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LIMIT THEOREMS FOR NUMBERS SATISFYING A CLASS
OF TRIANGULAR ARRAYS

IGORIS BELOVAS

Vilnius University, Lithuania

ABSTRACT. The paper extends the investigations of limit theorems
for numbers satisfying a class of triangular arrays, defined by a bivariate
linear recurrence with bivariate linear coefficients. We obtain the partial
differential equation and special analytical expressions for the numbers
using a semi-exponential generating function. We apply the results to prove
the asymptotic normality of special classes of the numbers and specify the
convergence rate to the limiting distribution. We demonstrate that the
limiting distribution is not always Gaussian.

1. INTRODUCTION

Let us consider the numbers a, j, satisfying a class of triangular arrays,
defined by a bivariate linear recurrence with bivariate linear coeflicients.

DEFINITION 1.1. Let ¥ be a real non-zero matriz,

P11 12 Y13
1.1 U= ’ ' ’
(L) ( a1 tha a3 )’
then
(1.2)
1, forn=0 and k=0,
0, forn<korn<0ork<a0,

an.k =

(Y11 + 12k + V1.3)an—1,5—1
+(p21n + a2k + 23)an_1 , otherwise.
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Numbers a,; include many combinatorial numbers, for instance, binomial
coeflicients, k-permutations of n without repetition, Morgan numbers, Stirling
numbers of the first kind and the second kind, non-central Stirling numbers,
Eulerian numbers, Lah numbers, numbers of the tribonacci triangle, see [4], as
well as some generalizations of the numbers mentioned above (cf., e.g., [26, 29]
and the references therein).

In this research, we establish limit theorems for numbers satisfying a
class of triangular arrays, extending, particularly, the investigations of Can-
field, Kyriakoussis and Vamvakari, see [11, 21, 22, 23, 24, 25]. The paper is
organized as follows. The first part is the introduction. Section 2 shows how
the underlying recurrence relation translates into a partial differential equa-
tion for the corresponding bivariate semi-exponential generating function. We
receive special analytical expressions of the numbers a,; as well. In Section 3,
central limit theorems for some special cases of the numbers a,j are proved.
The rates of convergence to the limiting distribution are specified. In Sec-
tion 4, we discuss the findings of Kyriakoussis on asymptotic normality of the
numbers, defined by a bivariate linear recurrence with bivariate linear coef-
ficients (see [21, Corollary 2.1]), and present a counterexample to his result.
We prove that the limiting distribution for the class is not always Gaussian.

Throughout this paper, we denote by C¥ the binomial coefficients, by
W (z) - the Lambert W function, by ®(z) - the cumulative distribution func-
tion of the standard normal distribution

1 x
O(x) = ﬁ/ e~2tadt, x € R.

By S(n, k) we denote the Stirling numbers of the second kind, counting the
number of partitions of a set of size n into k disjoint non-empty subset, and
by A(n,k) - the Eulerian numbers, counting the number of permutations of
the numbers 1 to n in which precisely k£ elements are greater than the previous
element. Next, T, (z), A,(x) and w,(z) stand for the Touchard, the Eulerian
and the geometric polynomials respectively,

To(z) = S, k)a*, An(x) = A(n k)a*, wu(@) =Y KkS(n, k)z".

k=0 k

n n n
=0 k=0

All limits, unless specified otherwise, are taken as n — oc.

2. GENERATING FUNCTIONS AND ANALYTIC EXPRESSIONS OF THE
NUMBERS, SATISFYING A CLASS OF TRIANGULAR ARRAYS

We may view the recurrent expression for the numbers a,; (1.2) as a
partial difference equation with linear coefficients. First, let us introduce the
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semi-exponential generating function of the numbers,

(2.1) F(x,y) = Zzan)k%yk — Zza"’ki—?yk

n=0 k=0 ' n=0 k=0
Next we establish the following theorem.

THEOREM 2.1. Let

§1=v11+ Y12+ Y13, & = o1 + U3,

then the generating function F(x,y) satisfies the linear first-order partial dif-
ferential equation

(2:2) (1= a2y — Po12)Fr — (Y129° + 20y9) Fy = (G1y + &) F,
with the initial condition F(0,y) = 1.

PROOF. By the definition of the numbers a,, , (1.2), we have

an ke = (Y110 + Y1 2k + 13)an—1 k-1

(2.3) + (h2.1n 4+ Pao(k+ 1) + (Y23 — ¥22))an—1.k-

Substituting the expression into the generating function (2.1), we get

7l

Zzank_'y +Zan0
k=

n=1 1 n=0
oo n o n "
:1/1112271% 1k— 1—'y + 91,2 szanq,kqmyk
n=1k=1 n=1k=1 ’
o0 n oo n
(24) +¢1322an 1,k— 1_'y +1/121ZZnan lk
n=1k=1 n=1k=1
oo n n
+¢2,2ZZ(/€+1)% 1,k ,yk
n=1k=1



Next,

(2.5)

F(a,

I. BELOVAS

oo n—1 co n—1

1/’1122”%1kx—,yk+1+¢1zzzk+1an1k i

Thus we obtain

(2.6)

n=1k=0 n=1k=0
oo n—1 oo n+1 n+1
+1/11322an 1kx yk+1+¢zlzz (n+ Dan.k +1)'yk
n=1k=0 n=0 k=1
co n+l n+1
+¢2znz(); k+1ank +1) y*
oo n+1l
+ (2,3 — 22) 23; nk +1 'y +Zan0
n= 1
n+1
1/1117;”;)714-1 A,k +1)|y
n+1
+1/J127;”;)k+1 Ay g +1) yk+1
n n+1
+¢1szz @n.k k+1+¢21zzan,kx—,yk
n=0 k=0 n=0 k=0
nt1
—1/1212%0 +¢22ZZ k+1) ank y"*
n=0 k=0 +1)
n+1
—1/1222%0 + (2,3 — th2,2) Zzank y"
n=0 k=0
—(1/12,3—1/12,2)2 W0 Ty +1 +Z nO

n=0

Hence, by the definition of the generating function F(z,y) in (2.1), we receive

(2.7)

F= ¢1,1$yF+¢1,2y/ (YF)ydt +4pr1 3y | Fdt+ g 1aF
0 0

s / (WF)ydt + (o3 — Go.2) / Fdt + g(x),
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with

n+1
E ano——wzl E ano—

n+1
(2.8) —¢22Zano — (Y2,3 — 2,2) Zano
—Zano —1/)212%0 —1/)232%07
Next, we prove that g(z) = 1. Indeed,
n+1
g(x)zzano Zan(ﬂ/)m n+1)+1/)23)( 1!
(2.9) - »
" "
= Z an0— — Z Un+1,0 =ago = 1.
— nl = (n+1)!

Thus, using (2.7), we obtain

(1 =2y —Yo12)F = (Y1,2y + ¥2.2) / (yF),dt
(2.10) 0

b (Wr3y + W25 — Ya2) / Fdi 4 1.
0

Calculating the derivative of the expression with respect to x, we receive

(=11y = Y21)F + (1 = Y110y — Yo 12) Fy
= (Y12y + Y2,2)(YFy + F) + (¥1,3y + V2,3 — P2 2) F,

and
(1 =112y — o12) Fy — (V129" + 12,2y) Fy
= (Y11 + Y12 +¥13)y + (2,1 +1b23)) F,
with F'(0,y) = 1 yielding us the statement of the theorem. O

REMARK 2.2. Using a substitution F(z,y) = ©(z,y)A(y), we can reduce
the linear partial differential equation (2.2) into its homogeneous form.

REMARK 2.3. The dual numbers a,  := ann—r are generated by the
matrix
o1+ P22 —Pao Yo
2.11 ’ ’ ’ ’ .
(211) ( Y1+ P2 Y3

The double semi-exponential generating function F(z,y) of the dual num-
bers (2.11) equals F(z,y) = F(zy,y~ ).
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Solving the linear first-order partial differential equation (2.2), we obtain

the generating function F'(z,y). The formal Taylor series in two variables for
the generating function equals

» - 6n+k » xnyk

n=0k=0
Hence, the partial differentiation of the double semi-exponential generating
function F(z,y) at (0,0), yields the analytic expressions of the numbers

1 6n+k

2.12 k= - _F(x,
(2.12) Ik = 1 dan oy (2,y)

(0,0) .

Note that, for 11,1 = 0, we can separate arguments while solving the linear
partial differential equation (2.2). Hence the next theorem follows.

THEOREM 2.4. For i 2,121,922 7# 0, numbers generated by the matriz

( 0 12 1/11,3>
P21 Y22 a3

(i) have the generating function

_ &

_ - i (% — 22\ Ve
(2.13) F(z,y) = (1 —¢paz) 721 (1+ @y(l — (L =tgz) "21) ;

(ii) and the analytic expression

(2.14)
H?:l(iﬁl,zj +113)
k! (ta,2)k

PRrROOF. By Theorem 2.1, the numbers correspond the differential equa-
tion

(2.15) (1 —¢o12)Fy — (V1,29% + Y2,09) Fy = (G1y + &) F, F(0,y) =1.

We can solve the linear first-order partial differential equation using the
method of characteristics (cf. [13, 16, 20]).
I. Along the line I': x =1 (t) =0, y = n2(t) =, F = 1 we have

(2.16) A= (1=t (t)ye — (—(W12m3(t) + Y2,2m2(t)))ze = 1 # 0.

Thus, there exists a solution to the Cauchy problem.
II. Characteristic equations, corresponding (2.15) linear first-order partial
differential equation, are
d d dF
(2.17) i 7 = .
L—poiz  —(Y1y% +122y)  (SLay+&)F

Qn k=

k n
Z (=D)™mCy" H(¢2,2(/€ —m) + 1215+ 2 3).

m=0 s=1
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Thus we have characteristic curves
_a B D O
(L =toz) 21 (Y120 +1h22) V22y¥22 = (4,
&1 _ & &2
(V1,29 + tpo2) P12 P22yv22 F = (s,
ITI. Taking into account the equations of the line I', we calculate

1/J2,2

P22
o —th1,2
€2

S _E2
(1,2t + tha2) P12 V224722 = (o

Eliminating ¢, we obtain the expression for parameters C; and Cy,

(2.18)

{ 1
(2.19) ey 1”“’)“2 v (7Y — g g) P12 = G,

IV. Substituting (2.18) curves into (2.19), we get
Y22 ( & & )
&1

1— w2)1x P21 (wl,z Y2 2
F(r,9) = 4337 L= tear)

¥2,2 % 7
<(1 —tpo ) V21 (Y1 2y + 22) — 1/11,2y>

yielding us the first statement of the theorem.
To obtain the analytic expression we apply the formula

[17%, (ac — aj)

dam ¢
2.20 —(at + b)) =m! Mlat + b)) = ——————
(2.20) T (at +0)° =m (m>a (at +b) (at £ D)<
By formula (2.12), we have
1 o™ €2
Apk = k' 8$" (1 — 1/}2 11;) V2,1
1/) P22 715_1
/2, 1,2
T+ 2291 — (1 — thoa ‘ﬂ)
o (14 20 (=) )
(0,0)

) (¢1 2)
a2
2 W2 k
o (1 - ¢2,1«T)7%’1 (1 — (1 — 1/1271;5) V2,1 ))
dar ¥2,2 571’ k

Oz e \ wigT
(1+1"12 (1— (1 —1ppqz) w)>

V22 Y

()

(0,0

201
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R —1)F~ (1 — 1/)271:1; b2,1 b2,1
oxm = j

&1

_ Y22 g ks
. ys(l _ 2/12,1:5) P21 (1 + @y> )
1Z)Q,Q (0,0)

(_ wfll,z) (P1,2)"

k) (1h2,2)*

k

i k\ O™ ,“’2_12(;6,-)7 £2

. _179J(’)_<1_1/} T Y2 1 J wz,l)
Z( ) i) o ( 2,17) .
k—1 L
I (-

_ 5= P12 o S) (1/}1,2)k
k! (12,2)k

.j_z:(—l)kj (j) n!(ﬁﬁ;’j (k _nj) a 1/’522*1>(—¢2,1)"

_ [T (12 + 91 3) + ©1.28)

El(1)2,2)k
k k n—1
: Z(_l)] ( ) H (V2,2(k = 7) + (Y21 + 23) +1215),
=0 -

yielding us the second statement of the theorem.

Let us consider special cases of the numbers of Theorem 2.4.

COROLLARY 2.5. Numbers generated by the matriz 0 Y1z tng
0 tho2 23
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(i) have the generating function

_%1,2t¥13

; 0
ew2,3$ (1 + %y(l _ 61/12,21)> 1,2 , 1/’1,2 7é 7
’ V2,2 # 0;
Y12 =0,

2.21 F(z,y)=<e T+ Y13, (o222 _ , )
(2.21) F(z,y) Xp (wz,3 oy )) bos £ 0
_ Y12+¥1.3 ’(/J 75 0
6¢2,3x (1 — 1/}1 2$y) P12 , 1,2 )
7 P22 =0

(ii) and the analytic expression

(KD~ (¢2,2) 7" H§:1(¢1,2j +91,3) 12 # 0,
Y oe o (FL)CE (P a(k — m) + 2 n)", g #O;
(k)™ (v1,3/12,2)" Y12 =0,

2.22 nk =
(2:22)  an 'ZZZQ(—l)mC;T(U)z,Q(k —m) + 12 3)", o2 # 0;

Ch(th2,3)" ™ Ty (1,05 + r3), Zm i 8’
2,2 .
ProoFr. I.1. The first part of the first statement of the corollary can be
proved by the method of characteristics, analogically to the proof of the first
statement of Theorem 2.4, however it is enough to notice that in the formula
(2.13) we have

__f2 _ Y22
lim (1 —pg z) 720 = e¥227, lim (1 — g qz) 721 = e¥22%
P2,1—0 ’ P21 —0 ’

yielding us the statement.

I1.1. The first part of the second statement of the corollary we can ob-
tain by differentiating the generating function (cf. (2.12)), or by substituting
o1 = 0 into (2.14).

I.2. The second part of the first statement of the corollary can be proved
by the method of characteristics, analogically to the proof of the first state-
ment of Theorem 2.4. However, calculating the limit of the generating func-
tion in (2.13) while ¢ 2 — 0,

_ Y12+¥13

1' _f72 w1)2 _% P12
im (1 —1eq2) %21 (1+ @y(l — (1 —gaz) "21)

P1,2—0

_ _wiz, . 1/)112 _$2,2 T Yia
=(1—1g12z) ¥21 lim 1——=y((1 —¢po12) ¥21 — 1) ,
,2

P1,2—0

and applying the formula

lim(1 — at)fg = e,
t—0

we receive the statement.
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I1.2. The second part of the second statement of the corollary we obtain by
differentiating the generating function (cf. (2.12)), or by substituting 112 =0
into (2.14).

[.3. The third part of the first statement of the corollary can be proved by
the method of characteristics, analogically to the proof of the first statement
of Theorem 2.4. However, calculating the limit of the first generating function
in (2.21), while ¢ 2 — 0, and noticing that

we obtain the corresponding statement of the corollary.

I1.3. The third part of the second statement of the corollary we obtain
by differentiating the third generating function in (2.21). Using (2.20), we
obtain

1 97 ak _ Y12+¥13
il P2,3% 1— V1,2
mae ¢ gyt T YLy

An k=

(0,0)
1 o _ Y1o+rs _Yi2t+vi3

_ -~ ewz,swk!( 1]!;1,2 )(_w1)2x)k(1 _ ¢1,2$y) V1,2

k

k! 9z

(070)
B H?:owl,zk +¢13) o

N k! oxm

X s Yiot+Pisz k

. Z ( P12 )(_w1)2x)5y56w2,31x7€

S
s=0

(0,0)

? 0(1/)1,2k + 1/)1.,3) (xkewl?’w)(n)

il 2=0

o(h1,2k + 11 3)
k!

k
J

I
I

CEE(2,3)" ",

thus completing the proof. O

P11 0 1/11,3>

THEOREM 2.6. Numbers generated by the matriz
Y21 0 tog

(i) have the generating function

§1y+€2

(2.23) F(z,y) = (1= (Y11y + tho1)x) “1aviozn
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(ii) and the analytic expression

n

k= 2 [L00k:) + G = Dethy)
(2.24) kit +kn=k, kje{o,l}azl

- Z H(djszj@j + P2 k;.3)s

kit tkn=Fk, k;€{0,1} j=1
where

for k; =0 for k; =0
b(lk;) = Pa1 + P23, fork; , (k) = a1, for k; )
Y11+, for ky =1, Y11, for kj =1.

PROOF. If 91 3 = 132 = 0, then we can solve (2.2) equation as an ordi-
nary differential equation
(I —vazy — o)y = (Giy + &)F, F(0,y) =1
Solving the Cauchy problem we obtain

e &y + & ERSURRS B
o= /0 1= (Yuy + 1/121)tdt IERCRUER 'og{1 = Y1y + ¥21)0),

which yields us the first statement of the lemma.
Next, we calculate the analytic expression. Let us denote

B =&y+ &, C=v11y+v2,1.
Then, applying (2.20), we get

n+k k "—Lci+B
' k! Oanoyk (0,0) k! OyF (1—Cz)ctn ©.0)

Lo i(‘g‘")<—0>8w5ﬁ<0j+3>

k! Oy = s o

= 3 f[(B + 03— 1)),

S kj=k, k;€{0,1} j=1

(0,0)

where
v—o = B(1) =& = Y11 + 13, and v—o = C(1) = ¥4,
By—o = B(0) =& =121 + 123, Cy—o = C(0) = 1)a1.

We can rewrite the analytic expression in the following way,
n

anx = Z H(wz—kj,lj + 2k, 3)

ki+--+kn=Fk, k;€{0,1} j=1

thus completing the proof.
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COROLLARY 2.7. Numbers generated by the matriz < zl’l 8 8 >
2,1

(i) have the generating function

(2.25) F(a,y) = (1= ($ray+v2)2)
(ii) and the analytic expression
(226) An k. = n!Cﬁ(wl)l)k(iﬂg’l)nik.

PROOF. The proof of the corollary follows the outline of the proof of
Theorem 2.6 (with coefficients of the generating matrix 11 3 = 123 =0). 0O

In the next section, we use the results of Corollary 2.5 and Theorem 2.6
to establish central limit theorems for particular numbers satisfying a class of
triangular arrays.

3. LIMIT THEOREMS FOR NUMBERS SATISFYING A CLASS OF TRIANGULAR
ARRAYS

Limit theorems for numbers satisfying a class of triangular arrays can be
established using ordinary or semi-exponential generating functions (cf. 2, 3]),
moment generating functions (cf. [1, 4, 6, 8, 28]) and probability generating
functions (see [7, 18]).

Let ©, be an integral random variable with probability mass function

Qn,k
Z?:o n,j

The moment generating function of the random variable €,, equals

(3.1) P(Q, = k) =

n n -1 5
(3.2) M, (s) = E(e®) = Z P(Q, = k)e*s = <Z an,k> Z n e
k=0 k=0 k=0

Let us denote
n
Sn = Z Qn, k-
k=0

Combining the definition of the semi-exponent generating function (2.1) with
(3.2), we obtain

Flae) = 3T 3 s = 30 T180000)

Thus, the partial differentiation of the double semi-exponential generating
function F(z,y) at = 0, yields us the moment generating function

o
-1 9 s
(3.3) M, (s) =S, B F(z,e®)

z=0
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Since M,,(0) = 1, the formula for the sum S,, follows,

(3.4) Sp = —
(0,0)

We use Hwang’s result on the convergence rate in the central limit the-
orem for combinatorial structures (see Corollary 2 from Section 4 in [19]) to
establish the limit theorem for a special case of the numbers a,; and specify
the rate of convergence to the limiting distribution.

LEMMA 3.1 (Hwang [19]). Let P,(z) be a probability generating function
of the random wvariable €, taking only non-negative integral values, with ex-
pectation p, and variance o2. Suppose that, for each fired n > 1, P,(z) is a
Hurwitz polynomial (a polynomial whose zeros are located in the left halfplane
of the complex plane or on the imaginary axis). If o,, — 00, then, Q,, satisfies

(3.5) P(&£1ﬁ<x>_ﬂﬂ+0(i>, zeR.

On On
Let us formulate central limit theorems (Theorem 3.2 and Theorem 3.3).

THEOREM 3.2. Suppose that Fy,(z) is the cumulative distribution function
of the random variable €, with probability mass function (3.1). Let the non-
zero elements of the matrix

i1 0 Y13
3.6 ' ' ,
(8.6) ( a1 0 o3
generating the numbers a,, 1, satisfy the inequalities
Y2,1] + Y23
3.7 —— >0,
3.7 Y1)+ Y13

for 1 < j < n, then
P(z) + O ; V11 # 0, Y21 #0,

(38) Fn(onx + /Ln) = (I)(LL') + O , 2/1171 = ’lﬁg)l =0, z € R.
(I)(‘T) +0 \/m) ’ 7/}1,1 =0or 7/}2,1 =0,

2
n

_ S-S

The expectation E(Qy,) = u, and the variance Var(Q,) = o;. are equal to

_ Y117+ P13
59) f = (W11 +913) + (21 + ¥23)°
3.9
o2 — - (V1,17 +1,3) (V2,15 + ¥2,3)

" (g rs) + (V205 + Y23))?

Jj=
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PROOF. First we derive the moment generating function. By Theo-
rem 2.6, the semi-exponential generating function of the numbers (3.6) equals

§1y+€2

(3.10) F(z,9) = (1= (11 + $o1)z) Tavevan

Calculating the partial derivative by x and taking into account the formula
(2.20), we obtain that

677,

5o Fy) H &1y + &) + (119 +¥2,1)7)

r=

(3.11)

§ Q
)—A O

H (Y1,1y + ¥2,1)(J + 1) + (V1,39 + ¥2.3)).

Combining (3.3) and (3.4), we have that the moment generating function
equals

H (P1,1€" +121)5 + (Y1,3€" +¢P2.3))

(3.12) .
I ((¢1 1€° +¥21)j + (V136" + ¥23))
[l (W10 +21)i + (Y13 +423)
and
(3.13)  log M( Zlog (116" +21)f + (136" + tP23)) — log Sh.
=1

Thus,

- (V1,17 +P13)e”
(314) (10gM J:Zl 1/}1 165 + 1/}2 1).] + (,(/)1 365 + ¢2 3)
and

. (1,17 + ¥1,3) (V2,17 + 1b23)
(3.15) (log Ma(s ; (Y116 +121)] + (V1,35 +123))%

Next we calculate the expectation

ftn = M;,(0) = M, (0) (log Mn(s))'[,—g

=1
(3.16)

_ zn: Y11 + 13
= Wi+ 2a)i+ (s + P2,3)
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and the variance
op = M;/(0) — M;?(0)
= M;,(0) (log M (5))'| ,—q + Mn(0) (log Mn(s))"|,_o — M,?(0)
A e ~——
(317) Hn =Hn =1 :H%

n

_ Z (Y1,1] +1,3)(W2,1] + 2,3)
(Y11 +121)] + (V1,3 +1¥23))?

7j=1
The probability generating functon is

[T (117 +¥1,3)2 + (Y215 + 2.3))
[1=i (V1,15 +1,3) + (Y215 +¢23))

The roots of the polynomial (3.18) are negative. Indeed, by the condition (3.7)
of the theorem, we have

(318)  Pu(z) = M,(logz) =

_1/12,1]' tvas _
1,17 P13

Now let us consider the variance (cf. (3.17))

(3.19) 2z =

o2 — zn: (1,15 + ¥1,3) (V2,15 + Y2,3)
b (W us) + (Y205 +123))°
n . . -2
-y (V1,10 +¥1,3) + (Y215 + 23)
(3.20) = V1,1) + V1,302 + V23
' -2
_ . Vi1J+ Y13 + Yo1J + Y23 _ = (5_ n i>2
— V2,17 + P23 Y11 + P13 —~\7 Y '
J_ J_
P —
=:0;
L. Let 911 # 0 and 951 # 0. Consequently,
lim §; = Y1 = const > 0,
j—00 2.1

yielding us 02 — oo. On the other hand, §; + 1/§; > 2. Hence,

(3.21) o2 =

Thus, we receive o, = O(y/n). The first statement of the theorem follows.
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II. Let ¥11 = 21 = 0. By (3.17), we obtain

n

2N~ Yusves
In = Z (P13 +1P23)2 cn.

Hence, 02 — oo and o, = O(y/n), yielding us the second statement of the
theorem.

ITI. Let 121 = 0 (note that the case of 11 = 0 can be addressed in a
similar way) and

j=1

N N e e
a= 123 g YLt ¥as
P11 P11
Now,
2 "N 11j s+ Yo — Yo 1 TN 1
o2 =1y, , =a) — —« —_ .
23; (V1,15 + Y13 +1b2,3)? JZ:;J +6 = (+8)?
=alogn+O(1) =:Dp
Since
lim D,, = const > 0,

n—r 00
we obtain 02 — oo and 02 = alogn + O(1), yielding us the third statement
of the theorem. O

THEOREM 3.3. Suppose that Fy,(z) is the cumulative distribution function
of the random variable Q,, with probability mass function (3.1). Let the non-
zero elements of the matrix

(3.22) <8 wg2 1/’(1)73 )

generating the numbers a, , be positive (negative) and o = n 3/12 2, then

(3.23) Fo(onz + pn) = ®(z) + O (lci/gﬁn) ) x € R.

The expectation E(Qy,) = u, and the variance Var(Q,,) = o

_ Tan(e)
Mo Tn(oz) )

2 Tn+2(0‘) _ Tn-‘rl(a) ° —a
" T(a) ( Tn(a) ) '

Here T, (z) stand for Touchard polynomials.

2

= are equal to

(3.24)

a.

PROOF. The proof of the theorem follows the outline of the proof of The-
orem 3.2. It is important to note that the probability generating function of
the random variable €2,, (cf. (3.18)) is given in terms of Touchard polynomi-
als (A.5). Details for the proof are presented in Appendix A. O
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Theorem 3.3 allows us to receive the symmetric result for the dual num-
bers (2.11). We can formulate the subsequent corollary.

COROLLARY 3.4. Let the coefficients 11 3 and 122 of the numbers gener-
ated by the matriz

(3.25) <¢8’2 _%2’2 w?s >

be positive (negative) and o = 1.3/122, then the cumulative distribution
function of the corresponding random variable (3.1)

1
(3.26) Fo(onz +pn) = ®(@) +0 [ 22) | zeR.
vn
The expectation E(Qy) = pn and the variance Var(Q,) = o2 are equal to
T,
Up =N — ﬂ + a,
Tn(a)
(3.27) 2
o2 = Ty2(a) _ Ty () N
" Tw(a) Tn(a) '

To prove the next central limit theorem (Theorem 3.6) we use the follow-
ing result for the geometric polynomials.

THEOREM 3.5 (Belovas [5]). Let x > 0 be fized, then
(3.28)

_nt1
2
n!

! 472
n = 1+0 14+ ————
wn(2) (1+x) 1og""’1 (1 + %) + < + log2 (1 + %))

THEOREM 3.6. Suppose that F,,(x) is the cumulative distribution function
of the random variable Q, with the probability mass function (3.1). Let the
non-zero elements of the matriz

0 912 0
3.29 ' ,
(8.29) ( 0 4ns 0 )
generating the numbers ay, , be positive (negative) and 8 = 11 2/12 2, then
1
(3.30) Fo(onz + pin) = ®(z) + O (ﬁ) ; x € R.

2

= are equal to

The expectation E(Qy,) = u, and the variance Var(Qy,) = o

T 1 wn-l—l(ﬁ) _ ﬁ

"B+ 1 wa(B) B+
o2 = L wnt2(8)  way1(B) B wn1(8)
"_(B+1)2( ) (ﬂ+1)2(wn(ﬂ) “)’

respectively.

(3.31)

wn (B) w2 (B)
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PROOF. The proof of the theorem follows the outline of the proof of The-
orem 3.3. It is important to note that the probability generating function of
the random variable €,, (cf. (A.5)) is given in terms of geometric polynomi-
als (B.5). Details for the proof are presented in Appendix B.

It is interesting to note the similarity in expressions of the variance o2 in
Theorem 3.3 and Theorem 3.6,

o, = ala(logTu(e))'), oy, = B(B(logwn(B))')',
respectively (cf. (A.13) ). O

Theorem 3.6 allows us to receive the symmetric result for the dual num-
bers. We can formulate the subsequent corollary.

COROLLARY 3.7. Let the coefficients 11 3 and Y32 of the numbers gener-
ated by the matriz

o2 —P22 0
3.32 ' ' ,
( ) ( P12 —Y12 0
be positive (negative) and B = 1,2/122, then the cumulative distribution
function of the corresponding random variable (3.1) is

(3.33) Fo(onz + pin) = ®(z) + O (%) ) x € R.

The expectation E(Qy,) = u, and the variance Var(Q,) = o
1 wnta(B) B

2

= are equal to

530 Hn = B (@) B 1
' o2 = 1 (WnJrZ(ﬂ) _ w?z-i—l(ﬂ)) _ B <wn+l(ﬂ) + 1>
"B+ wa(B) wi(B) (B+1)2 \ wa(B) ’
respectively.

As we can see, all limiting distributions, received in Theorems 3.2, 3.3, 3.6
and Corollaries 3.4, 3.7 are Gaussian. Is the normal distribution a limiting
law in a general central limit theorem for the numbers a, j, satisfying a class
of triangular arrays, defined by a bivariate linear recurrence with bivariate
linear coefficients (see (1.1)-(1.2))? We will address the problem in the next
section.

4. LIMIT THEOREMS WITH NON-(GAUSSIAN LIMITING DISTRIBUTIONS

Kyriakoussis (cf. [21, Corollary 2.1]) claimed a general result for nonneg-
ative numbers satisfying a class of triangular arrays.
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THEOREM 4.1 (Kyriakoussis [21]). Nonnegative numbers ay  generated
by the matrix

(1) ( 6 C5 4 >

3 C2 (O
are asymptotically normal (i.e., satisfy a central limit theorem) with the ex-
pectation fi, and the variance o>

n’

T A
S OBV TON

(4.2) O\ 4 ()
2 =0 <<7;((8>)) B rr((()o))> " ﬁ(%%) B (i((t?))) ’

respectively. Here r(s) and A(s) are the solutions of the differential equations

S

(co + cs5e®)r' (s) — (c3 + cge®)r(s) = co, co constant,

)r
(c2+c5e®)A'(s) + ((ca + c5)e® + c1)A(s) =0,

/ 2 Pl
(5@) o re Aoz

However the proposition is flawed. Let us give a counterexample ehxibit-
ing not asymptotically normal numbers a,, ;. First let us provide an auxiliary
lemma on the convergence of the moment generating functions. Let {F,(x)}
be a sequence of distribution functions and {M,,(x)} be the sequence of cor-
responding moment generating functions, which exist in some neighborhood
of 0. Pointwise convergence of M, (x) to M(z) in some neighborhood of 0
implies weak convergence of F,(x) to F(z).

(4.3)

LEMMA 4.2 (Mukherjea et al. [28]). Let a and b be positive and a < b. If
nh_}rrgo M, (t) = M (),
whenever a <t <b. Then
lim F,(t) = F(t),

n—oo

for every number x € R, at which F(x) is continuous.

Note that the result is correct if a positive interval is replaced by a negative
one, see [31]. Now let us consider a central limit theorem for generalized k-
permutations of n without repetition.

THEOREM 4.3. Let the non-zero elements of the matriz

0 ¥, 0
(4.4) <0 (1)2 %73),
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generating the numbers a, i, be positive (negative). Then the numbers a, j
and their dual numbers a, 1 = an n—k, generated by the matriz

0 0 P23
(45) (1/)1,2 12 0 )

are asymptotically Poissonian.
PrROOF. First we derive the moment generating function. By Table 2

(entry 1) and Table 1 (entry 3) of Appendix C, semi-exponential generating
functions of the numbers (4.4) and (4.5) are equal to

(46)  F(z,y) =" (1 = pwy) ™", Fa,y) = e (1 =g a) 7,

respectively. Calculating the partial derivative by x using the general Leibniz
rule and taking into account the formula (2.20), we obtain that

%F(I’ y) = Z Ch'va s H (1,29 +11,2974)
(4.7) v=0 m=0 §=0
S P12 )m
—yp, S ommt (212y)
and
oo n n—m—1
D (z,y) = Z Crt (2,3y)™ (1,2 + 1,27)
(4.8) v=0 m=0 =0
- 2.3 >m
=97 C™(n—m)! | ===
LI AN (22

Let us denote A = 93 3/1)1 2. Combining (3.3) and (3.4), we have that the
moment generating functions are equal to

n m —m ,ms
Y om0 ClrmIA e

Ma(s) = 51085 Y- Crmix e = SRt
m=0 —n :

m=0

-1
(4.9) "y n :
m me n—m)s
- Z:OW Z:o m! ’

———
=ien (N)
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and
My(s) = S, 975 Y O (n —m)IAme™
m=0
—1
(4.10) N N
o EZIZO C;”(n — m)!)\mems o Z )\_m Z A'ems
Yoo Cm(n —m)IAm = m! —m!
——
=:en (N)
Let us consider the convergence of moment generating functions (4.9) and
(4.10).
Note that

en(N) = e <1+0 <%>> .

The moment generating function of the numbers (4.5) equals

n

(411) V() = e’ ()Y An;jn _ e (1 40 (%)) .

m=0

Thus, by Lemma 4.2, the numbers a,) are asymptotically Poissonian, i.e.
Q,, ~ Pois(\). The symmetric statement for the dual numbers a,, follows.

O

REMARK 4.4. Let 912 = 123 = 1 (k-permutations of n without repe-
tition). The probability generating functions of the numbers (4.4) and dual
numbers (4.5) are equal to

Zm

M=

Po(2) = M, (logz) = e, }(1)

(n—m)V

Il
=)

(4.12) "

m

P,(z2) = Mn(logz) = e;l(l)

z

' 3

BIvt

respectively. Calculating the roots of Ps(z) and Ps(z) numerically, we receive
z1 = —0.459..., 293 = —0.295... £ 0.303...7, 245 = 0.024... = 0.3184,
z1 = —2.181..., Zo 3 = —1.650... £ 1.694...4, Z45 = 0.240... &= 3.1284.

Indeed, R(z45) > 0 and R(Z4,5) > 0. Thus, the probability generating func-
tons (4.12) do not satisfy the conditions of Lemma 3.1 (because the polyno-
mials are not Hurwitz polynomials).
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APPENDIX A. PROOF OF THEOREM 3.3

PROOF. First we derive the moment generating function. By Corol-
lary 2.5 (see (2.21)), the semi-exponential generating function of the num-
bers (3.22) equals
(A1) F(z,y) = exp (ay(e’>?* — 1)).

By the properties of the Touchard polynomials T;,(x), we have that they can
be defined by the exponential generating function, see [32],

(A.2) exp (z(e' —=1)) = Tn(x)g.
n=0 ’
Combining (A.1) and (A.2), we get
(43) ToF(wy)| = (a2) T o).
=0

Next, combining (3.3) and (3.4), we have that the moment generating function
equals

_ T (ae®)
o 1 n sy _ Tn
(A4) Mn(S) - Sn (2/1272) Tn (ae ) - Tn (O[)
Hence, the probability generating functon is

B T, (a2)

Harper showed that the roots of the Touchard polynomials are real, distinct,
and non-positive (see [17, Lemma 1]). Since o > 0, the polynomial (A.5) is a
Hurwitz polynomial.
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Next we calculate the expectation u,, and the variance o2. The Touchard
polynomials satisfy the following recurrence relation (cf. [12, 14, 27]),
(A.6) (x 4+ 20,)Th(x) = Thy1(x).
Hence,
(A7) T (x) = a7 T (2) — Tn(@),
T/ (z) = 2 2 Tio(x) — 27 2(1 + 22)Tpy1 (2) + T(2).

By (A.4), we obtain that the derivative of the moment generating function
equals

M;,(s) = ae® (T (@) T, (ae®),
M"(s) = ae® (T, ()" (T, (e®) + ae>T" (ae®)).
Combining (A.7) and (A.8), we obtain the expectation
fin = M,,(0) = a (T (0)) " T2 ()
(A.9) = a (T (@) (@ Tus1(@) = Tu(a))
= (T (@) Tysa(a) —

(A.8)

and the variance

02 = M(0) - M2(0)
_ aTifa) +@*TI(a) (Lt ) 2

T () Tn(a)
(A.10) | Tpi1(@) — aTp(a) + Toya(@) — (14 20)Tpi () + a*Ty()
N T ()
-~ T714(a) + 2aTn+1(Ot) _ o= Tny2() -~ T714(a) _
T3 (a) To() To(c) T3 (a)

Using (A.7), we get
way D) =T )
' Thio(z) = 2°T) () + (22° 4 )T (z) + (2® 4 )T ().

Hence,

Tonls) Ty
Tn(x) T (

i; + 2 =x(logTy(2)) + z,

(A.12) L;:ég)c) = 2? ?Zg)) + (22° + 1) ;igg + (2 + z)

= 2 (log T ()" + a?((log Tn(x))")?
+ (222 + 2)(log T}, (2)) + (2% + ).
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Combining (A.10) and (A.12), we receive the variance
02 = a*(log T, () + &*((log T ()))? + (2% + a)(log Tr ()’
(A.13) + (@® 4+ ) — (a(log Tn(@)) + @) —
= a”(log Tn(a))" + a(log Tn(@)) = a(a(log Tu(a))')"

The asymptotic formula for the Touchard polynomials (see [30, Theorem
1]), for the fixed positive z, is

r 1 n+tl
1) Ty DOEDeRCet (i )/w ()
V2r(n+1) (1+W(i)) W (22)
Let
Vn:W(n—l—l)’ Vé:W/(n—H>, ‘/AIZVI///(TL_—Fl)7
o @ @
then,
V' (n+1 1/2 n
l _ _n 7
(A.15) (IOng(O‘)) L+ (n+ 1)a2 ( Vn2 + 1+V, * Vn> ’

and, by (A.13),
o2 VI (n+1 1/2 n\\’
il Ly 1 _

a <O‘+(”+)a(vn2 +1+Vn+Vn)>

—(n+1)v,;//a—v,;(n+1 1/2 n)

A.16 = —
(A.16) L+ (n+1) 2 vz 14V, VW,

/! 12 !/ 1 / 1 /
+(n+1)1; ( (n+1)*V;! (n+ 1)V n(n + )Vn)'

a2V 202(1 + V, )2 a2V

«

Note that the asymptotic of the principal branch of the Lambert W function
is

log1
(A.17) W(z) =logx — loglogx + O ( Oig()gx> , T — 00.
x

Hence,

n—i—lV 1—1—0( 1 ),
(A18) @ logn
' (n—i—l)

V”:—1+O( ! )
a? logn

Combining (A.16) and (A.18), we obtain

2(n+1) 1 n n
A.19 2o —+0 .
(A19) - ow ot T e T T (1og3n>
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Hence,

n vn

or On ~ .
logn

(A.20) o2 ~ 73

Thus o,, — o0, yielding us, by Lemma 3.1, the statement of the theorem. O

APPENDIX B. PROOF OF THEOREM 3.6

PrOOF. First we derive the moment generating function. By Corol-
lary 2.5 (see (2.21)), the bivariate semi-exponential generating function of
the numbers (3.29) equals

~1
(B.1) F(z,y) = (14 fy(1 - e*>27)) .
The geometric polynomials w(z) can be defined by the exponential generating
function, see [10],

1 - tr

Combining (B.1) and (B.2)) we get that

n

(B?’) %F(,T, y) S = (¢2,2)"wn (By) :

Next, combining (3.3), (3.4) and (B.3), we obtain that the moment generating
function equals

(B.4) M) = 5 2 (e7) = 2020
The probability generating functon is

_ _ Wn (B2)
(B.5) P,(z) = M,(log z) = on(3)

By the relation between the Eulerian and the geometric polynomials, see [9],

n x

(B.6) Ap(z) =(1—2)"w, (1 — x) .
Frobenius showed that the roots of the Eulerian polynomials A, (z) are real,
distinct and negative, see [15]. Since 8 > 0, then, combining (B.5) and (B.6),
we obtain the same result for the roots of the probability generating function.
Thus P, (z) is a Hurwitz polynomial.

Next we calculate the expectation y,, and the variance o2. The geometric
polynomials satisfy the following recurrence relation (see [10, Proposition 13]),

(B.7) Wnp1(z) = (22 + 2)wl, (7) + 2w, ().
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Hence,
, 1
wp(z) = 22 1 an+1($) - :c——l—lw"(x)’
(B.8) 1 A
I z+1 2
Wy (2) = 5z wn+2(2) = 5 5wn+1(2) + g wn(@)
(22 + x) (22 + ) (x+1)

By (B.4), we obtain that the derivatives of the moment generating function
are equal to

M (s) = Be® (wn (B)) " W), (Be®),
M)/(s) = Be® (wn (B)) " (w), (Be®) + Bewl) (Be*)).
Combining (B.8) and (B.9), we obtain the expectation
fin = M, (0) = B (wn (B)) ' wl, (B)
(B.10) L w8
S B+1 wa(8)  B+1

(B.9)

and the variance
op = M;/(0) — M;?(0)
_ Bun(B) + Bwn(B) ( 1 wan(B) B )2
wn(B) B+1 wa(B) B+1
— 32 (( 1 wWny2(P) 48+1 wny1(B) n 2 )

B2+ 6)2 wa(B)  (B2+06)? wa(B)  (B+1)?
+ﬂ<62+ﬁ wn(B) —B+1)
1 wis(B) n 28 wara(B) P
(B+1)?2 w2(B)  (B+1)? wa(f) (B+1)2

o <wn+z<ﬁ>_wz+1<ﬁ>>_( 8 (W"+1(ﬁ)+1).

(B+1)2\ wa(B) w2(B) B+1)2\ wa(B)
By (3.28), we have that
wnt2(B) N (n+1)(n+2) wnt1(B) -~ n+1
BL2) ® T @1 wend) (A B

Hence, by (3.31),

(B.13) o, B+1)? (10g2 (l-l—ﬁl)) (B+1)2 <10g(1+5—1) +1)7

and

(B.14) 02 1—Blog (1+871) .
' "B+ 1D2og’ (1447

=:C3>0
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Thus o,, — oo yields the statement of the theorem by Lemma 3.1. O

APPENDIX C. SYNOPTIC TABLE OF THE RESULTS FOR SPECIAL CASES OF
THE NUMBERS Gy,

TABLE 1. Generating functions and analytical expressions

Generating matrices W
Generating functions F'(x,y) and analytical expressions of an

. 0 P2 P13
U= < 7\/}2’1 1/}272 7\/}2’3 )7 1/)1,271/}2,171/}2,2 7é 07

_ g ¥ _Y2,2 7??2
F(z,y) = (1 —tpaaz) *21 (1 T oy — (1 —¢oaz) Y22 )) 7

15— ($1,25+%1,3) mm T
Qe = A S (1) OF T (a.2(k = m) + s + as).

U= < 0 ¥12 s >7 P1,2,%22 # 0,

0 Y22 Y23
_¥1,2+¥1,3
Fe,y) = e'2ar (14 B2y(1 - evaar)) 02
ki (p j+v 7 7 7
= LTI S0 (1) O (W (k — m) + th2,a)"

0 0 Y13
U = ’ 0
( Wi tas o >, Y2,1,22 # 0,
¥2,2

_ Y2 _¥22
F(z,y) = (1 —t2az) "2 exp (52121/((1 —oaz) 21— 1)>7

k
e = Tl Yopso(— 1) OF Tz, (a2 (k —m) + s + v23) -

\I’:<O 0 P13 )7 Yo #0,

0 1/}272 1/}2,3
P13
w;;y(ewz,zw 1))7

F(z,y) = exp (1/)2,350 +
k
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TABLE 2. Generating functions and analytical expressions

Generating matrices W
Generating functions F'(z,y) and analytical expressions of a,

(0 12 ngs
=0 o)

_ ¥1,2+¥1.3
F(l’,y) = 6w2’31 (1 - 7/}1,29511) 1,2 )

an = Cr(¥2,3)" F TT5_, (V1,25 + .3).

W:(wl’l 0 13 )7

P21 0 a3
§1y+€2

Flz,y) = (1= (1ay +¢21)z) "rvives,
Qn k — Zk1+---+kn:k, ij{O,l} H;;l('llbfkj,lj + 1/)271@-,3).

0 0 Y13
U = ’
( 0 0 o3 )
F(m7y) = ew213m+d)1,35ﬂy7
ang = O (Y1,3)" (Y2,3)" "

(1 0 0
Y= ( dan 00 )
F(z,y) = (1— (¥11y + v21)2) ",
ank =IO (Y1,1)* (th2,1)" 7",
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