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Abstract: Marginal entropy is one of the distances based on the graph entropy. Then, this entropy is computed by the Wiener index of graphs. 
In this paper, we obtain the marginal entropy of paths, stars, double stars, cycles and vertex-transitive graphs. 
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INTRODUCTION 
HE entropy concept was introduced by Shannon in 
1948.[1] The Shannon entropy can be applied to 

different networks via the possibility of constructing a finite 
probability scheme for each network. The graph entropy 
concept was defined by Rashevsky[2] in 1955. His entropy 
measure is based on partitioning the vertices with respect 
to equivalent classes of vertex degrees. 
 Many molecular properties of materials are obtained 
by molecular topologies.[3] These measures are called 
topological indices or molecular descriptors in chemical 
graph theory. Chemical, physical and biological properties 
of molecules have good correlations with these topological 
indices. Therefore, many researchers from a wide range of 
sciences study this topic. The first topological index was 
introduced by Wiener in 1947.[4] The Wiener index equals 
half of the total distances between every pair of vertices in 
a graph.  
 Too many topological indices have been introduced 
in the last 50 years. It is understood that they have usually 
correlated more or less with the relative molecular 
properties of molecules, but the same index can not have a 
high discrimination ability for different molecules.[3] 
Bonchev and Trinajstić introduced an entropy measure that 
is based on distances to interpret the molecular branching 
of molecular graphs.[5] Later they applied the information 
theory in characterization of chemical structures.[6,7] These 
molecular descriptors were called information indices, and 
it was shown that the information indices have greater 

discriminating power for molecules than the respective 
topological indices.[8] 
 Hosoya entropy is based on distance-related par-
titions of the vertices.[9] Computation of Hosoya entropy 
requires partitions of vertices concerning the number of 
vertices at the same distance to each vertex.[10] More 
details about the graph entropies can be found in the 
paper.[11] Moreover, the meeting of the information theory 
with the chemical graph theory was expressed by Bonchev 
in the paper.[12] Another application of information theory 
in chemical graph theory was obtained by Konstantinova 
and Diudea[13] in comparing the Wiener polynomial 
derivatives, information indices and topological indices. 
 In this paper, we study the marginal entropy which 
was defined by Konstantinova.[3] We obtain the marginal 
entropy for paths, stars, double stars, cycles and vertex-
transitive graphs. 
 

PRELIMINARIES 
Let G be a simple graph with the vertex set V(G) and the 
edge set E(G). For a vertex ( ),u V G∈ the notation 

( ) { | ( )}GN u v uv E G= ∈  denotes the vertices which are 
adjacent to u and [ ] { } ( ).G GN u u N u= ∪  The degree of a 
vertex u is the cardinality of ( )GN u  and it is denoted by 
deg ( )G u  or simply deg( ).u A vertex which has degree one is 
called a leaf. Moreover, the distance between the vertices 
u and v is denoted by d(u,v).[10] 
 The number of vertices of a graph G is called order, 
and it is denoted by n. The paths, cycles and stars of order 
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n are denoted by Pn, Cn and Sn, respectively. The double star 
graphs Sp,q of order n are consisted of the stars S1,p and S1,q 
such that 2.n p q= + +  
 
Definition 2.1. For a vertex ( ),u V G∈  the total distance of 
u is introduced[4] 

( )

( ) ( , ).
v V G

D u d u v
∈

= ∑  

Definition 2.2. The Wiener index of a graph G is 
introduced[4] 

( )

1( ) ( ) .
2 u V G

W G D u
∈

= ∑  

Definition 2.3. The entropy of a graph G can be defined by 
Dehmer’s information functional approach.[11] Let G be a 
graph and :f S R+→  be an information functional defined 
on 1 2{ , , , }kS s s s= …  such that S is a set of elements of 
G.Then the entropy is defined as 

1 11 ( ) ( )

( ) ( )( ) log
k k
j jj j

k
i i

f
i f s f s

f s f sI G
= == ∑ ∑

 
= −   

 
∑  

1

1 1

( ) log( ( ))
log ( ) ,

( )

kk
i ii

i k
i jj

f s f s
f s

f s
=

= =

 
= − 

 
∑

∑∑  

as logarithmic phrases have base 2. 
 
Definition 2.4. The marginal entropy of a graph G is 
denoted by ID(G) and it is computed by the following 
equation:[3] 

( )

( ) ( )( ) log
2 ( ) 2 ( )D

u V G

D u D uI G
W G W G∈

 = −  
 

∑  

( )

11 2 log ( ) ( ) log ( ).
2 ( ) u V G

W G D u D u
W G ∈

= + − ∑  

Since 1
2 ( )( ) ( ),u V GW G D u∈= ∑  the marginal entropy is given 

by the equality 

( ) ( )( )

( ) ( )( ) log .
( ) ( )u V G u V G

D
u V G

D u D uI G
D u D u∈ ∈∈

 
= −   

 ∑ ∑∑  

 

MAIN RESULTS 
Theorem 3.1. The marginal entropy of the path graph Pn of 
order n is given by the following formula for a vertex 

(1 )iv i n≤ ≤  

3 3
1

3 ( ) 3 ( )( ) log
n

i i
D n

i

D v D vI P
n n n n=

 = −  − − 
∑  

such that 

( 1) ( )( 1)( ) .
2i

i i n i n iD v − + − − +
=  

Proof. For a vertex (1 )iv i n≤ ≤  on a path, the distance 
from iv to others as follows.  

, for 
( , ) .

, for i j

i j j i
d v v

j i i j
− <

=  − <
 

Therefore, we obtain that  

( ) 1 2 1 1 2iD v i i n i= − + − + + + + + + −   

( 1) ( )( 1) .
2

i i n i n i− + − − +  

Since the Wiener index of a path[14] of order n equals to 
3

6 ,n n−  the result is obtained. 
 
Theorem 3.2. The marginal entropy of the star graph Sn of 
order n is given by the following formula  

 
2 2

2 2

1 1( ) log
2 4 2 2 4 2

2 3 2 3( 1) log .
2 4 2 2 4 2

D n
n nI S

n n n n
n nn

n n n n

− − = −  − + − + 
− − − −  − + − + 

 

Proof. A star graph is consisted of a central vertex of degree 
1n −  and 1n −  leaves. Then, the distance from the central 

vertex to leaves is one, and the total distance of the central 
vertex is 1n −  to other vertices. Moreover, the distance 
from a leaf to another leaf is two in a star graph. Then, the 
total distance of a leaf to other vertices is 2 3.n −  
Therefore, we obtain the Wiener index of the stars as in the 
following equation. 

2( 1)(2 3) 1( ) ( 1) .
2n

n n nW S n− − + −
= = −  

By Definition 2.4, we obtain that  

 
2 2

2 2

1 1( ) log
2 4 2 2 4 2

2 3 2 3( 1) log .
2 4 2 2 4 2

D n
n nI S

n n n n
n nn

n n n n

− − = −  − + − + 
− − − −  − + − + 

 

The proof is completed with this equation. 
 

 

Figure 1. The double star graph Sp,q. 
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Theorem 3.3. The marginal entropy of the double star 
graph Sp,q of order n is given by the following formula 

 

,
, ,

, ,

, ,

, ,

2 3 1 2 3 1( ) log
2 ( ) 2 ( )

3 2 1 3 2 1log
2 ( ) 2 ( )

2 1 2 1log
2 ( ) 2 ( )

2 1 2 1log
2 ( ) 2 ( )

D p q
p q p q

p q p q

p q p q

p q p q

p q p qI S p
W S W S

p q p qq
W S W S

p q p q
W S W S

p q p q
W S W S

 + + + +
= −   

 
 + + + +

−   
 

 + + + +
−   

 
 + + + +

−   
 

 

Proof. A double star graph Sp,q is illustrated in Figure 1 with 
the central vertices u,v and the leaves p,q. If a leaf a is taken 
from p leaves, then the total distance from a to other 
vertices is computed by 

) 2 .( ) 1 2 3( 1 2 3 1D pa p q q= + − = + ++ +  

 Similarly, if a leaf b is taken from q leaves, then the 
total distance from b to other vertices is computed by 

( ) 1 2( 1) 2 3 3 2 1.D b q p p q= + − + + = + +  

 We obtain the total distances of vertices u,v to other 
vertices as follows. 

( ) 2 1,D u p q= + +  

( ) 2 1.D v p q= + +  

 By these equations, the Wiener index of Sp,q is 
computed such that 

,
1( ) [ ( ) ( ) ( ) ( )]
2p qW S pD a qD b D u D v= + + +  

1[ (2 3 1) (2 3 1) 2 1 2 1]
2

p p q q q p p q p q= + + + + + + + + + + +  

2 2 3 2 2 1.p q pq p q= + + + + +  

 Finally, we obtain the marginal entropy of Sp,q as 

 

,
, ,

, ,

, ,

, ,

2 3 1 2 3 1( ) log
2 ( ) 2 ( )

3 2 1 3 2 1log
2 ( ) 2 ( )

2 1 2 1log
2 ( ) 2 ( )

2 1 2 1log .
2 ( ) 2 ( )

D p q
p q p q

p q p q

p q p q

p q p q

p q p qI S p
W S W S

p q p qq
W S W S

p q p q
W S W S

p q p q
W S W S

 + + + +
= −   

 
 + + + +

−   
 

 + + + +
−   

 
 + + + +

−   
 

 

 The proof is completed with this equation. 

Theorem 3.4. The marginal entropy of the cycle graph Cn of 
order n is given by the following formula 

( ) log .D nI C n=  

Proof. We know that Wiener index of cycles[14] equals to 

3

3

,  even
8( ) .

,  odd
8

n

n n
W C

n n n


= 

−


 

If the order of a cycle is even, the maximum distance 
between two vertices is 2 .n  Then, for a vertex u, the total 
distance from u to others equals to 

2

( ) 1 2 2 1
2

2[1 2 1] .
2 2 4

nD u

n n n

= + + + + + +

= + + + − + =

 



 

If the order is even, then marginal entropy of cycles is 
obtained in the following formula. 

( )

( ) ( )( ) log
2 ( ) 2 ( )D n

u V G n n

D u D uI C
W C W C∈

 
= −  

 
∑  

2 2

3 3
4 4( ) log

2 2
8 8

D n

n n

I C n
n n

 
 

= −  
 × × 
 

 

1log log .n
n

= − =  

 If the order of a cycle is odd, the maximum distance 
between two vertices is 1

2 .n−  Thus, for a vertex u, the total 
distance from u to others equals to 

2

1 1( ) 1 2 2 1
2 2

1 12[1 2 ] .
2 4

n nD u

n n

− −
= + + + + + + +

− −
= + + + =

 



 

 If the order is odd, then the marginal entropy of 
cycles is computed by the following equation. 

( )

( ) ( )( ) log
2 ( ) 2 ( )D n

u V G n n

D u D uI C
W C W C∈

 
= −  

 
∑  

2 2

3 3

1 1
4 4( ) log

2 2
8 8

D n

n n

I C n
n n n n

 − −
 

= −  
− − × × 

 

 

1log log .n
n

= − =  

 The proof is completed by this equation. 
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 We know that the cycles are vertex-transitive 
graphs, and we obtain that the marginal entropy of cycles 
equals to log n in the previous theorem. It was shown in the 
paper,[10] if G is a vertex-transitive graph, for any two 
vertices u,v in V(G), we have D(u) = D(v). From this property 
and Definition 2.2, we immediately have the following 
formula 

( ) ( )
2
nW G D u=  

for an arbitrary vertex ( ).u V G∈  We use this equation in 
the following theorem. 
 
Theorem 3.5. If G is a vertex-transitive graph of order n, 
then the marginal entropy of G is presented by the 
following formula 

( ) log .DI G n=  

Proof. If G is a vertex-transitive graph of order n, we know 
that 2( ) ( ).nW G D u=  If we write this equation in the 
following formula, the marginal entropy of vertex-
transitive graphs is presented as in the following phrase. 

( )

( ) ( )( ) log
2 ( ) 2 ( )D

u V G

D u D uI G
W G W G∈

 = −  
 

∑  

( ) ( )log
( ) ( )

D u D un
nD u nD u

 = −  
 

 

1log
n

= −  

log  .n=  

 The proof is completed with this result. 
 

CONCLUSION 
In this paper, the marginal entropies of paths, stars, double 
stars, cycles and vertex-transitive graphs are obtained. This 
paper is a contribution to the computation of information 
indices in graph theory. Furthermore, marginal entropy is a 
possible tool for measuring the uncertainty of different 
networks. Therefore, the results of the this paper may be 
used in the computation of marginal entropy of different 
networks. 
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