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ABSTRACT  

 

The Lemnaceae or duckweed family comprises 37 species of smallest and simplest flowering 

plants. Duckweeds have a fast growth rate, can survive under a wide range of temperature and pH 

conditions and are easy to maintain and harvest which makes them an excellent candidate for 

bioremediation of wastewaters. The main objective of the present review is to extend an 

appreciation for the potential of living and non-living biomass of duckweed in remediating waters 

contaminated with heavy metals. Along with showing the detailed mechanism of phytoremediation 

by duckweed, the paper also discusses the enhancement of duckweed phytoremediation by the 

integration of transgenic technology. Furthermore, the paper explores other applications of 

duckweed specifically as fuel, animal feed, in human nutrition, in medicine and as a life support 

system. Apart from this, various disposal mechanisms for harvested duckweed have been analysed. 

Current understanding of removal efficiencies of several contaminants by employing duckweed is 

limited mainly to laboratory experiments. More concentrated and persistent efforts to develop 

efficient approaches for the genetic transformation of duckweeds can expand the development and 

utilization of duckweeds. 
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INTRODUCTION  

 

At the present time, contamination of soil, 

surface water and groundwater with organic 

and inorganic pollutants and their restitution 

has become a paramount concern for 

environmentalists. Among such pollutants, 

increasing concentrations of heavy metals and 

their prolonged persistence in soil and water 

have created an alarming situation for human 

life and aquatic biota. Several physical and 

chemical techniques, inclusive of chemical 

precipitation, oxidation or reduction, filtration, 

ion exchange, reverse osmosis, membrane 

technology, evaporation and electrochemical 

treatment have been employed as remediation 

strategies. These techniques suffer from 

various limitations, namely high costs, low 

efficiency, generation of secondary pollutants, 

etc. and are not eco-friendly [1, 2]. Hence it is 

a requisite to employ low cost and eco-friendly 

means of remediating media contaminated 

with heavy metals. Phytoremediation or use of 

plants as a tool for bioremediation of soil and 
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water by extracting, sequestering or 

detoxifying contaminants has emerged as a 

more suitable alternative [3, 4]. This 

environmental clean-up technology, initially 

proposed by Utsumamiya (1980) and Chaney 

(1983) [5], is solar-driven and in average 10-

fold cheaper than engineering based heavy 

metal remediation methods, like ion exchange, 

filtration and absorption. Ideally, plants with 

fast growth rate, high biomass, easily 

harvestable, having a wide root system and 

that can tolerate and accumulate different 

types of heavy metals are considered suitable 

for phytoremediation [6, 7]. The technology 

has five subsets applicable to toxic metal 

remediation from soil and water. These are:  

 

• Phytoextraction - plant biomass induces 

contaminants into shoots after they are 

taken by the plant roots [8], 
• Rhizofilteration - remediation of 

contaminated water by plant roots through 

absorption, concentration and precipitation 

[9], 
• Phytostabilization - mobility of 

contaminants reduced by plant adsorption 

or precipitation [10], 
• Phytovolatalization - uptake of pollutants 

and releasing them into the atmosphere 

after conversion into a volatile form [10]. 
 

Around 400 species of plants are 

hyperaccumulators that can absorb high 

concentrations of metal contaminants through 

their roots and are being used in 

phytoremediation. These plants have been 

found to accumulate metals at a rate 50 - 100 

times higher than normal plants [11]. 

 

Aquatic plants play an important role in the 

uptake, storage and recycling of metals from 

wastewaters [12]. Aquatic plants like 

Eichhornia crassipes, Azolla filiculoides, 

Pistia stratiotes, Hydrilla verticillata, Typha 

domingensis, Salvinia cucullata, A. 

caroliniana, A. pinnata, Lemna minor, L. 

aequinoctialis, L. gibba and Spirodela 

polyrhiza are suitable for removal of heavy 

metals, as reported by several researchers [13 - 

19]. Duckweed (known as a monocotyledon of 

the Lemnaceae family, recently classified as 

subfamily Lemnoideae among aroid family 

Araceae [20]) is widely and efficiently used 

for phytoremediation of contaminated water 

due to its ability to grow in a wide range of 

temperature, pH and nutrient levels [21]. It is a 

small group of free-floating aquatic plants with 

only five genera: Spirodela, Landoltia, Lemna, 

Wolffia and Wolffiella and 37 species [22 - 

24]. Different duckweed species exhibit 

variable sensitivity to heavy metals. 

 

This paper provides a review on 

phytoremediation potential of duckweed for 

heavy metals, like chromium (Cr), nickel (Ni), 

lead (Pb), zinc (Zn), cadmium (Cd), copper 

(Cu), etc. along with a detailed mechanism of 

their removal from wastewaters. Furthermore, 

the paper discusses the approach of genetic 

engineering to enhance the duckweed 

phytoremediation ability. Besides, the paper 

explores other fields of duckweed application 

and alternatives for its disposal. 

 

 

 

DUCKWEED SPECIES IN 

PHYTOREMEDIATION 

 

Duckweeds are the smallest and simplest 

flowering plants that currently exist. They 

represent a highly modified structural 

organization, including the simplification and 

loss of many anatomical features [25]. Their 

reduced body structure is organized as 

“thalloid” or “frond” and stem is absent. Roots 

are simple in Lemna and are entirely lacking in 

two genera (Wolffia and Wolffiella). Though 

duckweeds are angiosperms, they dominantly 

reproduce by vegetative propagation. The 

utility of duckweed species for bioremediation 

is sustainable because they recycle the nutrient 

from the wastewater and recover the aquatic 

ecosystem efficiently [26]. An overview of 

studies regarding phytoremediation potential 

of different species of duckweed is presented 

hereinafter. 

 

 

Lemna 

 

Lemna minor (common duckweed) is 

commonly found in temperate regions, except 

Eastern Asia and Australia. Singh et al. [27] in 
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his study has revealed that the duckweed (L. 

minor) showed better lead removal than other 

aquatic plants, such as Pistia stratiotes (Water 

Lettuce), E. crassipes (Water Hyacinth), 

Hydrila verticillata (Hydrilla) from polluted 

water and can be used in phytoremedial 

approaches. L. minor is not suitable for 

accumulation of Ni2+ from contaminated 

wastewaters [28]. L. minor can grow well in 

pH range 6 - 9 making it a suitable plant for 

phytoremediation. However, nitrate has few 

inhibitory effects on the plant growth [29]. 

Uysal [30] and Thayaparan et al. [31] showed 

that L. minor could efficiently reduce 

chromium in water at low concentration. Uysal 

and Taner [32] reported that lead accumulation 

in L. minor was highest at pH 4.5 and then it 

decreased at pH 6 which was later confirmed 

by Kaur et al. [33]. L. minor also showed great 

potential for the removal of chromium, zinc, 

lead and cadmium from textile wastewaters 

[34]. A comparative study conducted on L. 

minor and E. crassipes distinctly stated that L. 

minor can remove nickel metal more 

thoroughly as compared to E. crassipes [35]. 

L. gibba was found to be an appropriate 

remedy for boron at low concentrations (2 

mg/l) [36]. It can also accumulate uranium 

(120 %), boron (40 %), and arsenic (133 %) 

[37]. Jafari and Akhavan [38] investigated the 

capacity of 3 duckweeds, L. minuta, L. minor, 

L. trisulca, to purify zinc polluted water, 

during which L. trisulca (97 %) was found to 

have highest percentage of removal. In another 

study, L. polyrhiza / Spirodela polyrhiza when 

exposed to 10 mg/l of zinc, lead and nickel for 

4 days accumulated 27.0 µg/mg of zinc, 10.0 

µg/mg of lead and 5.5 µg/mg of nickel [39]. 

Azeez and Sabbar [40] in their study on 

phytoremediation of oil refinery by L. minor 

showed that it can successfully be used for 

wastewater pollutants removal. Daud et al. 

[41] in their study proved that L. minor 

significantly reduced the concentration of 

heavy metals in a landfill leachate. Removal 

efficiency of L. minor for all the metals from 

landfill leachate was more than 70 %, with the 

maximum value for copper (91 %). Studies 

have shown that L. minor has the potential to 

grow, develop and bioremediate iron rich mine 

effluent [42]. Both L. minor and Spirodela 

polyrhiza are potential cadmium accumulators 

[43]. 

 

 

Spirodela 

 

Spirodela polyrhiza was found to be an 

extractor and accumulator of arsenic, nickel 

and cadmium [44, 45]. S. polyrhiza was seen 

to have accumulated more than 1000 mg/kg of 

lead and nickel in its dry biomass [46]. Islam 

et al. [47], while evaluating the performance of 

S. polyrhiza for treatment of Cr(VI) water, 

submitted that the high bioconcentration factor 

(4558) proved the appropriateness of the plant 

for extracting chromium metal from water. 

Spirodela exhibited symptoms of toxicity for 

zinc at high exposure concentrations (40 - 50 

ppm) [48]. S. polyrhiza has been capable of 

removing cadmium and lead from media 

efficiently under laboratory conditions [49]. 

Loveson et al. [50] apprised that constructed 

wetlands with Spirodela mat may help prevent 

the spread of heavy metal contamination from 

land to the aquatic environment. High metal 

removal rates, close to 100 %, were reported in 

wetlands in the study, which is quite 

promising. 

 

 

Landoltia 

 

It consists of one species, namely Landoltia 

punctata. Its major application is in the field of 

starch production. Shi et al. [51] in their study 

compared the toxic effects of copper oxide 

nanoparticles (CuO-NP) and soluble copper 

salt (CuCl2) on L. punctata. The results stated 

that copper was easily absorbed from CuO-NP 

suspension. Therefore, copper content was 

four times higher in CuO-NP exposed fronds 

than in fronds exposed to equivalent dose of 

soluble copper. 

 

 

Wolffia 

 

Wolffia globosa is one of the smallest 

flowering plants consisting of small rootless 

spherical fronds. Zhang et al. [52] investigated 

potential of W. globosa for arsenic 

accumulation and found that it was able to 
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accumulate ≥ 1000 mg As/kg in frond dry 

weight (DW) and tolerate up to 400 mg As/kg 

DW. Arsenite efflux appears to be the limiting 

factor in phytofilteration of arsenic using W. 

globosa. Moreover, W. globosa have shown a 

high level of tolerance to both chromium and 

cadmium [53]. Among five species of Wolffia 

(W. globosa, W. australiana, W. cylindracea, 

W. columbiana W. arrhiza). W. columbiana 

accumulated highest concentration of 

cadmium [54]. 

 

Wolffiella 

 

Wolffiella is a genus of small rootless 

duckweed of the Lemnaceae family. No 

secondary research data was available on 

phytoremediation capacity of Wolffiella.  

 

A summary of removal efficiencies of 

duckweed species for different heavy metals is 

presented in Table 1. 

 
 

Table 1. Removal efficiency of duckweed for different heavy metals 
 

S. N. Species used Heavy metal 
Concentration 

in medium 

Removal 

efficiency 

(%) 

Accumulated 

concentration in 

plant 

Remarks Reference 

1. L. minor Chromium 5 mg/L  4.423 mg Cr/g pH 4.0 [30] 

2. L. minor Zinc 1 - 20 mg/L 40 - 83    [38] 

3. L. minuta Zinc 1 - 20 mg/L 35 - 89     [38] 

4. L. trisulca Zinc 1 - 20 mg/L 49 - 97     [38] 

5. L. minor Lead 10 mg/L 99.99  pH 5.0 - 6.0 [33] 

6. L. minor Nickel 10 mg/L 99.30  pH 6.0 [33] 

7. L. minor Lead 16 µg/L 98.70  
Water sample - wastewater 
from Basra Oil Refinery, 

Iraq. 

[40] 

8. L. minor Copper 12 µg/L 99.80  [40] 

9. L. minor Zinc 43 µg/L 72.00  [40] 

10. L. minor Cadmium 5.1 µg/L 99.60  [40] 

11. L. minor Zinc 1.47 mg/L 83.00  

Water sample - Mahmood 
Booti landfill site, Iraq. 

[41] 

12. L. minor Lead 0.83 mg/L 78.00  [41] 

13. L. minor Iron 1.17 mg/L 77.00  [41] 

14. L. minor Copper 0.69 mg/L 91.00  [41] 

15. L. minor Nickel 1.21 mg/L 76.00  [41] 

16. L. minor Cadmium 2 mg/L  4734.56 mg/kg  [43] 

17. S. polyrhiza Cadmium 3 mg/L  7711.00 mg/kg  [43] 

18. S. polyrhiza Lead 0.91 mg/L 93.19    [46] 

19. S. polyrhiza Nickel 2.92 mg/L 70 - 80    [46] 

20. S. polyrhiza Chromium 4.5 mg/L  855.56 mg/kg   [47] 

21. S. polyrhiza Lead 1 mg/L 53    [49] 

22. S. polyrhiza Cadmium 1 mg/L 53    [49] 

23. S. polyrhiza Copper 65 µg/L 79  

Water sample - a wetland 

near Kuzhikundam Thodu 

creek at a location near HIL 
site boundary, Eloor 

industrial area, Ernakulam, 

Kerala, India. 

[50] 

24. S polyrhiza Lead 26 µg/L 95  [50] 

25. S. polyrhiza Zinc 212 µg/L 66  [50] 

26. S. polyrhiza Chromium 118 µg/l 53  [50] 

27. S. polyrhiza Cobalt 7.2 µg/L 28  [50] 

28. S. polyrhiza Manganese 8 µg/L 20  [50] 

29. S. polyrhiza Mercury 23 µg/L 45  [50] 

30. S. polyrhiza Nickel 19.3 µg/L 9  [50] 

31. S. polyrhiza Copper 63 µg/L 74  

Water sample - wetlands 

southwest of the 
"Amanthuruthu" wetland 

area, approx. 150 m west of 

the HIL, Eloor industrial 
area, Ernakulam, Kerala. 

[50] 

32. S. polyrhiza Lead 34.4 µg/L 91  [50] 

33. S. polyrhiza Zinc 301 µg/L 62.4  [50] 

34. S. polyrhiza Chromium 121 µg/L 49.0  [50] 

35. S. polyrhiza Cobalt 8 µg/L 40  [50] 

36. S. polyrhiza Manganese 7.3 µg/L 30.1  [50] 

37. S. polyrhiza Mercury 3.4 µg/L 53.0  [50] 

38. S. polyrhiza Nickel 22.3 µg/L 22.0  [50] 

39. S. polyrhiza Iron 5.3 µg/L 98.1  [50] 

40. S. polyrhiza Cadmium 3 µg/L 100  [50] 

41. L. punctata Cu salt (CuCl2) 0.6 mg/L  

Roots: 550 - 

600 µg/g DW; 
Fronds: 400 - 

450 µg/g DW 

 [51] 

42. L. punctata CuO-NP 1.0 mg/L  

Roots: 800 µg/g 

DW aprox.; 
Fronds: 650 - 

700 µg/g DW 

 [51] 

43. W. globosa Cadmium 5 μM  
143.12 mg/kg 

FW 
pH 6.0 [54] 
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TYPES OF PHYTOREMEDIATION IN 

DUCKWEED 

 

After careful analysis of previous studies [17, 

44, 54, 55 - 57] it can be established that 

phytofiltration/rhizofiltration is the dominant 

mechanism of phytoremediation in duckweed. 

The phytoremediation potential of the 

duckweeds can be further enhanced by the 

application of innovative approaches in 

phytoremediation.  

 

 

Transgenic phytoremediation 

 

Duckweeds genome sizes vary enormously, 

ranging from 158 megabase pairs (Mbp) in 

Spirodela to 1881 Mbp in Wolffia, a total 13-

fold change [58 - 61], indicating duckweeds as 

an interesting model for studying genome size 

evolution. Knowledge of molecular taxonomy 

has led to significant progress for exploitation 

of duckweed in toxic metal and metalloid 

phytoremediation. Li and Xiong [62] and 

Vunsh et al. [63] used polyploidization as a 

tool for genetic modification of duckweeds. 

Many attempts have been made to develop a 

technology of genetic engineering of 

exogenous genes into nuclear genome through 

agrobacterium-mediated transformation and 

regeneration from tissue culture [64, 65]. This 

technology not only allows expressing 

recombinant protein, polymer, small molecules 

in duckweed system [66, 67], but facilitates 

functional gene studies in duckweeds as well 

[67]. The first stable transformed duckweed 

was obtained by Frey et al., (1980) through 

incubating intact plant of Lemna perpusilla 

with the Escherichia coli plasmids pMB9 and 

plasmid Bolivar Rodriguez 325 (pBR325) 

under optimized conditions [68]. Efficient 

genetic transformation protocols were 

developed in L. gibba and L. minor with a 

binary vector containing beta-glucuronidase 

and Neomycin phosphotransferase II (nptII) 

expression cassettes [67]. Transgenic 

duckweed could be regenerated after three 

months of agrobacterium-mediated 

transformation. The addition of the poorly 

assimilated carbohydrates of galactose or 

sorbitol yielded high levels of callus [64]. The 

stable and transgenic S. oligorrhiza showed a 

high protein yield, that is the transgene protein 

of Green fluorescent protein (GFP) expression, 

reached more than 25 % of total soluble 

proteins [65]. Canto-Pastor et al. [69] 

engineered an artificial microRNA (amiRNA) 

gene silencing system in L. gibba. An 

Arabidopsis photorespiratory pathway gene 

serine glyoxylate aminotransferase (SGAT), 

named as AtAGT1, was successfully 

overexpressed in L. minor [70]. The gene 

expression response to cadmium stress in L. 

punctata 6001 was analysed via RNA-Seq 

technique by Xu et al. [71]. A summary of this 

and other stress responses of duckweed is 

available in Table 2. The transcriptomic study 

using RNA Seq to determine toxicity and 

tolerance of ammonium (NH4
+) was reported 

in L. minor. Bioinformatical analysis identified 

70,728 unigenes and 14,207 differentially 

expressed genes (DEGs), most of which were 

down-regulated under NH4
+ toxicity [72]. The 

gene expression data for ionizing radiation 

(IR) indicated that L. minor plants can shift 

from acclimation responses toward survival 

responses at increasing dose rates of ionising 

radiation [73]. Wang et al. [74] discovered that 

3 days of exposure to 10 µM abscisic acid 

(ABA) induced irreversible turion 

development in Spirodela. Similar to a 

desiccating seed of a terrestrial plant, 

developing turions upregulated five and 

expressed two previously silent genes of the 

Late Embryogenesis Abundant (LEA) protein 

family. These LEA family proteins protect 

other proteins and confer resistance to 

dehydration, salinity and cold stress. 

Upregulation of seven ABA-responsive, three 

ethylene-responsive, and two heat shock 

responsive transcription factors was also 

observed. There were also ABA transcription 

factor binding sites in 30 of the upregulated 

genes, while 119 had a bind site for ethylene-

responsive transcription factors. This pathway 

matches the ABA or environment triggered, 

calcium-dependent signal pathway observed in 

maturing seeds, reinforcing the similarity of 

turions and seeds on a molecular, invisible 

level. 
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Table 2. Response of duckweed to exposure to different conditions 
 

S. N. Exposure Response Duckweed species Reference 

1. 

Silencing of CH42, a 
magnesium chelatase subunit, 

using amiRNA platform 
Reduction of chlorophyll pigmentation. L. minor [69] 

2. 

Overexpression of Arabidopsis 

photorespiratory pathway gene 

serine glyoxylate 
aminotransferase (SGAT), 

named as AtAGT1 

Promote salt tolerance in duckweeds and solve the freshwater 

salinity problems. 
L. minor [70] 

3. Cadmium stress 

Genes involved in DNA repair acted as an early response, 
RNA and protein metabolism would likely respond, genes 

involved in sulphur and reactive oxygen species (ROS) 

metabolism were upregulated, Vacuolar sequestration. 

L. punctata 6001 [71] 

4. NH4
+ toxicity 

Lignin biosynthesis related genes in the phenylpropanoid 
biosynthesis pathway were up-regulated, accumulation of 

ROS which can cause oxidative damage leading to cell death, 

antioxidant enzyme system was also activated. 

L. minor [72] 

5. Ionizing radiation (IR) 

Lower dose rates - trigger acclimation responses. 

Higher dose rates - genes related to antioxidative defence 

systems in terms of DNA repair and cell cycle were highly 

expressed. 

L. minor [73] 

6. Abscisic acid 

Induced irreversible turion development and an increase of 

two enzymes involved in starch and cell wall production in 
Spirodela fronds. 

Spirodela sp. [74] 

 
 

Non- living/dried duckweed biomass 

 

Successive use of dried and dead plant 

biomass (as simple biosorbent substance) to 

remove the metals from water has gained 

popularity over the past few years, because it 

has high efficiency in detoxifying dilute 

effluents, not effected by toxic wastes, 

minimize the volume of chemical and/or 

biological sludge to be disposed off, it has no 

nutrient requirements, and it is cost-effective, 

natural and easy to transport and handle [75 - 

81]. The dried duckweed biomass shows a 

porous structure with free spaces. In addition, 

duckweed possess diverse functional groups, 

namely carboxyl, amide, thiol and hydroxyl, 

which can be a potential binder for heavy 

metals, like arsenic and lead [82, 83]. The 

adsorption capacity of dried duckweed 

biomasses is listed in Table 3. The dried S. 

polyrhiza was examined and found out to be 

an efficient adsorbent to eliminate the basic 

dye of methylene blue from aqueous solution 

[84]. In the evaluation by Romero-Guzmán et 

al. [82], dead biomass of L. minor retained 

As(V) more strongly than E. crassipes. Dried 

biomass of S. intermedia, L. minor and P. 

stratiotes were investigated for simultaneous 

removal of metals (Cd2+, Ni2+, Cu2+, Zn2+ and 

Pb2+) from wastewater derived from industrial 

activities. The studied biomasses removed lead 

and cadmium efficiently and L. minor biomass 

presented the highest mean removal 

percentage, whereas P. stratiotes had the 

lowest results for all metals tested [85]. Tang 

et al. [83] indicated dried biomass of L. 

punctata and S. polyrhiza to be promising 

adsorbents that may be used as alternative 

approaches for Pb2+ removal from 

contaminated water. Further studies have 

suggested that dried powder of L. 

aequinoctialis and L. perpusilla effectively 

removes lead from aqueous solution [86, 87]. 

Untreated dry powder of L. aequinoctialis has 

also proved to be a convincing adsorbent for 

cadmium [88]. Besides, L. minor powder has 

also exhibited excellent removal capability for 

both inorganic and organic mercury [89]. 

Methyl parathion and cadmium were 

successfully removed by L. gibba powder [90]. 

Younis et al. [91] evaluated that duckweed L. 

gibba L. could be used as low-cost biosorbent 

for removal of phenol ions from industrial 

wastewater. Upatham et al. [92] examined the 

effects of concentration and pH of solution on 

the biosorption of cadmium and chromium by 

using dry W. globosa biomass. The maximum 

adsorption of cadmium was observed at an 

initial pH of 7 which diminished with 

decreasing pH as cadmium and hydrogen (H+) 

ions compete for active sites of W. globosa at 

lower pH. Adsorption of chromium decreased 

with increasing pH, because increase in pH 

would favour the formation of chromate 

(CrO4
2) ions that are not readily adsorbed by 
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W. globosa. In a study on dried powder of the 

Landoltia punctata duckweed to remove 

iodate (IO3
-) from aqueous solutions it was 

discerned that IO3
- is reduced to iodine (I2) and 

I¯ by hydroxyl groups, thereby demonstrating 

duckweed (Landoltia punctata) as a promising 

biosorbent for remediation of radioactive 

iodine pollution [93]. Nie et al. [94] used 

Landoltia punctata as a biosorbent to remove 

uranium dioxide (UO2
2+) from aqueous 

solutions. The maximum sorption capacity was 

131.8 mg/g dry matter. Moreover, studies have 

conveyed that melamine treated L. minor has 

higher adsorption capacity than untreated L. 

minor for thorium (IV) biosorption under the 

condition of optimization [95].  

 

Table 3. Adsorption capacity of different 

duckweed adsorbents 
 

S. 

N. 

Duckweed 

species 
pH 

Temp. 

(K) 
Metal 

Qm  
(adsorption 

capacity)  

mg/g DW 

Ref. 

1. L. punctate 4.6 298.15 Lead 250 [82] 

2. S. polyrhiza 4.6 298.15 Lead 200 [82] 

3. 
L. perpusilla 

Torr. 
4.6 298.15 Lead 87 [86] 

4. L. aequinoctialis 4 298.15 Lead 57 [85] 

5. W. globosa 7 298.15 Cadmium 80.65 [92] 

6. W. globosa 1.5 298.15 Chromium 73.53 [92] 

7. 
Melamine 

treated L. minor 
5.5 - Thorium 129.88 [95] 

 

 

MECHANISM OF DUCKWEED 

PHYTOREMEDIATION 

 

Heavy metals are highly pernicious and cannot 

be chemically degraded. Certain plant species 

have the ability to accumulate heavy metal in 

roots and then in above ground plant biomass. 

Plants may exude organic acids and protons 

making ionic species present in media 

biologically available for biosurfactants and 

chelators [96 - 100]. These ionic species bind 

with chelators and then pass through cellular 

membranes more easily [101, 102]. These 

contaminants are transported through the plant 

via apoplastic and symplastic and/or 

transmembrane pathways [96, 98, 103, 104]. 

After transportation, metals are sequestered in 

the cell walls, vacuoles and/or Golgi 

complexes [104]. This mechanism of 

contaminant removal is called direct 

phytoremediation. Although plants do not 

remove the contaminants in explanta 

phytoremediation, they stabilize them with the 

association of selective microorganisms and 

decrease the risk of potential receptors (plants 

as well as animals) [96, 103, 105 - 107]. 

Duckweeds are well recognized for their 

capability to eliminate the metals from the 

contaminated environment [41, 108, 109]. 

Active transport of heavy metals in free-

floating aquatic plants occur through roots 

from where metals are transferred to other 

plant organs. Passive transport is associated 

with the direct contact of the plant body with 

the pollution medium [110]. A comparative 

analysis of uptake and detoxification 

mechanisms in different species of duckweed 

is summarized in Table 4. 

 

 

 

MAJOR APPLICATIONS OF 

DUCKWEED 

 

Due to duckweed’s remarkable capability to 

quickly absorb nitrogen, phosphorus and other 

nutrients, scientists are currently exploring 

ways that duckweed can convert agricultural 

and municipal wastewater into clean water. 

Subsequently, biomass produced can be used 

for feed applications or biofuel if it was used 

to treat harmful industrial wastewater.  

 

 

Water treatment 
 

Global distribution, tolerance of ammonia, 

heavy metals, other stresses, high yield of 

biomass (especially at 20 – 30 °C), ease of 

harvest, high protein and starch content, and a 

wide range of uses make duckweeds suitable 

for treating agricultural, municipal, and even 

industrial wastewater. The classic example of 

a duckweed treatment system and feed 

application would be the Mirzapur Bangladesh 

hospital wastewater facility, which was 

designed by the PRISM group, monitored 

from 1989 to 1991 [113]. Professor Zhao Hai’s 

group from Chengdu Institute of Biology, 

Chinese Academy of Sciences, also has 

extensive records from their pilot plant at 

Dianchi Lake, in subtropical Yunnan, China 

[114] (Figure 1). 
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Table 4. Uptake and detoxification mechanism of different duckweed species 
 

S. N. 
Duckweed 

species 
Metal Uptake mechanism Toxic effects 

Detoxification 
mechanism 

Reference 

1. L. minor Iron 
Biosorption & 

bioadsorption. 

Hydroxyl radicals generated 

through Fenton reaction 

caused membrane 
disintegration and cell death. 

Roots gained an orange - 

brownish colour due to 
formation of iron plague. 

Subset of genes related 

to Fe homeostasis & 

those coding for ferritin 
(protein involved in Fe 

storage) are activated. 

Vacuoles store Fe to 
avoid cytotoxicity. 

[42] 

2. S. polyrhiza Chromium 

CrO4
-2 transported by 

phosphate - sulphate 

carrier (active 
transport). 

- 

Accumulated and 

translocated through 
symplast in a manner 

that does not disrupt 

cytoplasmic function. 

[47] 

3. W. globosa Arsenic 

Phosphate transporters 
participate in As(V) 

uptake - active 

transport & some 
aquaporin channels 

might participate in As 

(III) uptake - passive 
transport. 

Arsenate uptake, but 

concurrent production of 

arsenite. 

- [52] 

4. W. globosa Cadmium 

Mainly passive 
adsorption via apoplast 

component (due to cell 

binding). 

Homeostasis interference due 

to high amounts of cadmium 

actively taken up by the plant 
cells when cell binding 

capacity was saturated. 

- [54] 

5. L. minor Lead and zinc - 

Interference with the 

photosystem resultantly 
inducing chlorosis, decrease in 

soluble protein content, 

decrease in chlorophyll a and 
carotenoid content. 

Catalase (CAT) activity 
increased, CAT acts on 

hydrogen peroxide 

(H2O2) and converts it to 
water and oxygen. 

Increase in enzyme 

activity. 

[111] 

6. L. minor  Cadmium - 

Root elongation & frond no. 

decreased, Hormesis response 
seen. Influences antioxidant 

system (mainly CAT). 

High Cd tolerance can 

be attributed to an 

increase in Cd inactive 
forms. At lower 

concentrations Cd stress 

activate peroxidases 
(POD), superoxide 

dismutase (SOD), total 

antioxidant capacity (T-
AOC) and 

malondialdehyde 

(MDA). 

[112] 

 

 

 
 

Figure 1. Flowchart of duckweed wastewater 

treatment and biomass application [114] 

 

 

Bioenergy 
 

Bioenergy applications of duckweed are 

discussed in Figure 2. Duckweed biomass 

exhibits good characteristics for bioethanol 

production due to its relatively high starch and 

low lignin percentage. The first commercially 

viable example of ethanol fermentation, the 

Andrew Young Foundation conducted a 

private research trial using the ecosystem 

technology, produced by resource recovery 

experts Greenbelt Resources Corporation, 

which was presented in a feasibility study 

report conducted by an independent agency 

and submitted to the United States Department 

of Agriculture (USDA) in 2017. With 
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successful feasibility determined, the 

foundation created a corporation called 

Duckweed Days LLC (Limited Liability 

Company), which partnered with Greenbelt 

Resources to conduct a pilot system 

development project in Paso Robles, 

California, USA, in 2018. Leveraging its 

farming and agricultural expertise as well as 

its engineering prowess, Greenbelt has 

developed a species agnostic prototype 

cultivation, harvesting and processing system. 

 

 
 

Figure 2. Bioenergy applications of  

duckweed [115] 

 
 

Animal feed 

 

Duckweed can recycle nutrients back into the 

food supply, provided it is monitored for 

heavy metals and other hazards, and legally 

approved. Agriquatics wastewater treatment 

proposed blueprint for a municipal treatment 

facility designed by Agriquatics. The systems 

start with solids removal through laminar flow 

separators and hydrocyclones, and transport 

solids to an array of bacterial digesters. A 

series of duckweed ponds remove solutes and 

their circular shape facilitates central 

harvesting. Water is then filtered and 

disinfected with conventional methods. 

Duckweed biomass can be tested, sterilized, 

and converted to Tilapia fish feed [115]. 

Duckweeds have been a traditional feed for 

fish and poultry in South-East Asia for 

centuries. Duckweed was found to be 

beneficial in replacing ~15 % of the soybean 

meal in the feed for chickens or broilers, and 

40 % in the case of laying hens [113, 116]. 

Finally, ruminants have shown promising 

results with high nitrogen digestibility in 

merino sheep, and cattle consuming and 

effectively digesting up to 10 % of their 

weight in dried duckweed per day [116]. 

 
 

Human nutrition 
 

The Wolffia genus of the duckweed family has 

been traditional cuisine in Thailand, Burma 

and Laos for centuries, since Wolffia in its 

plant tissue do not produce calcium oxalate 

crystals, a causative agent of human kidney 

stones. At present, there are three large 

companies producing Wolffia or Lemna for 

human consumption, namely Hinoman, 

Parabel and Green Onyx (Table 5). 

 

Table 5. Companies producing duckweed for 

human consumption [115] 
 

S. 

N. 
Company Strategy Product 

1. Hinoman 

Greenhouse 

precision 

agriculture 
cultivation. 

Wolffia with 25 % carbohydrate 

content, 45 % protein content 

and a complete and bioavailable 
amino acid profile, such as egg 

or soy, with a higher Protein 
digestibility-corrected amino 

acid score (PDCAAS) than soy. 

2. Parabel 

Open pond Lemna 

cultivation and 
protein extraction. 

Protein powder. 

3. Green Onyx 
Developed robotic 

farming systems. 
Dispense Wolffia on demand. 

4. 
Plantible 

Foods 

Developing a 

gentle protein 
isolation process 

using Lemna. 

Colourless, tasteless protein 

isolate with physical properties 
of egg whites to create a vegan 

product. 

 
 

Phosphorous reclamation 
 

Economically mineable, organically available 

phosphorous is expected to be scarce by 2050 

or 2100, and production might decline by 

2030, raising its price possibly beyond the 

reach of poorer farmers [117]. Fortunately, 

phosphorous can be recycled by better farming 

practices or by using more aquatic plants and 

other methods to recapture more than the 

current rate of 50 % from human wastes. 

 
 

As a life support system 
 

Duckweed was additionally described as one 

of the most attractive higher plants for long-
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duration supporting human life in space [118]. 

National Aeronautics and Space 

Administration (NASA) is interested in 

developing closed-loop life support systems 

for long-term missions. L. aequinoctialis was 

found to have a 32 % increase in growth rate 

in simulated microgravity [118]. Therefore, 

Space Lab Technologies, LLC is currently 

collaborating with the University of Colorado 

at Boulder on a Phase 2 grant from NASA to 

develop the µG-LilyPondTM growth chamber 

as part of a life support system [115]. 

Presently the system is designed to provide 

fresh food and oxygen, with the eventual goal 

of converting urine to clean water. 

 

 

Medicine 

 

There have been academic papers reporting 

over 20 transgenic therapeutic proteins in 

duckweed reaching as high as 7 % of total 

soluble protein [119]. Given the lower cost of 

production and lower risk of transmissible 

pathogens compared to mammalian cell lines, 

duckweed may provide genetically engineered 

proteins for medical or other applications. L. 

minor can be used for synthesis of 

recombinant proteins [120]. L. punctata is rich 

in flavonoids [121] and used in traditional 

Chinese medicine. It has also potential for 

pharmaceutical drugs.  

 

 

 

DUCKWEED DISPOSAL 

 

Appropriate phytoremediation technology 

needs intervallic harvesting of the plant 

biomass in order to assimilate and confiscate 

heavy metals and nutrients from water bodies. 

Conversion of biomass into superior material 

is a significant factor in promoting this 

technique. Many studies have reported that 

aquatic plants like duckweed biomass after 

phytoremediation can be used as animal feed 

and in biogas production [122] (Figure 3). 

Rolli et al. [48] recommend that harvested 

biomass may be used for composting and as a 

supplement to fertilizers. Dry biomass of L. 

minor generated during phytoremediation of 

iron, without other toxic metals, could be an 

important fertilizer for iron-deficient soils, 

which comprise one-third of the world’s soils 

[42]. Dushenkov et al. [123] have pointed out 

that the high water content of aquatic plants 

impedes the drying, composting, or 

incineration process. Dried duckweed can be 

used as a drop-in fuel for a trash incinerator or 

coal-fired power plant. This would concentrate 

heavy metals in the smoke, which could be 

scrubbed, and ash can be properly disposed or 

encapsulated for reuse in concrete or gypsum 

[115]. 

 

 
 

Figure 3. Schematic presentation of duckweed 

disposal [124] 

 

 

 

CONCLUSION 

 

Heavy metal pollution is a major 

environmental concern for which conventional 

remediation approaches prove unfulfilling. 

Utilization of phytoremediation seems to be 

less destructive, economical, and 

environmentally sound clean-up technology. 

Duckweed has been reported to be very useful 

in phytoremediation of organic matter, 

suspended solids, heavy metals and soluble 

salt from wastewater. Application of 

duckweed both in bioaccumulation (with 

living plant biomass) and bio-sorption (with 

dead plant biomass) can be done successfully 

for the elimination of heavy metals. 

Comprehensive interaction, transport and 

chelating activities regulate the storage and 

accumulation of heavy metals by the 

duckweed. Plant biomass can be used later on 

for production of biogas, as fertilizer and as 

animal feed. Genetic engineering of duckweed 
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to enhance its heavy metal uptake capacity is 

in its preliminary phases. Due to their high 

biomass, accumulation rate and nutrient 

content duckweeds have increasingly been 

considered as bioenergy and food source, as 

response to global resources exploitation and 

environmental crisis. The present review 

highlights the benefits of using duckweed to 

treat water contaminated with heavy metals, 

which are currently limited to laboratory 

experiments and batch systems and are rarely 

on microcosm and mesocosm scale. The novel 

abilities of duckweed in various fields can be 

enriched by the use of genetic engineering. 

Thus, duckweed is a promising plant resource 

which deserves further research and 

development.  
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