
Implementation of MQTT Protocol in Health
Care Based on IoT Systems: A Study

215

Roaa Wadullah Tareq
College of Engineering, Department of Computer Engineering,
University of Mosul, Mosul, Iraq
roaa.enp77@student.uomosul.edu.iq

Turkan Ahmed Khaleel
College of Engineering, Department of Computer Engineering,
University of Mosul, Mosul, Iraq
turkan@uomosul.edu.iq

Abstract – Internet of things IoT systems have become one of the most promising technologies in all fields. Data transmission is one
of the important aspects, and the tendency to messaging protocols is an important aspect of IoT systems. One of these most important
protocols is MQTT. This protocol depends on the Publish/Subscribe model, and it is a lightweight protocol. Reliability, simplicity, quality of
service levels, and being Resource-constrained make MQTT common in the IoT industry. This paper designed an IoT device that consists
of the sensor MLX 90614 non-contact IR Temperature connected to a development board (Node MCU ESP8266). A person's temperature
is one of the important vital signs. This system measures human temperature values and transmits the measured values to the Mosquitto
broker by using the MQTT protocol in real-time. The technology used is Wi-Fi. The person or the doctor can read the patient’s temperature
remotely through a program (Flutter Android Client) representing the subscriber. Also, MQTT protocol control packets of the system were
analyzed using Wireshark. The three levels of QoS were used in subscriber clients to compare the throughput. The results indicate that
QoS2 is more reliable and offers more throughput but more delay. The results also show that the average round trip time (RTT) of the
MQTT protocol is five milliseconds which means optimal performance for IoT applications.

Keywords: IoT, MQTT, Publish/Subscribe, Broker, QoS, MLX90614, NodeMCU ESP8266

1. INTRODUCTION

The IoT needs a specific environment characterized
by intelligence, as the Internet of Things device is any
device that can be connected to the internet to collect
data by sensors, process it, and send it over the inter-
net to its specified endpoints. Fig. 1 shows the stages
of dealing with data in IoT systems. IoT technology can
connect any device to the internet in real-time at any
time and from anywhere to control and analyze it [1, 2].
The IoT faces many issues that need to be addressed to
properly implement it, including security and privacy
and scalability, interoperability, and data management
[3]. These are in addition to the lack of homogeneity of
components with each other [4]. The application layer
protocols of IoT responsible for transmitting data are
important aspects. In the transmission of IoT, sensor
data must use lightweight protocols and show band-
width efficiency as these are fundamental features of
the IoT. Moreover, it must show the efficiency of en-
ergy and capability of working with minimal hardware
resources (like main memory and power supply) [5].
Internet access needs application protocols through
UDP/IP or TCP/IP [6]. The protocols used in Internet of

Volume 12, Number 4, 2021

Things systems are as follows: MQTT (Message Queue
Telemetry Transport), HTTP (HyperText Transport Pro-
tocol), AMQP (Advanced Message Queuing Protocol),
COAP (Constrained Application Protocol), DDS (Data
Distribution Service), XMPP (Extensible Messaging
and Presence Protocol)[7]. One of the most important
protocols used to transfer data in IoT systems is MQTT
[8] which appeared in 1999 [9]. It was developed by
Andy Stanford-Clark of IBM and Arlen Nipper of Arcom
Control Systems [10]. MQTT protocol is considered OA-
SIS standard [11] and M2M communication [12]. The
publish/subscribe model used in the MQTT protocol
makes it appropriate for M2M messaging [13]. One of
the most important factors determining these M2M
communications' performance is the messaging pro-
tocols designed for internet of things applications. The
MQTT protocol uses default port 1883 and uses TCP/
IP as transport [12]. MQTT uses Transport Layer Secu-
rity/Secure Sockets Layer (SSL/TLS) as security [14]. It
is considered one of the lightweight protocols used in
devices with limited resources such as the IoT [12]. This
protocol reduces the overhead costs and provides high
communication efficiency for the internet of things as

Case Study

216 International Journal of Electrical and Computer Engineering Systems

it relies on “name-based routing” [6]. MQTT communi-
cation has two kinds of agents: the first is MQTT clients,
and another is the broker of MQTT. The protocol-trans-
mitted information is known as the application mes-
sage. The clients of MQTT refer to the objects or devices
connected to the internet that exchange messages or
communication through MQTT. The clients of MQTT
are known as subscribers and publishers. MQTT trans-
fers the data from source (Publisher) to destination
(Subscriber) through the broker. In MQTT, clients (or
publisher and subscriber) do not require to cognize the
identity of each other. Using an address named Topic,
each message of data is published. A publisher can for-
ward the application message while the subscriber can
demand that application message to obtain its data.
MQTT clients can be any device like a mobile, a sensor,
Etc. The broker lets the various clients communicate
with each other. It transmits and acknowledges the ap-
plication messages between various clients connected
to it. Fig. 2 shows the Publish/Subscribe model of the
MQTT protocol.

Fig. 1. The Stages of Dealing
With Data In IoT Systems

Fig. 2. Publish/Subscribe model of MQTT Protocol

Another prevalent protocol in web communication is
HTTP. It utilizes a request/response model. This proto-
col is heavyweight, and it is a text protocol. This means
that it sends massive size messages with high over-
head. Instead of topics, HTTP utilizes the URI (Universal
Resource Identifier). The server transmits data through

URI, and the client receives it through the specific URI.
Because HTTP is a text protocol, headers and payloads
are determined by the programming technique or web
server. The CoAP protocol, however, is an M2M and
lightweight protocol. Like HTTP, the CoAP uses URI to
send and receive data. It uses a request/response mod-
el. CoAP is a binary, like MQTT protocol which means
that it needs 4 bytes fixed header and a small message
of payloads up to a maximum size that varies depend-
ing on the programming technique or web server [15].
Table 1. shows the essential features and compares
among MQTT, CoAP, and HTTP.

Protocol MQTT CoAP HTTP

Designed
by IBM IETF IETF/ W3C

Messaging
Model

Publish/
Subscribe Request/Response Request/

Response

Encoding
Format binary binary text

Transport
Protocol TCP UDP TCP

Hider Size 2 byte 4 byte undefined

Security TLS/SSL DTLS, IPSec TLS/SSL

Default
Port

1883 (TCP Port)
8883 (TLS/SSL)

5683 (UDP Port)
5684 (DLTS)

80 (TCP Port)
443 (TLS/SSL)

QoS
Reliability

At most once
QoS 0,

At least once
QoS 1,

Exactly once
QoS 2

Confirmable
Message
Or Non-

confirmable
Message

Limited
(via TCP)

Table 1. Comparison among MQTT, CoAP, and HTTP

In this paper, the body temperature data were col-
lected using MLX90614 sensor as a publisher then sent
to Mosquttio that uses as a broker by specific topic.
Node MCU ESP8266 development board uses the tech-
nique Wi-Fi to transfer data. At the same time, a client
was implemented using flutter. By the same topic, the
client (doctor or person) subscribes to the broker to get
the temperature value of the human in real-time. In ad-
dition, capture for the packets of MQTT was performed
and analyzed it using Wireshark.

2. RELATED WORK

The MQTT protocol has been studied by many re-
searchers. In this section, the most recent studies on this
protocol are reviewed. The first direction relates to the
implementation of the MQTT protocol in healthcare. The
second direction is related to the study of the MQTT pro-
tocol, its analysis, and comparison with other protocols
used in the fields of Internet of Things systems.

Sarierao and Prakasarao have been implemented a
healthcare monitoring system using the MQTT proto-
col. The architecture of the Smart Healthcare System
consists of microcontroller ESP32 using MQTT pro-
tocol. The sensors are used pulse rate, temperature
sensor, spo2 sensor, and body movement sensor. This

217Volume 12, Number 4, 2021

healthcare system allows the doctor to remotely view
a patient's vital signs on a web page and mobile app in
real-time. All the doctor needs are internet access [16].

 Another paper in the healthcare system has been im-
plemented titled Smart Health Care System using IoT. It
was used Node MCU ESP8266 with connecting sensors
detecting (Heart Rate, Temperature, Fall Detection, and
Step-Counter) and sends this data to a remote server
through Wi-Fi using MQTT protocol. Heart rate: The de-
vice can be used to keep track of a person's heart rate.
When the minimum threshold is reached, an individual
can be automatically notified by doctors and family
members. Using this device can save Millions of lives.
Step counter: The device tracks the number of steps
taken by the user so that he can exercise regularly. It
also helps in calculating the number of calories in ad-
dition to knowing the body temperature and detecting
the patient's fall [17].

The patient's vital signs monitoring system (heart
rate and blood oxygen level) was designed using
MAX30100 SPO2 sensor and connected to the ESP32
microcontroller using MQTT protocol to send these
signs to be monitored via phone or computer. As a con-
sequence of the publication Monitoring, vital signs of
human hear based on IoT [18], the MQTT protocol is ap-
propriate in health care applications for real-time mon-
itoring of vital signs. Finally, on this part, Priyamvadaa
suggested a utility to develop real-time body tempera-
ture readings using the MQTT protocol in healthcare.
According to the results obtained, the researcher con-
cluded that the MQTT protocol provides high data por-
tability also energy efficiency, security, scalability, and
reliability [19].

In the other direction, the protocol is covered and
surveyed. It was explained the most importance of
MQTT protocol in IoT, MQTT architecture, and existing
problems in MQTT such as message expiry, security, or-
dering, and priority. Furthermore, the number of MQTT
brokers was mentioned, with each having its own set
of restrictions and none of them implementing data
priority or future advancements for this protocol [20].

In another article, the architecture of the MQTT pro-
tocol is explored, as well as QoS levels, message format,
and MQTT's scope. MQTT is essentially a binary data
transfer protocol that supports a wide range of com-
munication technologies. Its goal is to create a com-
munication system that uses as little bandwidth as
possible. MQTT uses the TCP protocol for transport and
communicates over IP [12].

Another research detailed the MQTT protocol's archi-
tecture, QoS levels, message format, and MQTT scope.
MQTT is primarily a binary data conduit that allows
for a variety of communication methods. It's intended
to provide a communications system with the least
amount of bandwidth requirements. The MQTT proto-
col has been defined and compared to other IoT mes-
sage protocols, such as CoAP, for transport. In addition,

there have been tools available to aid in the execution
of practical experiments and simulations. Experiments
were performed to observe the communication delay
between both MQTT and CoAP according to the results
obtained. The QoS0 level of MQTT showed a lower de-
lay than CoAP. Finally, the challenges and open issues
in this field are examined [21].

In addition, it was introduced the various M2M com-
munications protocols such as MQTT, CoAP, and AMQP
that being used over the previous 20 years. The most
widely used M2M/IoT protocol, MQTT, has been im-
proving. The protocol was examined some of the most
relevant research papers in the current literature re-
views to highlight the key characteristics, benefits, and
limits of this protocol and MQTT broker implementa-
tions concerning comparison to alternative IoT proto-
cols. The results were presented findings of the current
usage of MQTT and the areas of its application using
different comparison tables and graphs. It arrived that
an in-depth comparison of the characteristics of many
brokers and clients libraries of MQTT in several taxon-
omy categories were utilized to enable the research-
ers and the users to choose implementation of MQTT
based on the needs and appropriateness [22].

 Finally, the MQTT protocol-based applications in IoT
systems are addressed, and methods for controlling ac-
cess and organizing data exchange across MQTT pro-
tocol contexts are proposed. According to the user's
preferences and authorization policies, it was offered
the framework of access control to manage data shar-
ing across environments of MQTT [23].

3. USING MQTT PROTOCOL
TO SENDING DATA TO THE CLOUD

MQTT stands for Message Queuing Telemetry Trans-
port. It is considered a lightweight protocol, and it uses
a server called a broker. The client(Publisher) sends the
data as a message to the broker using a specific subject
called a topic, indicating the data category. More than
one client can receive the message from the broker via
the same specified topic. Figure 3 shows the network of
intercommunication using the MQTT protocol.

1. Message

A message is the basic unit of MQTT protocol com-
munication; it contains basic information called the
"topic" that constitutes the data exchanged between
devices through the broker.

2. Topic

The topic is the basic information for determining
the message to be sent and received. The structure of
the topic is determined in the form of a hierarchy sepa-
rated by a slash (/). The topic must always be specified
when sending the message or when subscribing to re-
ceive it. Publisher client (sensor) publishes data with its
topic, subscriber clients who want to receive it can as-
sign the needed topic and receive the data [24].

218 International Journal of Electrical and Computer Engineering Systems

3. Publish/Subscribe Paradigm

The publish/subscribe paradigm (or pub/sub) is an
alternative to conventional client-server architecture.
The publisher client and subscriber client never com-
municate directly with each other. Communication
takes place via a third component called the broker.
Several dimensions separate the publisher of the mes-
sage from the subscriber, and they are as follows:

•	 Space decoupling: The publisher and the sub-
scriber do not need to cognize each other (for
instance: no interchange of IP address).

•	 Time decoupling: The publisher and the sub-
scriber are not required to work at the same time.

•	 Synchronization decoupling: during receiving or
publishing, operations do not need to be inter-
rupted.

4. Broker

The broker represents the communication node be-
tween the publisher and the subscriber. It filters and
organizes all arriving messages then distributes them
accurately to subscribers using a specific topic interest-
ed in it [25]. There are many open-source brokers, the
most important of which are Mosquito, Hive MQ, and
Mosca. They differ in specifications and functions that
must be taken into consideration in advance.

Fig. 3. The network for intercommunication using
MQTT Protocol

4. QUALITY OF SERVICE QOS LEVELS
IN MQTT PROTOCOL

The MQTT is an asynchronous protocol whose para-
digm is based on Publish/Subscribe model. It flows
through TCP/IP, connecting large numbers of control
devices and remote sensors [26]. Devices are allowed
to exchange data using a message broker. The broker
of MQTT sends the message data to the subscribed cli-
ents and forwards, stores, prioritizes, filters, and pub-
lishes requests from the publisher client to the sub-
scriber client. The chosen quality of service QoS level
relies on the system. For example, suppose the system
requires a constant data transfer. In that case, MQTT
adapts QoS2 to deliver data even if there is a delay of
time [27]. MQTT offers three levels of QoS [28]:

1. (QoS 0) --- At-most once. It is the simplest, fastest,
and most unreliable level of QoS where the message
data is transmitted to the subscriber client at-most-once

(one time only). It is not saved or stored. Also, the pub-
lisher client does not receive any confirmation or infor-
mation about delivering the message (no need to be
acknowledged). If the subscriber client does not have a
network connection or if the publisher is down or unable
to receive the message, the packet is lost. The probability
of repeated messages does not exist. The expression “fire
and forget” describes (At-most once) QoS 0 level.

Fig. 4. Quality of Service (QoS0)

2. (QoS 1) --- At least once. The message of data is
transmitted to the subscriber client At least once. An
acknowledgment packet is used at this level of QoS.
The publisher must use DUP flag for the duplicated
data messages. The Publishing with QoS of level 1
needs two messages. The publisher publishes a data
message to the subscriber if the publisher does not re-
ceive Acknowledgment from the subscriber. QoS keeps
publishing the message until it receives the acknowl-
edgment packet (PUBACK).

Fig. 5. Quality of Service (QoS1)

3. (QoS 2) --- Exactly once. QoS 2 is used to guarantee
the data message delivery and to ensure safety. This
level is the slowest as it needs four messages. While
posting the message, two rounds of transition are uti-
lized. The message must be stored to be processed by
the publisher and the subscriber. In the first round, the
publishing customer transmits a message of data to the
subscriber client then waits for acknowledgment from
the subscriber the message of data has been saved. If
an acknowledgment is not received, the publisher sends
the message until it receives the acknowledgment that
message has been received. After that, the second round
begins; the publisher sends PUBREL to inform the sub-
scriber that the message can be processed and waits for
an acknowledgment PUBREL of receipt from the sub-
scriber and then deletes the message.

Fig. 6. Quality of Service (QoS2)

219Volume 12, Number 4, 2021

5. MQTT PROTOCOL FEATURES

Several points distinguish the MQTT protocol and
make it suitable for IoT applications [29], including:

•	 It supports three levels of QoS to ensure mes-
sage reliability.

•	 It uses bandwidth efficiently by packet agnostic,
and it has a small overhead.

•	 The data is binary.

•	 The publish/subscribe method has capabilities
like M2M communication. This technique also al-
lows bi-directional communication.

•	 The communications are asynchronous.

•	 Anytime, it can publish/subscribe messages.

•	 It is suitable for limited-resource devices such as
sensors for IoT systems.

6. SYSTEM DESIGN AND
IMPLEMENTATION DETAILS

Hardware System Requirements:

1. Node MCU ESP 8266 development board

2. MLX 90614 Non-contact Temperature Sensor

3. Male to Male wires and USB Cable

4. Laptop

Software System Requirements:

1. Android Emulator in Flutter to execute Client

2. Arduino IDE

3. Mosquitto Broker

4. Wireshark to Capture Packets of MQTT Protocol

Parameter Used

Broker Mosquitto

Topic Capture/Temperature

Port 1883

Subscriber MQTT Client in Flutter

Table 4. MQTT Parameters

The design of the system is shown in Figure 7. The sys-
tem consists of a sensor to measure the value of tempera-
ture in humans (MLX90614). This sensor which uses infra-
red (IR) and is non-contact, is connected to a Node MCU
ESP8266 low-cost development board. Table 6 shows
some specifications of Node MCU ESP8266 that distin-
guish it from other systems and make ESP8266 suitable
for IoT projects due to its small size and its use of a full-
stack of TCP/IP. ESP8266 accesses the internet through
the router by using Wi-Fi technology and utilizing MQTT
protocol. This system is designed to measure the human
temperature as the measured data (temperature) is sent
to the server (Mosquitto Broker [30]) by a topic that has

been determined (Capture/Temperature). The person
or doctor who monitors the patient’s condition can see
the measurement results in real-time from anywhere.
The measured data is also stored in the server so that the
results are saved as a database to be displayed again to
check the patient’s temperature at any time. In Table 5,
we mention the properties of the sensor used MLX90614
while Table 6, specifications of Node MCU ESP8266.

Table 5. The Characteristics of MLX90614 Sensor

Operating Voltage 3v to 5v

Supply Current 1.5 mA

Range of Object Temperature -70° C to 382.2°C

Range of Ambient Temperature -40° C to 125°C

Accuracy 0.02°C

The distance among object and sensor 2cm to 5cm (approx.)

Table 6. The Specifications of Node MCU ESP8266

Microcontroller 32-bit Tensilica RISC CPU Xtensa LX106

Operating voltage 3.3 V

Wi-Fi 802.11 b/g/n

Clock speed 80 MHZ-160MHZ

Analog Input 1 pin

Digital I/O 16 pins

Fig. 7. The design of the system
using the MQTT Protocol

7. CAPTURE MQTT CONTROL PACKETS
USING WIRESHARK

The communication of MQTT protocol is the proce-
dure of exchanging a series of control packets of MQTT
[31]. This section explains the format of control pack-
ets for MQTT by capturing them using Wireshark. The
control packet of MQTT consists of three parts, in the
following order:

1. Fixed header: exists in all the control packets

2. Variable header: exists in some kinds of control
packets

3. Payload: Also found in some control packets of
MQTT

220 International Journal of Electrical and Computer Engineering Systems

Fig. 8. Format of MQTT control packet

There are 14 kinds of MQTT control packets, and they
are as follow:

1. CONNECT The first packet sent by the publisher client
to the server after establishing the network through
the client’s communication with the server.

2. CONNACK: It is the acknowledgment of receipt of the
communication packet sent by the server to confirm re-
ceipt of the connection packet, as it is the first packet by
the server. If the time to receive this packet is exceeded,
the customer will close the network connection.

3. PUBLISH: It is the packet that the publisher client and
server can send to transfer data (application message).

4. PUBACK: It is an acknowledgment packet of PUBLISH
packet with QoS level.

5. PUBREC: The response packet to the PUBLISH packet
with the second level of quality of service (QoS 2).

6. PUBREL: It is a response packet to the PUBREC packet.

7. PUBCOMP: It is a response packet to the PUBREL packet.

8. SUBSCRIBE: The subscriber sends a subscribe packet
using a specific subject assigned to obtain the applica-
tion message.

9. SUBACK: It is an acknowledgment and processing
packet for the SUBSCRIBE packet.

10. UNSUBSCRIBE: This packet sent by a subscriber to
unsubscribe in topic

11. UNSUBACK: It is an acknowledgment packet for ac-
cessing an unsubscribe packet.

12. PINGREQ: Sending this packet determines if the cli-
ent is alive.

13. PINGRESP: sending this packet determines if the
server is alive. The server sends it to respond to the PIN-
GREQ packet.

14. DISCONNECT: It is sent as the last packet to the serv-
er as it indicates a disconnection for the client.

Fig. 9. Capture MQTT packets using Wireshark

Fig. 10. MQTT control packets type using Wireshark

8. RESULTS AND DISCUSSION

The system was connected using MQTT protocol and
was used to measure the human temperature. As the
sensor senses the temperature, the readings, which
represent the data, are published to the broker using
a specific topic (Capture/Temperature) and picked up
by a Mosquitto broker, which was chosen because it
is open-source. The subscriber client has been imple-
mented using flutter (software development) that the
client can operate on the Android or Apple system. Fig.
11 shows the practical

connection of the Internet of Things (IoT) system,
Fig. 12 shows serial monitors displaying the readings
of temperature using QoS1 to publish data, while Fig.

221Volume 12, Number 4, 2021

Fig. 11. IoT system (practical connection)
NodeMCU ESP8266 with MLX90614 sensor

Fig. 12. The results of temperature on the serial
monitor

Fig. 13. The temperature in real-time using MQTTBox

Fig. 14. Flutter Android Client

We noticed a quick response when subscribing to the
specific topic using Wireshark, as shown in Fig. 15, which
means that MQTT protocol has low overhead and pro-
vides high communication efficiency for the IoT system
because it relies on “name-based routing”. The feature
of TCP Steam Graph, which exists in Wireshark, provides
a whole record for RTT of each packet. RTT is the time
needed for sending a packet and receiving acknowledg-
ment packets. In a test of the duration of time in which
RTT is ranged from 0 msec to 10 msec, the packets were
captured between 1070-1110 sec, as shown in Fig. 16 and
Fig. 17. The communication network speed uses the I/O
graph of Wireshark, and the data were obtained at the
three levels of QoS. Fig. 18 shows the detailed waveform
of the bytes per sec for 100 sec. The throughput of this
network means that the number of MQTT packets was
successfully received. The results show that the highest
level of QoS2 is more reliable and has higher throughput
due to a 4-way handshake mechanism. MQTT protocol is
distinguished from other protocols like HTTP and CoAP.
It creates better packets and requires less time for trans-
mission, even though CoAP is a UDP protocol [6] [29].

13 shows the temperature readings in real-time using
the MQTT BOX tool. The real-time human temperature
reading was obtained using an Android Emulator that
subscribes to the specific topic, as shown in Fig. 14.

Fig. 15. The response when subscribing
in the client

Fig. 16. RTT of the MQTT packets captured using
Wireshark for 2000 sec.

Fig. 17. RTT of the MQTT packets captured during
1070 sec - 1110 sec

222 International Journal of Electrical and Computer Engineering Systems

Fig. 18. Throughput for QoS levels

9. CONCLUSION AND FUTURE WORK

In this article, we suggested a system for monitoring
the temperature of humans using the MQTT protocol
in real-time as an IoT system can read the temperature
from anywhere. The application that was implemented
uses flutter and can be downloaded on Android and Ap-
ple systems. It was concluded that the protocol is a light-
weight protocol that provides a high network connec-
tion and provides three levels of QoS to ensure reliability.
The QoS2 is more reliable, and throughput but requires
more time. The average RTT for the packets is approxi-
mately 5 msec, which could be considered the optimal
response time for IoT applications. Future work can be
aim is to expand and develop the system by introduc-
ing other sensors to measure the oxygen level and heart
rate of patients using the MQTT protocol. Also, this sys-
tem can be implemented with other Internet protocols
such as CoAP and HTTP, and a comparison can be made
between them in terms of performance.

10. ACKNOWLEDGEMENTS

The authors are grateful for the facilities provided
by the University of Mosul's College of Engineering's
Department of Computer Engineering, which contrib-
uted to improving the quality of this paper.

11. REFERENCES

[1] M. Al-Khafajiy et al., “Remote health monitoring

of elderly through wearable sensors”, Multimedia

Tools and Applications, Vol. 78, No. 17, 2019, pp.

24681-24706.

[2] A. Mishra, A. Kumari, P. Sajit, and P. Pandey, “Re-

mote web based ECG Monitoring using MQTT

Protocol for IoT in Healthcare”, International Jour-

nal of Advance Engineering and Research Devel-

opment, Vol. 5, No. 04, 2018, pp.1096-1101.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.

Aledhari, M. Ayyash, “Internet of things: A survey

on enabling technologies, protocols, and applica-

tions”, IEEE communications surveys & tutorials,

Vol. 17, No. 4, 2015, pp. 2347-2376.

[4] C. P. Kruger, A. M. Abu-Mahfouz, G. P. Hancke,
“Rapid prototyping of a wireless sensor network
gateway for the internet of things using off-the-
shelf components”, Proceedings of the IEEE In-
ternational Conference on Industrial Technology,
Seville, Spain, 17-19 March 2015, pp. 1926-1931.

[5] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a
common middleware”, Proceedings of the IEEE
ninth international conference on intelligent sen-
sors, sensor networks and information processing,
Singapore, 21-24 April 2014, pp. 1-6.

[6] T. Yokotani, Y. Sasaki, “Comparison with HTTP and
MQTT on required network resources for IoT”, Pro-
ceedings of the International Conference on Con-
trol, Electronics, Renewable Energy and Commu-
nications, Bandung, Indonesia, 13-15 September
2016, pp. 1-6.

[7] E. Al-Masri et al., “Investigating messaging proto-
cols for the Internet of Things (IoT)”, IEEE Access,
Vol. 8, 2020, pp. 94880-94911.

[8] R. Atmoko, R. Riantini, M. Hasin, “IoT real-time data
acquisition using MQTT protocol”, Journal of Phys-
ics: Conference Series, Vol. 853, No. 1, 2017, pp.1-6.

[9] K. Sugumar, “MQTT-A LIGHTWEIGHT COMMUNI-
CATION PROTOCOL RELATIVE STUDY”, Author Pre-
prints, 2020, pp.1-5.

[10] B. Mishra, “TMCAS: An MQTT based collision
avoidance system for railway networks”, Proceed-
ing of the 18th International Conference on Com-
putational Science and Applications, Melbourne,
VIC, Australia, 2-5 July 2018, pp. 1-6.

[11] O. Standard, “MQTT version 3.1. 1”, Available at
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.html, Vol. 1, 2014.

[12] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, R. Al-
Hatmi, “Internet of Things: Survey and open No.s of
MQTT protocol”, Proceedings of the International
Conference on Engineering & MIS, 2017, pp. 1-6.

[13] I. Heđi, I. Špeh, A. Šarabok, “IoT network protocols
comparison for the purpose of IoT constrained
networks”, Proceedings of the 40th International
Convention on Information and Communication
Technology, Electronics and Microelectronics,
Opatija, Croatia, 22-26 May 2017, pp. 501-505.

223

[14] J. J. Anthraper, J. Kotak, “Security, Privacy and Fo-

rensic Concern of MQTT Protocol”, Proceedings

of International Conference on Sustainable Com-

puting in Science, Technology, and Management,

Amity University Rajasthan, Jaipur-India, 2019, pp.

876-883.

[15] N. Naik, "Choice of effective messaging protocols

for IoT systems: MQTT, CoAP, AMQP and HTTP",

Proceedings of the IEEE international systems en-

gineering symposium, Vienna, Austria, 11-13 Oc-

tober 2017, pp. 1-7.

[16] B. S. Sarierao, A. Prakasarao, "Smart healthcare

monitoring system using MQTT protocol", Pro-

ceedings of the 3rd International Conference for

Convergence in Technology, Pune, India, 6-8 April

2018, pp. 1-5.

[17] V. M. Rao, C. V. Shankar, K. G. Reddy, “Smart Health

Care System using IOT”, International Journal of

Innovative Technology and Exploring Engineer-

ing, Vol. 8, No. 6,2019, pp. 772-775.

[18] K. T. Kadhim, A. M. Alsahlany, S. M. Wadi, H. T.

Kadhum, “Monitoring vital signs of human hear

based on IoT”, Al-Furat Journal of Innovations in

Electronics and Computer Engineering, Vol. 01,

No. 2, 2020, pp. 9-13.

[19] R. Priyamvadaa, “Temperature and Saturation lev-

el monitoring system using MQTT for COVID-19”,

Proceedings of the International Conference on

Recent Trends on Electronics, Information, Com-

munication & Technology, 2020, pp. 17-20.

[20] D. Soni, A. Makwana, “A Survey On MQTT: A Protocol

Of Internet Of Things (IoT)”, Proceedings of the Inter-

national Conference On Telecommunication, Power

Analysis And Computing Techniques, 2017, pp. 1-5.

[21] S. Quincozes, T. Emilio, J. Kazienko, “MQTT Proto-

col: Fundamentals, Tools and Future Directions”,

IEEE Latin America Transactions, Vol. 17, No. 9,

2019, pp. 1439-1448.

[22] B. Mishra, A. Kertesz, “The Use of MQTT in M2M

and IoT Systems: A Survey”, IEEE Access, Vol. 8,

2020, pp. 201071-201086.

[23] P. Colombo, E. Ferrari, E. D. Tümer, “Regulating
data sharing across MQTT environments”, Journal
of Network and Computer Applications, Vol. 174,
2021,p. 102907.

[24] D. Soni, A. Makwana, "A survey on MQTT: a proto-
col of internet of things (IoT)", Proceedings of the
International Conference On Telecommunication,
Power Analysis And Computing Techniques, 2017,
pp.1-5.

[25] L. Durkop, B. Czybik, J. Jasperneite, “Performance
evaluation of M2M protocols over cellular net-
works in a lab environment”, Proceedings of the
18th International Conference on Intelligence in
Next Generation Networks, Paris, France, 17-19
February 2015, pp. 70-75.

[26] S. Jaloudi, “Communication protocols of an indus-
trial internet of things environment: A compara-
tive study”, Future Internet, Vol. 11, No. 3, 2019, p.
66.

[27] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni,
M. Perez, P. Boronat, “Handling mobility in IoT ap-
plications using the MQTT protocol”, Proceedings
of the Internet Technologies and Applications,
Wrexham, UK, 8-11 September 2015, pp. 245-250.

[28] J. Toldinas, B. Lozinskis, E. Baranauskas, A. Dobro-
volskis, “MQTT Quality of Service versus Energy
Consumption”, Proceedings of the 23rd Interna-
tional Conference Electronics, Palanga, Lithuania,
17-19 June 2019, pp. 1-4.

[29] B. H. Çorak, F. Y. Okay, M. Güzel, Ş. Murt, S. Ozdemir,
"Comparative analysis of IoT communication pro-
tocols", Proceedings of the International sympo-
sium on networks, computers and communica-
tions, Rome, Italy, 19-21 June 2018, pp. 1-6.

[30] “Eclipse Mosquitto”, https://mosquitto.org/, Ac-
cessed on 7/10/2021.

[31] M. Houimli, L. Kahloul, S. Benaoun, “Formal speci-
fication, verification, and evaluation of the MQTT
protocol in the Internet of Things”, Proceedings of
the International Conference on Mathematics and
Information Technology, Adrar, Algeria, 4-5 De-
cember 2017, pp. 214-221.

Volume 12, Number 4, 2021

