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ABSTRACT

Determining the residuary resistance per unit weight of displacement is one of the key factors in the 
design of vessels. In this paper, the authors utilize two novel methods – Symbolic Regression (SR) and 
Gradient Boosted Trees (GBT) to achieve a model which can be used to calculate the value of residuary 
resistance per unit weight, of displacement from the longitudinal position of the center of buoyancy, 
prismatic coefficient, length-displacement ratio, beam-draught ratio, length-beam ratio, and Froude 
number. This data is given as results of 308 experiments provided as a part of a publicly available 
dataset. The results are evaluated using the coefficient of determination (R2) and Mean Absolute 
Percentage Error (MAPE). Pre-processing, in the shape of correlation analysis combined with variable 
elimination and variable scaling, is applied to the dataset. The results show that while both methods 
achieve regression results, the result of regression of SR is relatively poor in comparison to GBT. Both 
methods provide slightly poorer, but comparable results to previous research focussing on the use 
of “black-box” methods, such as neural networks. The elimination of variables does not show a high 
influence on the modeling performance in the presented case, while variable scaling does achieve 
better results compared to the models trained with the non-scaled dataset.

1 Introduction

Artificial Intelligence is a commonly used tool in to-
day’s scientific and engineering practice, as its’ modeling 
capabilities are extremely high, and may allow for the 
creation of high-precision models for many complex prob-
lems [1]. These techniques have been applied in many ar-
eas of maritime research. Examples include optimization 
of exergy analysis of internal ship systems [2] for steam 
turbines [3], modeling of propulsion system parameters 
[4, 5], ship modeling [6], vessel route optimization [7], and 
vessel detection [8]. 

There are many more examples of artificial intelligence 
applications. Oslebo et al. (2020) [9] apply machine learn-
ing for fault detection of pulsed-energy mission loads. 
Authors address the issue of discerning faults from the 
sudden heavy loads commonly present during the opera-
tion. Through the classification using the proposed novel 
machine learning method, the authors manage to achieve 

99.8% accuracy in waveform classification and 100% ac-
curacy in general fault detection. Berghout et al. (2021) 
[10] demonstrate a supervised deep learning approach for 
addressing the problem of condition-based maintenance 
of naval propulsion systems. Authors manage to achieve 
highly precise models through the application of the so-
called extreme learning machine. Jeong et al. (2020) [11] 
demonstrate the application of machine learning for ship-
building master data management. The authors demon-
strate how machine learning can be applied to address 
the problem of an ever-increasing amount of data present 
in modern shipbuilding. Shaeffer et al. (2020) [12] apply 
machine learning in early-stage hull form design. Authors 
demonstrate that, as in many other industries, shipbuild-
ing can apply data-driven models for determining the ba-
sic parameters of the hull forms. Barua et al. (2020) [13] 
review applications of machine learning for the problem of 
international freight transportation management. Authors 
review the most successful approaches and conclude that 
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the development of this kind of system should continue, as 
their uses are highly beneficial. In this paper the authors 
will consider the possibility of applying machine learning 
techniques on the modeling of yacht hydrodynamics, spe-
cifically modeling of residuary resistance per unit weight of 
displacement. Previous approaches have been made using 
neural networks [14] such as multilayer perceptron [15]. As 
both of those methods are so-called “black-box” methods, 
which experience the issue of inexplicability. The high com-
plexity of these models does not allow for the interpretation 
of the models. Additionally, the neural network models tend 
to require a specific programming language, or even a spe-
cific library, to be re-used and applied. The methods that au-
thors apply – GBT and Symbolic Regression are explainable 
methods that have equation and tree-shaped models, re-
spectively. This allows them to more easily be implemented 
in various tools, without requiring specific function librar-
ies. The novelty of this paper lies in the determination of the 
usability of the two used methods. 

In the paper, first, the used dataset will be presented, 
followed by brief descriptions of methods, and used ma-
chine learning methodology. Finally, results will be pre-
sented and discussed, with conclusions drawn.

2 Methodology

The utilized methods are presented in this section. 
First, the analysis of the dataset is presented – using cor-
relation and distribution analysis.

2.1 Dataset

The used dataset is the Delft yacht hydrodynamics data 
set, which was collected at the Delft Ship Hydromechanics 
Laboratory [16]. It consists of 308 full-scale experiments 
with 22 different hull forms. The dataset consists of 6 input 
variables and one input variable. The input variables are:

• The longitudinal position of the center of buoyancy
• Prismatic coefficient,
• Length-displacement ratio

• Beam-draught ratio
• Length-beam ratio, and
• Froude number.
All the input variables, as well as the output variable, 

are adimensional. The output variables describe the re-
siduary resistance per unit weight of displacement, which 
determines the resistance a ship hull form experiences in 
regards to the displacement of the hull [16]. 

Before machine learning is applied, three analyses are 
performed – first is the determination of standard statistical 
descriptors, second is the distribution determinators, and 
finally the correlation analysis. Standard statistical descrip-
tors are calculated for each variable and include the minimal 
and maximal values of the variable, range of the variable, 
the median value of the variable, and standard deviation of 
the median. The distribution of the variables is then plotted 
for each of the variables. This is achieved by plotting histo-
grams of the variables and is used to determine if there are 
any outliers in the data that may cause issues in the creation 
of the regression models. Finally, correlation analysis is per-
formed to determine which variables influence the output of 
the dataset. This can be useful for eliminating the variables 
which do not have a high influence on the input, which may 
assist with easier model regression [17].

Table 1 shows the standard statistical measures for 
each variable. We can see that each variable has a different 
range, which can negatively affect the performance of the 
used regression algorithms [18]. It should be also noted 
that the standard deviations, when compared to median 
value and range of the variable, are relatively low – except 
in the case of our output, residuary resistance per unit 
weight of displacement. This can indicate that the data 
in question has a relatively uneven distribution across its 
range, meaning that more data points are located on one 
end of the range [19, 20]. This can be confirmed by view-
ing the distributions of the variables, by plotting the histo-
grams of the data, which is shown in Figure 1.

Figure 1 demonstrates the distribution of each input 
variable contained in the dataset, while Figure 2 shows 
the distribution of the output variable. It can be seen that 

Table 1 The statistical descriptors of the variables in the dataset

The 
longitudinal 
position of 

the center of 
buoyancy

Prismatic 
coefficient

Length-
displacement 

ratio

Beam-draught 
ratio

Length-beam 
ratio

Froude 
number

Residuary 
resistance per 
unit weight of 
displacement

MIN -5.00 0.53 4.34 2.81 2.73 0.13 0.01
MAX 0.00 0.60 5.14 5.35 3.64 0.45 62.42
RANGE 5.00 0.07 0.80 2.54 0.91 0.33 62.41
MEDIAN -2.30 0.57 4.78 3.96 3.15 0.29 3.07
DEVIANCE 1.51 0.02 0.25 0.55 0.25 0.10 15.16

Source: Authors
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Figure 1 The distribution of variables in the dataset for (a) longitudinal position of the center of buoyancy, (b) prismatic coefficient, 
(c) length-displacement ratio, (d) beam-draught ratio, (e) length-beam ratio, and (f) Froude number. 

Source: Authors

Figure 2 The distribution of output, residuary resistance per 
unit weight of displacement distribution

Source: Authors

all of the input variables have similarities to the normal or 
uniform distributions. This is a good quality, which is com-
monly wanted within datasets used in machine learning 
applications [21]. The output is distributed exponentially, 
as shown in Figure 2. meaning that a larger amount of data 
is contained at the lower ranges of the dataset. This can 
cause issues with the models being better fitted for that 
data, as opposed to the general data [22]. Another ele-
ment of note when observing Figures 1 and 2 is that the 
data is continuously distributed across each of the histo-
gram bins, signifying that there are no outliers contained 
within data of each variable, meaning that the analysis and 
removal of those values are unnecessary.

The final performed analysis is the correlation analysis. 
Correlation analysis provides information on the inter-in-
fluence of individual variables within the dataset on one 
another. If x and y represent two datasets of length n for 
which we are trying to determine the correlation, then the 
correlation coefficient r is calculated according to equa-
tion [23, 24]:

∑ ̅
∑ ̅ ∑  

(1)

The values for each variable achieved using the de-
scribed methodology are given in Table 2. The table in 
question can allow us to perform variable elimination on 
the dataset to allow for easier regression using machine 
learning methods used in the presented work. The data-
set is finally split into two subsets – the training and the 
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testing set. The training set is used for the training of the 
regression models, while the testing set represents the 
previously unseen data for the models. This unseen data 
is used to evaluate the models, according to the metrics 
described in the following sections. In the presented re-
search, the dataset was split into a 90:10 train/test ratio. 
This means that 277 data points have been used for the 
training part of the dataset, and 31 data points have been 
used for the testing part of the dataset.

The first variable is the longitudinal position of the 
center of buoyancy, which describes the position of the 
buoyancy center to the length of the vessel. The second 
variable is the prismatic coefficient which describes the 
distribution of displacement along a hull. The third input 
variable is the length-displacement ratio which describes 
the proportion of the vessel length and its displacement, 
while the fourth input – the beam-draught ratio describes 
the relationship between the waterline beam and the ves-
sel draft. The fifth input variable is the length-beam ratio 
which describes the proportion between the vessel length 
and beams. The final input variable is the Froude number 
which defines the ratio of the flow inertia to the external 
field. The output, residuary resistance per unit weight of 
displacement describes the amount of resistance expe-
rienced in the dependence with vessel displacement ex-
pressed in unit weights [15]. 

2.2 AI regression

In this section the pre-processing applied to the data is 
described, followed by a brief overview of the used meth-
ods and their application. Finally, the method evaluation 
metrics are given.

2.2.1 Pre-processing

Two types of pre-processing are applied to the dataset 
in an attempt to improve the results. These are the scaling 
of the values in the dataset and the elimination of values 
that show a poor correlation to the output variable.

The min-max scaling is performed by taking the maxi-
mal and minimal values of each variable (given in Table 1) 
and transforming the value based on them to set the range 
of the variable to [0,1]. For a variable x, transformation 
into the scaled variable x’ is done with [25, 26]:

max  
(2)

The variable elimination process is based on the values 
of the correlation coefficient between variables, as seen in 
Table 2. Due to the low correlation of most input variables 
with the output variable (observe last row or column), 
the elimination will be done in two cases. First, only vari-
ables with |r| ≥ 0.05 will be kept, while in the second, the 
variables with |r| ≥ 0.01 will be kept. Observing Table 2, it 
can be noted that for the first elimination only the Froude 
number will be kept, while in the second case the varia-
bles Froude number, beam-draught ratio, prismatic coef-
ficient, and the length-beam ratio will be kept and used in 
the regression modeling.

One of the common steps in the data science applica-
tion is the use of cross-validation, in which the data is split 
into multiple folds, and the training is performed multi-
ple times with each of the folds being used for the train-
ing [27]. The reason this process has not been applied in 
the presented research is two-fold. The first reason is that 
the data shows distributions that are close to the normal 

Table 2 The correlation between the variables in the dataset

The 
longitudinal 
position of 

the center of 
buoyancy

Prismatic 
coefficient

Length-
displacement 

ratio

Beam-
draught 

ratio

Length-
beam ratio

Froude 
number

Residuary 
resistance per 
unit weight of 
displacement

The longitudinal 
position of the 
center of buoyancy

1.00 -0.01 0.00 0.00 0.00 0.00 0.02

Prismatic coefficient -0.01 1.00 -0.05 0.34 -0.09 0.00 -0.03

Length-displacement 
ratio 0.00 -0.05 1.00 0.38 0.68 0.00 0.00

Beam-draught ratio 0.00 0.34 0.38 1.00 -0.38 0.00 -0.01

Length-beam ratio 0.00 -0.09 0.68 -0.38 1.00 0.81 0.00

Froude number 0.00 0.00 0.00 0.00 0.00 1.00 0.81

Residuary resistance 
per unit weight of 
displacement

0.02 -0.03 0.00 -0.01 0.00 0.81 1.00

Source: Authors
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or uniform distributions, considering the small amount 
of data. The second is to allow for a more direct compari-
son to the previous research in the application of machine 
learning methods on the dataset used in this research – as 
the research in question has not used the cross-validation 
method, but instead used the standard train-test data split 
[15, 16], used in the presented research.

2.2.2 Random Search procedure

The selection of hyperparameters for both methods is 
performed through a random search. This means that the 
selection of each hyperparameter is performed uniformly 
randomly across the given range, the model is trained with 
the randomly selected parameters and the quality of the 
trained model is evaluated. This process is then repeated 
until either a satisfactory quality is achieved, or the execu-
tion is terminated due to the number of iterations elapsed 
reaching the pre-set value, which was set to 500 in the 
presented research. The selection of this procedure, as op-
posed to more strictly defined hyperparameter searches 
such as grid search or similar, was done due to the nature 
of the algorithms used. As opposed to algorithms such 
as neural networks which may have a highly discrete hy-
perparameter space, the hyperparameter space of the SR 
and GBT are more finely granular, which means that com-
paratively, small hyperparameter changes could result in 
significant model performance changes [27, 28]. The hy-
perparameter values used as bounding ranges for indi-
vidual hyperparameters have been selected according to 
previous research and common practices [27–31].

2.2.3 Symbolic Regression

SR, also known as Genetic Programming (GP), is a 
method that utilizes the principles of evolutionary com-
puting to develop regression models [27, 28]. SR creates 
the initial set of random solutions, called population, for-
matted as tree-shaped equations. The fitness of each of 
the solutions is determined. This means that the quality 
of each solution is ascertained, according to how well 
it models the data. Then, three different operations are 

applied to this set of random solutions – crossover, mu-
tation, and reproduction. Crossover is applied to two 
separate candidate solutions. The tree-shaped equations 
are split and the new, child solutions, are accomplished 
via the recombination of the split parts. The equations 
for crossover operation are selected with the probability 
proportional to their fitness. This means that the prob-
ability of being selected for crossover and producing a 
child solution is higher for better solutions. Applying this 
operation repeatedly should, in theory, by combining the 
higher-quality solutions lead to better solutions being 
found from one generation to the next [29, 30]. Still, just 
the crossover application may cause some issues – such 
as narrowing the solution space search area and con-
verging into a locally optimal solution [31, 32]. For this 
reason, two other operations are applied. The mutation 
will randomly modify a single, randomly selected solu-
tion – and include it into the next population iteration. 
The modification will either be done to a single node of 
the solution (point mutation), the subtree of the solu-
tion (subtree mutation), or through the subtree removal 
(hoist mutation). The reproduction will in turn simply 
copy an existing solution into the next population itera-
tion to guarantee the gene pool health [37]. The solution 
selected for reproduction won’t be selected fully ran-
domly, but proportionally to the fitness. The probabilities 
of each of these operations being performed are the key 
hyperparameters of the SR method. The ranges of the hy-
perparameters used are given in Table 3.

In addition to evolutionary operations probabilities 
described previously, hyperparameters include popula-
tion size, which is the initial set of the solutions, number 
of generations that controls the number of iterations in 
which the evolutionary applications are applied, and initial 
tree depth, which describes the maximal size of the equa-
tion trees in the initial population. It can be noted that the 
evolutionary operations are derived from the probabilities 
of other operations. This is done because those operations 
probabilities need to add up to 1, as one of the operations 
needs to be performed in each of the iterations to allow for 
the models to achieve better regression [38].

Table 3 Ranges of hyperparameters used for the random hyperparameter search of SR

Hyperparameter Symbol Minimum Maximum

Crossover probability Pc 0.8 0.95

Point Mutation probability Pmp 0.01 1 – Pc

Hoist Mutation probability  Pmh 0.01 1 – (Pc + Pmp)

Subtree Mutation probability  Pms 0.01 1 – (Pc + Pmp + Pmh) 

Reproduction probability PR
 1 – (Pc + Pmp + Pmh + P_ms) 1 – (Pc + Pmp + Pmh + P_ms) 

Population ℙ 100 1000

Generations G 200 1000

Initial tree depth Tid 7 16

Source: Authors
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2.2.4 GBT

GBT is a tree-based AI ensemble method [39]. It is also 
based on trees such as SR, but instead of those trees de-
scribing equations, they describe decision paths [40]. Each 
node of the tree describes a split into two paths depend-
ing on the value of a parameter, which leads down to tree 
leaves that contain regressed values. GBT being an ensem-
ble method means it uses a voting system, in which many 
trees are generated, and the output value of the model is 
calculated not based on a single tree but as a weighted av-
erage of all trees in the ensemble. Gradient boosting is a 
process in which the models are trained based on the re-
sidual error of the models. The error is calculated in each 
of the iterations and the gradient is adjusted based on it. 
The training speed is then adjusted proportionally to the 
error [41]. This approach allows faster model convergence 
and avoids the problem of skipping the possible optimal 
solutions due to the training process slowing down when 
solutions near optimum are found [42].

Random search is also applied for the hyperparame-
ters of GBT, with the possible values given in Table 4.

Across the hyperparameters number of estimators 
represent the number of tree models included in the en-
semble. Maximum features describe the algorithm used 
to calculate the maximum number of nodes depending 
on tree depth, the maximum of which is contained in the 
hyperparameter value Maximal Tree Depth. Minimal sam-
ples for leaf and split describe the minimal number of data 
points needed for the creation of tree split or leaf within 
the model Finally, the training algorithms describe the al-
gorithm used for the calculation of gradients [43].

2.2.5 Quality determination

Quality determination has been performed using two 
metrics – coefficient of determination (R2) and Mean 
Absolute Percentage Error (MAPE). Both compare the real 
dataset values y to the set of predicted dataset values y�. R2 

is calculated according to the equation [40, 41]:

∑ 1∑
 

(3)

Using the same notation, MAPE is calculated using the 
equation [46]:

1

 
(4)

where n is the number of elements in the test set. R2 is 
an adimensional value that defines the amount of vari-
ance from the real data that is contained within the pre-
dicted data [43, 44]. This value is commonly used in the 
evaluation of regression models, as it provides a good de-
scription of how well the model reacts to variation of the 
output variable in the real dataset. MAPE in turn is given 
as the percentage of the range of the variable. It describes 
the average error the model achieves across the test set. 
The benefit of MAPE is that, as the error is given as a per-
centage, it is easy to interpret and understand its value. 
Beyond that, its performance is extremely similar to more 
commonly used MAE [48].

3 Results and Discussion

Figures 2 and 3 show the results achieved by the algo-
rithms. In both figures, the scores are given for both GBT 
and SR algorithms, across all possible variations of dataset 
pre-processing (scaling and variable elimination). 

As it can be noticed from Figure 2 the GBT achieves 
higher R2 scores than SR. The highest R2 score is achieved 
by GBT with data scaling applied, regardless of the variable 
elimination criterion applied. Higher R2 scores are achieved 
on the scaled data in both algorithms, while variable elimi-
nation does show somewhat improved R2 scores, although 
those differences are not as visible as with data scaling. 

The MAPE scores are presented in the same manner 
as the R2 scores. The best error achieved, of 1.48%, corre-
sponds to the highest R2 score, as it is achieved by the GBT 
method on scaled data, regardless of the variable elimina-
tion correlation criterion. 

Tables 5 and 6 represents hyperparameters that were 
used by the best solutions. It has to be noted that many so-
lutions achieved similar scores, as minor hyperparameter 
variations can lead to extremely similar models which may 

Table 4 Ranges of hyperparameters used for the random hyperparameter search of GBT 

Hyperparameter Minimum Value Maximal Value

Number of Estimators 10 50

Maximum Features Automatic, Square Root, Base-2 Logarithm

Maximal Tree Depth 10 30

Minimal Leaf 2 50

Minimal Split 2 50

Training Algorithm Gbtree, Dart

Source: Authors
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Figure 3 Comparison of the results across all methods and variations used via R2 (Higher is better)

Source: Authors

Figure 4 Comparison of the results across all methods and variations used via MAPE (Lower is better)

Source: Authors

Table 5 Hyperparameter models of best models per variation for SR

Crossover 
probability

Point 
Mutation 

probability

Hoist 
Mutation 

probability

Subtree 
Mutation 

probability

Reproduction 
probability Population Generations

Initial 
tree 

depth
SR 0.91 0.03 0.02 0.01 0.03 923 892 12

SR, |r|>0.05 0.90 0.04 0.04 0.01 0.01 814 913 15

SR, |r|>0.01 0.92 0.02 0.01 0.04 0.01 987 968 15

SR, scaled 0.91 0.03 0.02 0.02 0.03 940 898 14
SR, |r|>0.05,

scaled 0.94 0.01 0.02 0.03 0.00 914 912 16

SR, |r|>0.01,
scaled 0.91 0.03 0.01 0.03 0.02 992 997 10

Source: Authors
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result in the same, or extremely similar, scores – especially 
on smaller datasets such as the one used in this research. 
For brevity, only the absolute best hyperparameter combi-
nations are presented. In addition, in the case where two 
of the solutions achieved equal R2 scores the one with the 
lower MAPE was selected as the better solution. If two or 
more solutions achieved the same scores when rounded 
to the 9th decimal, the presented solution was selected as 
one with lower complexity (lower number of tree models 
for GBT, smaller population in SR), as those solutions are 
easier to train. The solutions presented in the Table cor-
respond to the ones as in Figures 2 and 3, so the achieved 
scores have not been repeated.

Observing the hyperparameters for best models for 
SR it can be noted that all models utilized relatively high 
crossover probability, equal to or higher than 0.9. High val-
ues have also been used for the population, generations, 
and initial tree depth. Using the higher range of hyperpa-
rameters for best solutions suggests that the regression 
problem is relatively hard.

From Table 6 it is noticeable that relatively high values 
are used for the number of estimators and maximal tree 
depth. As it was with SR, this also tends to suggest a rela-
tively hard regression problem. Interestingly, all the best 
solutions use square root for calculating the maximum 
number of features, and GBTree for the training algorithm.

4 Conclusion

The results suggest that the SR and GBT can be used for 
regression of the residuary resistance per unit weight of 
distribution. Out of the two methods, the models regressed 
with GBT show a higher quality regression. While in com-
parison to previous research [15] the methods achieved are 
of a lower quality, the findings point out that both methods, 
especially GBT, could be used to address the presented, or 
similar, problems. Observing the hyperparameters selected 
during the training process, it can be noted that they tended 
towards the higher end of the hyperparameter range. This 
suggests that further increasing the hyperparameter range 
could be used to achieve better results.

Analysis of the dataset shows that the output values of 
the dataset, for the value of the residuary resistance per 

unit weight of displacement, are not uniformly or nor-
mally distributed which could be part of the issues caus-
ing the SR and GBT methods to fail to regress the problem 
with higher quality. In the use of neural networks, this can 
be addressed by using the large number of weighted neu-
ron connections, which successfully make up for the lack-
ing correlation information between the input and output 
variables. But, due to the lower complexity of SR and GBT 
methods, the same is not the case when regression is per-
formed using them. Future research should focus on the 
analysis of the dataset and its composition, so it could be 
more easily determined if further statistical analytics and 
data pre-processing could be applied to reduce the prob-
lem complexity.

An important note in the dataset composition is that 
variable elimination does not show a significant lowering 
of the scores – even when a total of five out of six variables 
are removed. This confirms the performed correlation 
analysis and suggests that the Froude number may be a 
key factor in AI modeling of residuary resistance of the 
ship hull forms, while the other input variables from the 
dataset, especially length-beam and length-displacement 
ratios may not be necessary for modeling. Future work 
could focus on applying further validation on the variable-
removed dataset, for example using k-fold cross-validation 
or similar approaches, to test the generalization proper-
ties of the models.

Finally, it can be concluded that explainable models can 
be used to solve relatively complex problems in the mari-
time environment and modeling, and such approaches 
should be given consideration by the researchers. Future 
work in the field may include the application of SR, GBT, or 
similar AI modeling techniques in the modeling of energy 
[49], environmental effects [50], or internal systems [51] 
within the domain of maritime applications.
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