is applied also to express the distribution of the strain, 

3OA , in the cross-section of the internal part of beam portion OA . For this purpose, 2OA  and 21nOAz  

replaced, respectively, with 3OA  and 31nOAz  where 3OA  and 31nOAz  are the curvature and the neutral 

axis of the internal part. Then 3OA  is substituted in (8) to express the normal stress, 3OA , in the internal 

part. The bending moment, M , in the beam cross-section is distributed on the three parts of beam portion 

OA . Thus, it can be written that 

 

MMMM OAOAOA =++ 321  (24) 

 

It is evident from Figure 1 that 
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where  

                                                                                  

lx 0  (26) 

 

The curvatures of the external, interstitial and internal parts of the beam portion OA  are the same. Thus, it 

can be written that 

 

12 OAOA  =  (27) 

 

23 OAOA  =  (28) 

 

By substituting of (8), (10), (13) and (23) in (14), (15), (17), (18), (19) and (20) one obtains six non-linear 

algebraic equations. These equations together with (24), (27) and (28) are solved numerically with respect to 

1OA , 11nOAz , 2OA , 21nOAz , 3OA , 31nOAz , 1OAM , 2OAM  and 3OAM  by the MatLab computer 

program by applying the quasi Newton methods. Then, 10OAu  is obtained by substituting of (13) in (9).  

The strain energy in the interstitial part of beam portion OA  is expressed as 
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where 20OAu  is the strain energy density. Formula (9) is used to obtain 20OAu . For this purpose,   is 

replaced with 2OA .   

The strain energy density, 30OAu , is integrated in the volume of the internal part of beam portion OA  to 

obtain the strain energy cumulated in this part 
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where 30OAu  is found by replacing of    with 3OA  in (9).  

The strain energy in the external part of beam portion AD is written as (Figure 1) 
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where the strain energy density, 10 ADu , is obtained by replacing of   with 1AD  in (9). The strain, 1AD , 

in the external part of beam portion AD  is expressed by (13). For this purpose, 1OA  and 11nOAz  are 

replaced with 1AD  and 11nADz , respectively. Here, 1AD  and 11nADz  are the curvature and the neutral axis 

coordinate in the external part of beam portion AD . The following equations for equilibrium of the stress 

resultants in cross-sections of the external and internal parts of beam portion AD  are used to obtain 1AD  

and 11nADz : 
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where 1ADN ,  1ADM  and 1AD  are the axial force, the bending moment and the normal stress in the cross-

section of the external part, 2ADN , 2ADM  and 2AD  are the axial force, the bending moment and the 

normal stress in the cross-section of internal part. It is evident from Figure 1 that 

 

sin1 FNAD =  (36) 

 

02=ADN  (37) 

 

Besides, 

 

MMM ADAD =+ 21  (38) 

 

21 ADAD  =  (39) 

 

The normal stress, 1AD , is expressed by replacing of   with 1AD  in (8). The strain, 1AD , is obtained 

by (13). For this purpose, 1OA  and 11nOAz  are replaced with 1AD  and 11nADz , respectively. Formula (8) 

is applied also to express 2AD . For this purpose,   is replaced with 2AD . The strain, 2AD  is found by 

replacing of 2OA  and 21nOAz  with 2AD  and 21nADz  in formula (23). The non-linear algebraic equations 

obtained by substituting of (36), (37), 1AD  and 2AD  in (32) – (35) are solved numerically together with 
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equations (38) and (39) with respect to 1AD , 11nADz , 2AD , 21nADz , 1ADM  and 2ADM  by the MatLab 

computer program by applying the quasi Newton methods.  

The strain energy in the internal part of beam portion AD is expressed as  
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where 20ADu  is obtained by replacing of   with 2AD  in (9).  

The strain energy in the un-cracked beam portion, DH , is written as 
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where the strain energy density, UNu0  is expressed by replacing of   with UN  in formula (9). The 

curvature and the coordinate of the neutral axis that are needed in order to obtain the distribution of strain, 

UN , are determined by the equations of equilibrium of the stress resultants in the cross-section of the un-

crack beam portion 
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where    
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The normal stress, UN , is expressed by replacing of   with UN  in (8). The distribution of UN  is 

found by (13). For this purpose, 1OA  and 11nOAz  are replaced with UN  and nUNz1 , respectively. The 

non-linear algebraic equations obtained by substituting of (44), (45) and UN  in (42) and (43) are solved 

numerically with respect to UN  and nUNz1  by the MatLab computer program by applying the quasi 

Newton methods.    

By using the integrals of Maxwell-Mohr [18], the projection of the displacement of the application point of 

the force, F , on the direction of F  is expressed as 
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where )(1 xMOA , )(1 xM AD  and )(xMUN  

are the bending moments in beam portions OA , AD  and UN  induced by the unit loading. Since 
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By substituting of (6), (7), (29), (30), (31), (40), (41) and (50) in (5), one obtains the following solution to the 

strain energy release rate: 
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The integration in (47) is performed by using the MatLab computer program. It should be mentioned that 

R , 1OA , 1AD , 10OAu , 20OAu , 30OAu , 10ADu  and 20 ADu  are obtained by (1), (9), (14), (15), (17), (18), 

(19), (20), (24), (27), (28), (32) – (35), (38) and (39) at 1ax = .  

The strain energy release rate is derived also at a small increase, 2a , of the length of the outer crack 

(Figure1). For this purpose, formula (5) is re-written as 

 

2424 2

1

22 a

U

Ra

w

R

F
G

pr

a



−




=


 (52) 

 

 

By substituting of (6), (7), (29), (30), (31), (40), (41) and (50) in (52), one derives 

 

 ( ) −−= )(sincos
2

2142

4
2

aRa
R

F
G ADa 


  

 

( ) −−− )(sincos 242 aRa UN   

 

+











−  drdrau

R
AD

R

R






)(
2

1
210

2

04
4

 (53) 

 

−







+  drdrau AD

R




)( 220

2

00

4

  

 













−  drdrau UN

R




)( 20

2

00

  

  

 

where R , 1AD , UN , 10ADu , 20 ADu  and UNu0  are obtained by (1), (9), (14), (15), (17), (18), (19), (20), 

(24), (27), (28), (32) – (35), (38) and (39) at 1ax = . The integration in (53) is carried-out by the MatLab 

computer program.  

 
 

Figure 2. Geometry and loading of nonhomogeneous cantilever beam with two concentric longitudinal 

cracks (the inner crack is longer than the outer one). 

 

The longitudinal fracture behaviour of the nonhomogeneous non-linear elastic cantilever beam is 

analyzed also for the case when the inner crack is longer than the outer one (Figure 2). First, a small increase, 

1a , of the length of the inner crack has been given. By considering the balance of the energy, the strain 

energy release rate is expressed as 
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 ( ) −−= )(sincos
2

1141

3
1

aRa
R

F
G ADa 


  

 

( ) −−− )(sincos 141 aRa UN   

 

+











−  drdrau

R
AD

R

R






)(
2

1
110

2

03
3

 (54) 

 

−







+  drdrau AD

R




)( 120

2

00

3

  

 













−  drdrau UN

R




)( 10

2

00

  

 

      

where the curvature, 1AD , is determined at 1ax =  by using the equations of equilibrium of the stress 

resultants in the cross-sections of the external and internal parts of beam portion AD . 

For the beam in Figure 2, these equations for equilibrium are written as  

 

  







=

R

R

ADAD drdrN

3

1

2

0

1 


 (55) 

 

  







=

R

R

ADAD drdrM

3

sin2

1

2

0

1 


 (56) 

 

drdrN

R

ADAD   







=

3

0

2

2

0

2 


 (57) 

 

  







=

3

0

2

2

2

0

2 sin

R

ADAD drdrM 


 (58) 

 

 

The curvature, UN , that participates in (50) is obtained at 1ax =  from the equations (42) and (43) for 

equilibrium of the stress resultants in the cross-section of the un-cracked beam portion.        

The strain energy release rate is derived also at a small increase, 2a , of the length of the outer crack in the 

cantilever beam configuration shown in Figure 2. By analyzing the balance of the energy, one obtains  

 

 ( ) −−= )(sincos
2

2142

4
2

aRa
R

F
G OAa 


  

 

( ) −−− )(sincos 2142 aRa AD   

 

+











−  drdrau

R
OA

R

R






)(
2

1
210

2

04
4

  

 

+







+  drdrau OA

R

R




)( 220

2

0

4

3

 (59) 

 

−







+  drdrau OA

R




)( 230

2

00

3
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−







−  drdrau AD

R

R




)( 210

2

03

  

 













−  drdrau AD

R




)( 220

2

00

3

  

 

                          

where the curvature, 1OA , is found from equations (14), (15), (17), (18), (19), (20), (24), (27) and (28) at 

2ax = .  

 

2.2 Analysis of the complementary strain energy 
 

In order to verify solution (47), the strain energy release rate is derived also by applying the following 

formula [14]: 

 

cdA

dU
G

*

=  (60) 

 

 

where 
*U  is the complementary strain energy, cA  is the crack area. Since  

 

1daldA cfc=  (61) 

 

expression (56) takes the form 

 

1

*

dal

dU
G

cf

=  (62) 

 

 

where 1da  is an elementary increase of the length of the internal crack.  

 

 

 

 

The complementary strain energy in the beam shown in Figure 1 is written as  

 

**

2

*

1

*

3

*

2

*

1

*

UNADAD

OAOAOA

UUU

UUUU

+++

+++=
 (63) 

 

 

where 
*

1OAU , 
*

2OAU  and 
*

3OAU  are the complementary strain energies in the external, interstitial and 

internal parts of beam portion OA , respectively, 
*

1ADU and 
*

2ADU  are the complementary strain energies in 

the external and internal parts of beam portion AD , respectively, 
*

UNU  is the complementary strain energy 

in the un-cracked beam portion, DH .    

Formula (7) is applied to obtain 
*

1OAU . For this purpose, 10OAu  is replaced with the complementary strain 

energy density,
*

10OAu . The following formula is used to calculate 
*

10OAu  [16]: 

 

10

*

10 OAOA uu −=   (64) 
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By substituting of (8) and (9) in (60), one derives  

 

1
1

1
1

1

*

10
+

+







−

+
−








−−=

+

t

Lg

gt

Lg

g
Lu

tt

OA


  (65) 

 

 

where   is found by (13).  

The complementary strain energy in the interstitial part of beam portion, OA , is obtained by replacing of 

20OAu  with the complementary strain energy density, 
*

20OAu , in (29). Formula (65) is used to calculate 

*

20OAu . For this purpose,   is replaced with 2OA .  

Formula (30) is applied to obtain 
*

3OAU . For this purpose, 30OAu  is replaced with the complementary strain 

energy density, 
*

30OAu . The complementary strain energy density is calculated by replacing of   with 3OA  

in (65).   

The complementary strain energy in the external part of beam portion, AD , is found by replacing of 

10 ADu  with the complementary strain energy density, 
*

10 ADu , in (31). Formula (65) is used to obtain 
*

10 ADu . 

For this purpose,   is replaced with 1AD .  

 The strain energy density, 20ADu , is replaced with the complementary strain energy density, 
*

20 ADu , in (40) 

to obtain 
*

2ADU .  The complementary strain energy density, 
*

20 ADu , is found by replacing of   with 2AD  

in (65).  

The complementary strain energy in the un-cracked beam portion, DH , is obtained by replacing of 

UNu0  with 
*

0UNu  in (41). The complementary strain energy density, 
*

0UNu , is expressed by replacing of   

with UN  in (65).  

 

By substituting of (4), 
*

1OAU , 
*

2OAU , 
*

3OAU , 
*

1ADU , 
*

2ADU , 
*

UNU  and (61) in (62), one derives 

 

+











=  drdrau

R
G OA

R

R

a 




)(
2

1
1

*

10

2

03
4

1
  

 

+







+  drdrau OA

R

R




)( 1

*

20

2

0

4

3

  

 

−







+  drdrau OA

R




)( 1

*

30

2

00

3

 (66) 

 

−







−  drdrau AD

R

R




)( 1

*

10

2

04

  

 













−  drdrau AD

R




)( 1

*

20

2

00

4

  

 

                                                               

where R , 
*

10OAu , 
*

20OAu , 
*

30OAu , 
*

10 ADu , 
*

20 ADu  and 
*

0UNu   are obtained at 1ax = . The integration in 

(66) is performed using the computer program MatLab. It should be noted that the release rate of 

strain energy obtained by (66) is exactly the same as that obtained by (51). This fact is a 
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confirmation of the solution for the strain energy release rate when increasing the length of the 

internal crack in the cantilever beam in Figure 1. 
The strain energy release rate at increase of the length of the outer crack in the cantilever in Figure 1 is found 

by applying (62). For this purpose, 1a  is replaced with 2a . Besides, cfl  is calculated as 

 

42 Rlcf =  (67) 

 

By substituting of 
*

1OAU , 
*

2OAU , 
*

3OAU , 
*

1ADU , 
*

2ADU , 
*

UNU , (63) and (67) in (62), one obtains 

 

+











=  drdrau

R
G AD

R

R

a 




)(
2

1
2

*

10

2

04
4

2
  

 

−







+  drdrau AD

R




)( 2

*

20

2

00

4

 (68) 

 













−  drdrau UN

R




)( 2

*

0

2

00

  

 

 

The MatLab computer program is used to perform the integration in (68). The strain energy release rate 

found by (68) matches exactly that obtained by (54). 

Formula (62) is applied also to verify the solutions to the strain energy release rate for the cantilever beam 

configuration shown in Figure 2. First, an increase of the inner crack arm is considered. By using formula 

(62), one derives 

 

 

+











=  drdrau

R
G AD

R

R

a 




)(
2

1
1

*

10

2

03
3

1
  

 

−







+  drdrau AD

R




)( 1

*

20

2

00

3

 (69) 

 













−  drdrau UN

R




)( 1

*

0

2

00

  

 

 

For the case when increase of the outer crack has been given in the beam in Figure 2, the application of 

formula (69) leads to the following expression for the strain energy release rate: 

 

+











=  drdrau
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R

R

a 



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2

1
2

*
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2
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4

2
  

 

+







+  drdrau OA

R

R



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*

20

2

0

4

3

  

 

−







+  drdrau OA

R



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*
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2
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3

 (70) 

 

−
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
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R
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
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*
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
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
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
−  drdrau AD

R




)( 2

*

20

2

00

3

  

 

                  

The integration in (69) and (70) is performed by the MatLab computer program. It should be mentioned 

that the strain energy release rates obtained by (69) and (70) are exact matches of these found by (54) and 

(59). This fact is a verification of the solutions to the strain energy release rate for the crack problem shown 

in Figure 2. 

 

3 Results and discussion  
 

This section presents numerical results obtained by applying the solutions to the strain energy release rate 

derived in the previous section of the paper. It has been given that 004.01 =R  m, 120.0=l  m, 2.0=g , 

4.1=t  and 5=F  N.   

First, the influence of the varying radius of the beam cross-section on the longitudinal fracture behaviour of 

the beam is investigated. The cantilever beam configuration shown in Figure 1 is considered. The variation 

of the radius along the beam length is characterized by 12 / RR  ratio. The strain energy release rate is 

presented in non-dimensional form by using the formula ( )10/ RLGGN = . 

The influence of the varying radius of the beam cross-section along the beam length on the longitudinal 

fracture behaviour is illustrated in Figure 3 where the strain energy release rate in non-dimensional form is 

presented as a function of 12 / RR  ratio at 2.0/ 13 =RR , 7.0/ 14 =RR , 3.0/1 =la  and 5.0/2 =la . It is 

evident from Figure 3 that the strain energy release rate decreases with increasing of 12 / RR  ratio. One can 

observe also in Figure 3 that the strain energy release rate derived assuming increase of the outer crack is 

higher than that obtained assuming increase of the inner crack. 

 

 

Figure 3. The strain energy release rate in non-dimensional form presented as a function of 12 / RR  ratio 

(curve 1 – at increase of the outer crack, curve 2 – at increase of the inner crack). 

 

The effect of material nonhomogeneity on the longitudinal fracture behaviour is analyzed. 
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Figure 4. The strain energy release rate in non-dimensional form presented as a function of 0/ LLP  ratio 

(curve 1 – at 15.0/ 13 =RR , curve 2 – at 30.0/ 13 =RR  and curve 3 – at 45.0/ 13 =RR ). 

 

The material nonhomogeneity in radial direction of the cross-section of the beam is characterized by 

0/ LLP  ratio. The beam configuration shown in Figure 1 is under consideration. The solution to the strain 

energy release rate derived at increase of the inner crack is used. The location of the inner crack in radial 

direction is characterized by 13 / RR  ratio. The strain energy release rate in non-dimensional form is 

presented as a function of 0/ LLP  ratio in Figure 4 at three 13 / RR  ratios for 2.1/ 12 =RR ,  8.0/ 14 =RR , 

4.0/1 =la  and 5.0/2 =la . The curves in Figure 4 indicate that the strain energy release rate decreases 

with increasing of 0/ LLP  ratio. Concerning the effect of the location of the inner crack, it can be observed 

in Figure 4 that the strain energy release rate increases with increasing of 13 / RR  ratio. 

 
 

Figure 5. The strain energy release rate in non-dimensional form presented as a function of la /2  ratio 

(curve 1 – at non-linear elastic material behaviour and curve 2 – at linear-elastic material behaviour). 

 

The influence of the crack length on the longitudinal fracture behaviour is studied. The beam 

configuration in Figure 1 is considered. The solution to the strain energy release rate obtained at increase of 

the outer crack is applied. The length of the outer crack is characterized by la /2  ratio. The strain energy 
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release rate in non-dimensional form is presented as a function of la /2  ratio in Figure 5 at 25.0/1 =la , 

2.1/ 12 =RR , 3.0/ 13 =RR  and 6.0/ 14 =RR . The curves in Figure 5 show that the strain energy release 

rate increases with increasing of la /2  ratio. The effect of the non-linear mechanical behaviour of the 

material on the longitudinal fracture is studied too. For this purpose, the strain energy release rate in non-

dimensional form obtained at linear-elastic behaviour of the nonhomogeneous material is presented as 

function of la /2  ratio in Figure 5 for comparison with the non-linear elastic solution.  

The linear-elastic solution to strain energy release rate is derived by substituting of 1=g  and 1=t  in 

solution (49) since at 1=g  and 1=t  the non-linear stress-strain relation (8) transforms in the Hooke’s law 

assuming that L  is the modulus of elasticity of the nonhomogeneous material. 

   

 
 

Figure 6. The strain energy release rate in non-dimensional form presented as a function of g  (curve 1 – at 

3=F  N, curve 2 – at 4=F  N and curve 3 – at 5=F  N). 

The effect of material constant, g , on the longitudinal fracture behaviour is evaluated. The beam 

configuration in Figure 1 is considered. 

 

 
 

Figure 7. The strain energy release rate in non-dimensional form presented as a function of   (curve 1 – at 

increase of the inner crack in the beam configuration with shorter inner crack (Figure 1) and curve 2 – at 

increase of the inner crack in the beam configuration with longer inner crack (Figure 2)). 
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The solution to the strain energy release rate obtained at increase of the inner crack is applied. One can 

get an idea about the effect of g  on the longitudinal fracture from Figure 6 where the strain energy release 

rate in non-dimensional form is presented as a function of g  at three values of the external force, F , for 

3.0/1 =la , 5.0/2 =la , 8.0/ 12 =RR , 2.0/ 13 =RR  and 7.0/ 14 =RR . The curves in Figure 6 indicate 

that the strain energy release rate decreases with increasing of g .  

 

 
 

Figure 7. The strain energy release rate in non-dimensional form presented as a function of 14 / RR  ratio 

(curve 1 – at 4.0/2 =la  and curve 2 – at 5.0/2 =la ). 

 

The influence of the angle,  , on the longitudinal fracture behaviour is analyzed. The cantilever beam 

configuration with longer inner crack shown in Figure 2 is considered. The solution to the strain energy 

release rate derived at increase of the inner crack is applied. In order to evaluate the influence of   on the 

longitudinal fracture behaviour, the strain energy release rate in non-dimensional form is presented as a 

function of   in Figure 7 at 6.0/ 12 =RR , 2.0/ 13 =RR  and 7.0/ 14 =RR . One can observe in Figure 7 

that the strain energy release rate decreases with increasing of  . The strain energy release rate in non-

dimensional form obtained at increase of the inner crack in the cantilever beam configuration with shorter 

inner crack (Figure 1) is presented also in Figure 7 for comparison with the strain energy release rate in the 

beam with longer inner crack. The curves in Figure 7 indicate that the strain energy release rate in the beam 

with longer inner crack is higher in comparison with that in the beam with shorter inner crack.   

The influence of the location of the outer crack on the longitudinal fracture behaviour is also analyzed. 

For this purpose, the strain energy release rate in non-dimensional form is plotted against 14 / RR  ratio in 

Figure 8 at two la /2  ratios for 3.0/1 =la , 8.1/ 12 =RR  and 2.0/ 13 =RR . The beam configuration 

shown in Figure 1 is considered. The solution to the strain energy release rate at increase of the outer crack is 

used. It is evident from Figure 8 that the strain energy release rate increases with increasing of 14 / RR  ratio.   

 

4 Conclusions  
  

The fracture behaviour of an inhomogeneous cantilever beam with two concentric longitudinal cracks is 

studied in terms of the strain energy release rate. The beam under study has a circular cross-section. The 

radius of the cross section varies linearly along the length of the beam. Two concentric longitudinal cracks of 

different lengths are located in any radial direction. The beam has a continuously (uniformly) varying 

material inhomogeneity in the radial direction of the cross-section. Moreover, the material has a nonlinear 

elastic mechanical behaviour. A solution for the strain energy release rate is found by considering the energy 

balance. The fracture behaviour is also analysed considering the complementary strain energy stored in the 

beam to verify the solution for the strain energy release rate. The effect of varying the radius of the cross 
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section along the length of the beam on the fracture behaviour is studied. For this purpose, the strain energy 

release rate is presented as a function of the ratio of the radius of the cross-section in the clamped end of the 

beam to the radius in the free end, R2 / R1. It is found that the strain energy release rate decreases with 

increasing of R2 / R1 ratio. The strain energy release rate is presented also as a function of R3 / R1 ratio in 

order to evaluate the effect of the location of the inner crack in radial direction on the fracture behaviour. The 

analysis reveals that the strain energy release rate increases with increasing of R3 / R1 ratio. Concerning the 

influence of the length of the outer crack on the fracture behaviour, it is found that the strain energy release 

rate increases with increasing of a2 / l ratio. The strain energy release rate is studied also as a function of LP / 

L0 ratio (this ratio characterizes the material nonhomogeneity along the radius of the cross-section of the 

beam). The investigation shows that the strain energy release rate decreases with increasing of LP / L0 ratio. 

The fracture behaviour of the inhomogeneous cantilever beam configuration is also studied as a function of. 

The study indicates that the strain energy release rate decreases with increasing size. The fracture behaviour 

of the beam configuration where the outer crack is longer is compared with that of the beam where the inner 

crack is longer. It is found that the strain energy release rate is higher when the inner crack is longer. The 

strain energy release rate solutions derived in the present work can be useful in the design of inhomogeneous 

members considering their longitudinal fracture behaviour. Moreover, the strain energy release rate solutions 

can be applied to check crack growth by comparing the calculated strain energy release rate with the critical 

rate (the latter is known as fracture toughness). 
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