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Abstract: The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize a reinforced concrete 
retaining wall embedded in saturated silty sand. Multi-objective constrained optimization was performed to minimize the cost, 
while maximizing the overdesign factors (ODF) against sliding, overturning, and soil bearing resistance. For a given change 
in ground elevation of 5.0 m, the width of the foundation and the embedment depth were optimized. Comparing the algorithm's 
performance in the cases of two-objective and three objective optimizations showed that the number of objectives significantly 
affects its convergence rate. It was also found that the verification of the wall against the sliding yields a lower ODF value 
than verifications against overturning and soil bearing capacity. Because of that, it is possible to exclude them from the 
definition of optimization problem. The application of the NSGA-II algorithm has been demonstrated to be an effective tool for 
determining the set of optimal retaining wall designs. 
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1. INTRODUCTION 
 
The classic approach to geotechnical design is an iterative process to find the optimal solution that meets 

prescribed safety margins at a minimal cost. Complex geotechnical analyses often involve many decision variables 
and limit states verifications, resulting in a large number of feasible designs in the design space. In the classical 
approach, the search for the optimal designs in the solution space is done manually, which may lead to the selection 
of a suboptimal design. The use of multi-objective optimization using the NSGA-II genetic algorithm enables the 
automated search for optimal designs in the entire solution space. The algorithm is based on the dominance 
principle (Čupić, 2013), and it produces a set of non-dominated designs, referred to as the Pareto front. 

Several authors explored the possibility of optimizing geotechnical structures by combining various 
optimization techniques with reliability theory (Dodigović et al., 2021; Gong et al., 2017, 2014; Juang et al., 2012; 
Juang and Wang, 2013; Khoshnevisan et al., 2016, 2014a, 2014b). Numerous advantages of such an approach have 
been emphasized in the literature. Still, due to the complexity of applying structural reliability theory principles, it 
is not often applied in engineering practice. Optimization of geotechnical structures using the NSGA-II algorithm 
can be performed without the use of reliability theory. For example, in this case, the overdesign factors (ODF) 
(Frank et al., 2005) can be maximized while minimizing the cost of the structure. 

Islam and Rokonuzzaman (2018) use a genetic algorithm to optimize the design of a footing. They compare 
the obtained results with the results of the classical approach and conclude that the application of a genetic 
algorithm can reduce the structure cost by 68%. 

Yazadani et al. (2016) investigate the ant colony optimization method for raft piled foundation design. They 
developed the ACO algorithm for finding optimal solutions of piled-raft foundations. Shahin (2015) investigates 
the applicability of evolutionary computation for use in complex geotechnical analyzes. They evaluate the 
application of evolutionary polynomial regression (ERP) to various geotechnical tasks. The obtained results are 
compared with the results of in-situ tests, from which they conclude that the studied method is suitable for use in 
complex geotechnical analyzes. This paper investigates the possibility of applying NSGA-II (Non-Dominated 
Sorting Genetic Algorithm II) to optimize the embedment depth and foundations width of a retaining wall. In this 
case, the feasible design space consists of all designs that satisfy the ultimate limit state criteria according to 
Eurocode 7, design approach 3 (European Committee for Standardization, 2012). In the optimization procedure, 
materials and actions are characterized by mean, characteristic and design values (European Committee for 
Standardization, 2011). The result of the NSGA-II algorithm is a Pareto front from which the final design is 
selected. 
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2. MATERIALS AND METHODS 
 
2.1. Retaining wall geometry and geotechnical properties of soil 
 
Geotechnical analyzes were carried out on the reinforced concrete retaining wall with the geometry showed in 

Figure 1. In accordance with the ultimate limit state criteria, the wall is designed for a given change in ground 
elevation of 5.0 m. The wall is embedded in a saturated silty sand (SM). A drainage layer behind the wall consists 
of well graded gravel (GW). Water pressure on the stem is not expected due to the drainage pipe installed at its 
base. 

 
 

Figure 1. Geometry of the wall 
 

Table 1 summarizes the features of the geotechnical parameters used in the analyses. Coefficients of variation 
were chosen in accordance with the recommendation of Duncan (2000). Geotechnical random variables are 
assumed to be normally distributed. From the mean values, the characteristic values of geotechnical parameters 
were calculated according to the following equation Schneider (1999): 

 
𝑋௞ ൌ 𝑋௠ ⋅ ሺ1 െ 0.5 ⋅ 𝐶𝑂𝑉௑ሻ (1) 

 
where: 
𝑋  is the variable symbol, 
𝑋௠  is the mean value of X, 
𝐶𝑂𝑉௑  is the coefficient of variation of X. 

 
Design values are calculated from the characteristic values using partial factors according to Eurocode 7, design 
approach 3. 

 
Table 1. Statistical properties of geotechnical random variables  

 

SYMBOL DESCRIPTION 
SOIL UNIT 
WEIGHT  
[𝒌𝑵/𝒎𝟑] 

EFFECTIVE ANGLE OF 
INTERNAL FRICTION 

𝛟𝒎
ᇱ ሾ°ሿ 𝑪𝑶𝑽𝛟ᇲ 

GW Well-graded gravel 20 33 0.1 

ML Silty sand 19 28 0.1 

 
2.2. Verification of ultimate limit states according to Eurocode 7 
 
Figure 2 shows the forces acting on the retaining wall. Up to the freezing depth, the effect of passive soil 

resistance is neglected. The force 𝑉ௗ is the sum of the weight of the soil above the foundation and the weight of 
the retaining wall. Since the vertical force is eccentric, the bearing capacity is calculated for the effective area of 
the footing. 
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Figure 2. Forces acting on the retaining wall 
 

Verification of bearing capacity and resistance against sliding is carried out using Equations 2 and 3. 
 

𝑉ௗ ൑ 𝑅ௗ (2) 
𝑃௔ௗ ൑ 𝐹௙ௗ ൅ 𝑃௣ௗ (3) 

 
To establish the influence of each ultimate limit state on the required minimum wall dimensions, preliminary 
geotechnical analyses were conducted. The findings of these investigations are not included in this paper. Due to 
a negligible influence, it was determined that the verification against overturning may be excluded from 
subsequent analyses. 

Design values of active earth thrust 𝑃௔ௗ, passive resistance (𝑃௣ௗ), resistance at wall-soil contact (𝑅௙ௗ), vertical 
action (𝑉ௗ) and bearing capacity (𝑅ௗ) are determined using Equations 4-8. 
 

𝑃௔ௗ ൌ 𝐾௔ௗ ⋅ γ௦ ⋅
𝐻ଶ

2
 ⋅ 𝐿 (4) 

𝑃௣ௗ ൌ 𝐾௣ௗ ⋅ γ௦ ⋅
𝐻ଶ

2
⋅ 𝐿 (5) 

𝑉ௗ ൌ 𝛾ீ,௨௡௙௔௩ ⋅ 𝑉௞ ൌ 𝛾ீ,௨௡௙௔௩ ⋅ 𝐺௪௔௟௟ ൅ 𝐺௦௢௜௟ (6) 

𝑅௙ௗ ൌ 𝑉௞ ⋅ 0.67 ⋅ 𝑡𝑎𝑛ϕௗ ⋅ 𝐵 ⋅ 𝐿 (7) 

𝑅ௗ ൌ ሾ𝑞ᇱ𝑁௤𝑠௤ ൅ 0.5γᇱ𝐵ᇱ𝑁ఊ𝑠ஓሿ ⋅ 𝐴ᇱ (8) 

Where: 
𝐾௔ௗ and 𝐾௣ௗ are Rankine's earth pressure coefficients, 
𝛾௦ is the weight of the gravel, 
𝛾ீ,௨௡௙௔௩ is the partial factor for an unfavorable permanent action, 
𝑉௞ is the characteristic value of vertical load, 
𝐺௪௔௟௟ ,𝐺௦௢௜௟ are weights of the wall and soil, 
ϕௗ is the design value of angle of internal friction of gravel, 
𝑞ᇱ the design effective overburden pressure at the level of the foundation base, 
𝑁௤ ,𝑁ఊ are dimensionless factors for the bearing capacity, 
𝑠௤ , 𝑠ஓ are dimensionless factors for the shape of foundation, 
𝐴ᇱ is the design effective foundation area. 
 

2.3. The optimization problem 
 
The decision variables in the optimization task are foundation width (B) and wall embedment depth (H2). 

Two-objectives and three-objective optimizations were performed. In the first case, the wall cost is minimized 
while the ODF for wall sliding (𝑂𝐷𝐹௦௟) is maximized. In addition to the above, the ODF for wall bearing 
capacity (𝑂𝐷𝐹௕௖) is maximized in the second case. Design space is divided into feasible and infeasible design 
spaces, setting up four optimization constraints. 
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The optimization problem can be set up as follows: 

Find:  d=[B, H2] 
Subject to: 𝐵 ∈ ሼ3.0𝑚, 3.1𝑚, … ,8.0𝑚ሽ and 
  𝐻2 ∈ ሼ0.8𝑚, 0.9𝑚, … ,2.5𝑚ሽ 
  𝑂𝐷𝐹௦௟ ൑ 1.0 

𝑂𝐷𝐹௕௖ ൑ 1.0 
𝐴௦ଵ ൑ 𝐴௦,௠௔௫ 

Objective: Maximizing 𝑂𝐷𝐹௦௟ and 𝑂𝐷𝐹௕௖ 
  Minimizing cost of the retaining wall 

 
The cost of the foundation was estimated using the following equation: 
 

𝑍 ൌ 𝑄௘𝑐௘ ൅ 𝑄௙𝑐௙ ൅ 𝑄௖𝑐௖ ൅ 𝑄௥𝑐௥ (9) 
 

Where 𝑄௘ ,𝑄௙,𝑄௖ and 𝑄௥ are quantities of excavation, compacted backfill, concrete and reinforcement, 
respectively, 𝑐௘ , 𝑐௙, 𝑐௖ and 𝑐௥ are the associated unit prices. Unit prices are expressed in Croatian kuna (HRK). 
They are estimated according to the author's experience. 

 
2.3. NSGA-II algorithm 
 
Multi-objective optimization is performed using the NSGA-II algorithm (Deb, 2001). It is a variant of the 

genetic algorithm that applies the principle of dominance to the optimization problem. In the algorithm, parents 
are selected from the parent population and combined by crossover. The mutation operator is applied to the 
solutions obtained by the crossover operaton. Then, the procedure is repeated until a children population with the 
same number of elements as the parent population built. The parent population is deleted, and children become 
new parents (Čupić, 2013). The procedure is carried out until the termination criterion is met. In this paper, the 
number of generations is selected as the termination criterion. The convergence of the algorithm was checked 
using a hypervolume indicator (Beume et al., 2007). The NSGA-II algorithm flowchart is shown in Figure 3. 
Optimization was performed using the Python programming language and the Pymoo library (Blank and Deb, 
2020). 

 

 
Figure 3. A flowchart of the NSGA-II algorithm 
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3. RESULTS 
 
Figure 4a shows the Pareto front for the case of three-objective optimization, and Figure 4b shows its 

projection on the plane 𝑂𝐷𝐹௦௟ െ 𝑂𝐷𝐹௕௖. Design space comprises 738 designs, of which 290 are in the Pareto front. 
The 𝑂𝐷𝐹௦௟ range is from 1.0 to 2.0, and 𝑂𝐷𝐹௕௖ ranges from 1.3 to 3.5. The lowest construction price is 14700, and 
the highest is 26000 HRK/m’. 

   

(a)  (b) 

Figure 4. Pareto front for the case of three-objective optimization (a), projection of the Pareto front on the 
plane 𝑂𝐷𝐹௦௟ െ 𝑂𝐷𝐹௕௖ (b) 

 
Figure 5 shows the Pareto front determined by two-objective optimization that comprises 63 non-dominated 

designs. Out of a total of 738 designs, 26 are infeasible, and 712 are feasible designs. The values of 𝑂𝐷𝐹௦௟ and 
construction costs are the same as in the case of three-objective optimization. 

 
 

Figure 5. Pareto front along with feasible and infeasible designs for the case of two-objective optimization 
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Figures 6a and 6b shows the non-dominant designs in the decision space, resulting from two-objective and 

three-objective optimization. For the same number of decision variables, there is a significant difference in the 
number of non-dominated solutions between the two considered examples. 

 

   
(a)  (b) 

Figure 6. Pareto front in decision space for the case of two-objective (a) and three-objective (b) 
optimization. 

 
Figures 7a and 7b shows the convergence of the NSGA-II algorithm for the two-objective and three-objective 

optimization cases. In the first case, the algorithm converged after 480, and in the second after 835 generations. 
 

   

(a)  (b) 

 
Figure 7. Convergence of the NSGA-II algorithm for the case of two-objective (a) and three-objective (b) 

optimization 
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4. DISCUSSION AND CONCLUSIONS 
 
The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize the design of a 

reinforced concrete retaining wall. The wall is embedded in a saturated silty sand (SM), with the groundwater level 
at the base of the footing. A drainage layer of well-graded gravel (GW) is installed behind the wall. For a 5.0 m 
change in ground elevation, the foundation width and embedment depth are optimized. A minimum embedment 
depth is 80 cm and is determined from the conditions related to the depth of soil freezing. To harmonize the results 
with Eurocode 7, four constraints are defined in the optimization problem. The goal of optimization is to determine 
a set of non-dominant designs, i.e., the Pareto front.  

Two-objective and three-objective optimizations were performed with the aim of minimizing costs and 
maximizing overdesign factors for wall verification against sliding and bearing capacity. An additional objective 
in the three-objective optimization was found to significantly affect the convergence rate of the NSGA-II 
algorithm. In the case of two-objective optimization, the algorithm converged after 480 and three-objective after 
835 generations, as shown in Figures 7a and 7b. Figures 6a and 6b shows that the Pareto front obtained by 
performing three-objective optimization consists of Pareto front of two-objective optimization with the addition 
of the designs that have higher 𝑂𝐷𝐹௕௖ values for the same cost. Only 26 of the 738 designs are infeasible, as shown 
in Figure 5. The reasons for that are appropriate assumptions of minimum and maximum values of decision 
variables. The difference in the number of designs in the Pareto front can be seen in Figures 6a and 6b. Two-
objective optimization yielded 63 optimal designs, while three-objective optimization yielded 290. The ultimate 
limit state verification against sliding controls the wall designs in the case of the retaining wall studied in this 
paper. Because of this reason, objectives related to verifications of other ultimate limit states are excluded from 
the optimization problem. The optimization procedure and graphical representations of the Pareto front were 
greatly simplified by reducing the number of objectives. 

From the obtained Pareto front, the final design is selected. There are various options for selecting a final 
design. In the literature, the knee point concept is frequently employed (Gong et al., 2017; Ravichandran and 
Shrestha, 2020; Zhou et al., 2020). According to this concept, the final design is selected in the knee point Pareto 
front. It is possible to choose a final solution by reducing the multi-objective optimization problem to a single-
objective problem by forming a composite objective function as the weighted sum of the objectives (Deb, 2001).  

The implementation of the genetic algorithm NSGA-II allows for the quick and straightforward determination 
of the Pareto front in the case of retaining wall optimization. Preliminary geotechnical analyses are proposed to 
reduce the number of objectives and decision variables for defining the optimization problem. In this way, it is 
possible to simplify optimization, speed up the algorithm's convergence, and facilitate the selection of the final 
design. 
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