A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS

BIN ZHANG

Qufu Normal University, P. R. China

ABSTRACT. Let $\Phi_n(x)$ be the *n*-th cyclotomic polynomial. In this paper, for odd primes p < q < r with $q \equiv \pm 1 \pmod{p}$ and $8r \equiv \pm 1 \pmod{pq}$, we prove that the coefficients of $\Phi_{pqr}(x)$ do not exceed 1 in modulus if and only if (i) p = 3, $q \geq 19$ and $q \equiv 1 \pmod{3}$ or (ii) p = 7, $q \geq 83$ and $q \equiv -1 \pmod{7}$.

1. INTRODUCTION

Let $\Phi_n(x) = \sum_{m=0}^{\phi(n)} a(n,m) x^m$ be the n-th cyclotomic polynomial and put

 $A(n) = \max\{|a(n,m)| : 0 \le m \le \phi(n)\},\$

where ϕ is the Euler totient function. We can deduce that $\Phi_n(x)$ is a monic polynomial over integers by induction on n. It turns out that A(n) = 1 when n has no more than two distinct prime factors and this intriguing observation peeked the interest of many mathematicians. In particular, there is a lot of interest in *flat* cyclotomic polynomials (for which A(n) = 1, i.e., its nonzero coefficients are 1 or -1). Using basic properties of such polynomials, we have

$$\Phi_{2n}(x) = \pm \Phi_n(-x)$$
 and $\Phi_n(x) = \Phi_{\operatorname{rad}(n)}(x^{n/\operatorname{rad}(n)}),$

²⁰²⁰ Mathematics Subject Classification. 11B83, 11C08, 11N56.

Key words and phrases. Flat cyclotomic polynomial, ternary cyclotomic polynomial, coefficients of cyclotomic polynomial.

This work was supported by project ZR2019QA016 supported by Shandong Provincial Natural Science Foundation, National Natural Science Foundation of China (Grant No. 11801303), Project funded by China Postdoctoral Science Foundation (Grant No. 2018M640617), Taishan Scholar Project of Shandong Province (Grant No. tsqn202103060) and the Young Talents Invitation Program of Shandong Province.

²⁴¹

where rad(n) denotes the largest square-free factor of n. Therefore, the investigation of A(n) can be reduced to the case when $n = pqr \cdots$, where p, q, r, \cdots are distinct odd primes.

It is trivial to see that $\Phi_p(x) = \sum_{m=0}^{p-1} x^m$ and A(p) = 1. In 1883, Migotti ([12]) showed A(pq) = 1 and noted that $A(3 \cdot 5 \cdot 7) > 1$ with $a(3 \cdot 5 \cdot 7, 7) = -2$. Approximately one hundred years later, Beiter gave the necessary and sufficient conditions for A(3qr) = 1 by established the following result.

PROPOSITION 1.1. Let 3 < q < r be primes such that $r = (wq \pm 1)/h$, $1 < h \leq (q-1)/2$. Then A(3qr) = 1 if and only if one of these conditions holds:

- (1) $w \equiv 0$ and $h + q \equiv 0 \pmod{3}$, or
- (2) $h \equiv 0$ and $w + r \equiv 0 \pmod{3}$.

The proofs are based on the consideration of four types of partitions of mand the contribution of each type to the coefficients of x^m in the polynomial, see [4] for details. So the other case is n = pqr with $5 \le p < q < r$ primes. Currently, there are several open problems involving ternary cyclotomic polynomials $\Phi_{pqr}(x)$, an interesting and difficult one is to classify all flat ternary cyclotomic polynomials. While it is know that

$$r \equiv \pm 1 \pmod{pq} \Rightarrow A(pqr) = 1,$$

there are examples of flat ternary cyclotomic polynomials not of this form, and no simple general characterization of flatness is known. It has been conjectured by Elder ([6]), however, that if A(pqr) = 1 and $r \not\equiv \pm 1 \pmod{pq}$, then necessarily $q \equiv \pm 1 \pmod{p}$ (the latter condition is not sufficient for flatness in general).

Observing computational data, Broadhurst made the following conjecture about flat ternary cyclotoic polynomials.

CONJECTURE 1.2. Let p < q < r be odd primes with w the unique integer $0 \le w \le \frac{pq-1}{2}$ satisfying $r \equiv \pm w \pmod{pq}$.

If w = 1, then we say that [p, q, r] is of Type 1.

If w > 1, $q \equiv 1 \pmod{pw}$ and $p \equiv 1 \pmod{w}$, then we say that [p, q, r] is of Type 2.

If w > p, q > p(p-1), $q \equiv \pm 1 \pmod{p}$ and $w \equiv \pm 1 \pmod{p}$, and in the case where $w \equiv 1 \pmod{p}$ we have $wp \nmid q+1$ and $wp \nmid q-1$, then we say that [p, q, r] is of Type 3.

Then A(pqr) = 1 if and only if [p, q, r] is of Type 1 or 2, or [p, q, r] is of Type 3 and $\Phi_{pq}(x^s)/\Phi_{pq}(x)$ is flat, where s is the smallest positive integer such that $s \equiv 1 \pmod{p}$ and $s \equiv \pm r \pmod{pq}$.

In 2007, Kaplan ([9]) proved the following periodicity of A(pqr), which implies that for given p and q, A(pqr) is completed determined by the residue class of $r \mod pq$. PROPOSITION 1.3. Let $3 \le p < q < r$ be primes. Then for any prime s > q such that $s \equiv \pm r \pmod{pq}$, A(pqr) = A(pqs).

Moreover, if z is the least positive integer such that $zr \equiv \pm 1 \pmod{pq}$, then the smaller the value of z is the simpler analysis of the function A(pqr)appears to be. Consequently, we may try to investigate flatness of $\Phi_{pqr}(x)$ with $q \equiv \pm 1 \pmod{p}$ for small values of z. So far, the analysis has been completed for all $z \leq 7$, see [2, 3, 6, 7, 8, 9, 14, 15, 16, 17, 18]. In this paper, we continue the study of the flatness of ternary cyclotomic polynomials $\Phi_{pqr}(x)$ in the case z = 8. First note that in this case, by taking h = 8, $w \equiv 0$ (mod 3) in Proposition 1.1, we have, for odd primes 3 < q < r with $q \geq 17$ and $8r \equiv \pm 1 \pmod{3q}$, A(3qr) = 1 if and only if $q \geq 19$ and $q \equiv 1 \pmod{3}$. For q = 5, 7, 11, 13, by using the PARI/GP system (or consulting literature ([1])) and Proposition 1.3, we obtain A(3qr) = 2 when q = 5, 7, 11, 13 and $8r \equiv \pm 1 \pmod{3q}$. Therefore, we infer that the following statement holds.

COROLLARY 1.4. Let 3 < q < r be primes such that $8r \equiv \pm 1 \pmod{3q}$. Then A(3qr) = 1 if and only if $q \ge 19$ and $q \equiv 1 \pmod{3}$.

Our purpose here is to establish the following result.

THEOREM 1.5. Let $3 \le p < q < r$ be primes such that $q \equiv \pm 1 \pmod{p}$ and $8r \equiv \pm 1 \pmod{pq}$. Then A(pqr) = 1 if and only if

(i) $p = 3, q \ge 19$ and $q \equiv 1 \pmod{3}$, or (ii) $p = 7, q \ge 83$ and $q \equiv -1 \pmod{7}$.

We remark that, on invoking Proposition 1.3 and Corollary 1.4, it remains to prove this theorem in the cases

$$p \ge 5, q \equiv \pm 1 \pmod{p}$$
 and $8r \equiv \pm 1 \pmod{pq}$.

We will present the proof for p = 5, p = 7, p > 7 in Sections 3, 4, 5, respectively.

2. Preliminaries

Recall that the binary cyclotomic polynomial coefficients a(pq, m) have been completely determined in a simple and explicit way, see Lenstra ([11, (2.16)]), Lam and Leung ([10, Theorem]) or Thangadurai ([13, Theorem 2.3]). Considering this in the cases $q \equiv \pm 1 \pmod{p}$, we can obtain the following two useful results.

LEMMA 2.1. Let $3 \le p < q$ be primes such that q = kp + 1. Then

$$a(pq,m) = \begin{cases} 1, & \text{if } m = up \text{ with } 0 \le u \le q - k - 1, \\ -1, & \text{if } m = up + vq + 1 \text{ with } 0 \le u \le k - 1, 0 \le v \le p - 2, \\ 0, & \text{otherwise.} \end{cases}$$

LEMMA 2.2. Let $3 \le p < q$ be primes such that q = kp - 1. Then

$$a(pq,m) = \begin{cases} 1, & \text{if } m = up + vq \text{ with } 0 \le u \le k - 1, 0 \le v \le p - 2, \\ -1, & \text{if } m = up + 1 \text{ with } 0 \le u \le q - k - 1, \\ 0, & \text{otherwise.} \end{cases}$$

In 2007, by using the fact that

$$\Phi_{pqr}(x) = \frac{1}{1 - x^{pq}} \left(\sum_{i=0}^{p-1} x^i - \sum_{i=0}^{p-1} x^{q+i} \right) \Phi_{pq}(x^r),$$

Kaplan ([9]) proved the following technical lemma, revealing the relationship between coefficients of $\Phi_{pqr}(x)$ and $\Phi_{pq}(x)$.

LEMMA 2.3. Let $3 \le p < q < r$ be primes. Given nonnegative integer l, let f(i) denote the unique value $0 \le f(i) \le pq - 1$ such that

(2.1)
$$f(i) \equiv \frac{(l-i)}{r} \pmod{pq}.$$

(1) Then

$$\sum_{i=0}^{p-1} a(pq, f(i)) = \sum_{i=0}^{p-1} a(pq, f(q+i)).$$

(2) Set

(2.2)
$$a^*(pq,m) = \begin{cases} a(pq,m), & \text{if } m \leq \frac{l}{r}, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$a(pqr, l) = \sum_{i=0}^{p-1} a^*(pq, f(i)) - \sum_{i=0}^{p-1} a^*(pq, f(q+i))$$

3. Proof of Theorem 1.5 when p = 5

We will show the non-flatness of $\Phi_{5qr}(x)$ for $q \equiv \pm 1 \pmod{5}$ and $8r \equiv 1 \pmod{5q}$ by proving the following two propositions.

PROPOSITION 3.1. Let 5 < q < r be primes such that $q \equiv 1 \pmod{5}$ and $8r \equiv 1 \pmod{5q}$.

(1) If q = 11, then A(55r) = 3.

(2) If q > 11, then a(5qr, qr + q + 6r + 2) = 2.

PROOF. (1) By using PARI/GP or consulting literature ([1]), we have $A(5 \cdot 11 \cdot 227) = 3$. Then it follows from $8 \cdot 227 \equiv 1 \pmod{5 \cdot 11}$ and Proposition 1.3 that $A(5 \cdot 11 \cdot r) = 3$ when $8r \equiv 1 \pmod{5 \cdot 11}$.

(2) Let q > 11 and l = qr + q + 6r + 2. Then by using congruence $f(i) \equiv r^{-1}(l-i) \pmod{5q}$ and $0 \leq f(i) \leq 5q - 1$, we obtain

$$f(i) = 4q + 22 - 8i$$
 and $f(q+i) = q + 22 - 8i$,

where $0 \le i \le 4$. So

$$f(q+4) < f(q+3) < f(q+2) < \frac{l}{r} < f(q+1) < f(q) < f(4) < \dots < f(0).$$

By equation (2.2), it follows that

$$a^*(5q, f(i)) = \begin{cases} a(5q, f(i)), & \text{if } i \in \{q+2, q+3, q+4\}, \\ 0, & \text{if } i \in \{0, 1, 2, 3, 4, q, q+1\}. \end{cases}$$

Hence, by Lemma 2.3, we infer that

(3.1) a(5qr,l) = -a(5q, f(q+4)) - a(5q, f(q+3)) - a(5q, f(q+2)).

On rewriting f(q+2) and f(q+4) as

$$f(q+2) = 1 \cdot 5 + 1 \cdot q + 1$$
 and $f(q+4) = \frac{q-11}{5} \cdot 5 + 1$

we obtain from Lemma 2.1 that

$$a(5q, f(q+2)) = a(5q, f(q+4)) = -1.$$

Note that $f(q+3) = q-2 \equiv 4 \pmod{5}$. On invoking Lemma 2.1, we have $a(5q, f(q+3)) \neq 1$. If a(5q, f(q+3)) = -1, then, by another application of Lemma 2.1, there must exist integers $0 \leq u \leq \frac{q-1}{p} - 1$ and $0 \leq v \leq 3$ such that f(q+3) = q-2 = 5u + vq + 1. Since 0 < f(q+3) < q, we have v = 0. This yields q-2 = 5u + 1, a contradiction to the fact $q \equiv 1 \pmod{5}$. So

$$a(5q, f(q+3)) = 0$$

Finally, by substituting the values of a(5q, f(q+i)) into (3.1), we obtain a(5qr, l) = 2.

PROPOSITION 3.2. Let 5 < q < r be primes such that $q \equiv -1 \pmod{5}$ and $8r \equiv 1 \pmod{5q}$. Then a(5qr, 2qr + 10r + 1) = 2.

PROOF. Let l = 2qr + 10r + 1. By using congruence (2.1), we have

$$f(i) = 2q + 18 - 8i$$
 and $f(q+i) = 4q + 18 - 8i$,

where $0 \le i \le 4$. So

$$f(4) < f(3) < f(2) < f(1) < \frac{l}{r} < f(0) < f(q+4) < \dots < f(q).$$

Then it follows from Lemma 2.3 that

$$a(5qr, l) = a(5q, f(4)) + a(5q, f(3)) + a(5q, f(2)) + a(5q, f(1))$$

Since $f(1) = 2 \cdot 5 + 2q$ and $f(4) = \frac{q-14}{5} \cdot 5 + q$, we have a(5q, f(1)) = a(5q, f(4)) = 1 by Lemma 2.2. Note that $f(2) \equiv 0 \pmod{5}$ and $f(3) \equiv 2 \pmod{5}$. In view of Lemma 2.2, we infer that $a(5q, f(2)) \neq -1$ and

 $a(5q, f(3)) \neq -1$. It is easy to show that neither f(2) nor f(3) can be written in the form $u \cdot 5 + v \cdot q$ for $0 \le u \le \frac{q+1}{5}$ and $0 \le v \le 3$. Then it follows from Lemma 2.2 that a(5q, f(2)) = a(5q, f(3)) = 0, and thus a(5qr, l) = 2.

4. Proof of Theorem 1.5 when p = 7

In this section, we will give the necessary and sufficient conditions for $\Phi_{7qr}(x)$ to be flat in the cases $q \equiv \pm 1 \pmod{7}$ and $8r \equiv 1 \pmod{7q}$ by showing the following two propositions.

PROPOSITION 4.1. Let 7 < q < r be primes such that $q \equiv 1 \pmod{7}$ and $8r \equiv 1 \pmod{7q}$.

(1) If q = 29, then A(203r) = 2.

(2) If q > 29, then a(7qr, 5qr + q + r + 5) = 2.

PROOF. (1) If q = 29, we obtain $A(7 \cdot 29 \cdot 127) = 2$ by using PARI/GP or [1]. Then it follows from $8 \cdot 127 \equiv 1 \pmod{7 \cdot 29}$ and Lemma 1.3 that $A(7 \cdot 29 \cdot r) = 2$ when $8r \equiv 1 \pmod{7q}$.

(2) Let l = 5qr + q + r + 5. By using the congruence (2.1) and $0 \le f(i) \le 7q - 1$, we obtain

$$f(i) = 6q + 41 - 8i$$
 and $f(q+i) = 5q + 41 - 8i$,

where $0 \leq i \leq 6$. Then

$$f(q+6) < f(q+5) < \frac{l}{r} < f(q+4) < \dots < f(q) < f(6) < \dots < f(0).$$

Thus, by Lemma 2.3,

(4.1)
$$a(7qr, l) = -a(7q, f(q+6)) - a(7q, f(q+5)).$$

Note that f(q+5) = 5q+1 and $f(q+6) = \frac{q-8}{7} \cdot 7 + 4q + 1$. It follows from Lemma 2.1 that a(7q, f(q+5)) = a(7q, f(q+6)) = -1. Hence a(7qr, l) = 2.

PROPOSITION 4.2. Let 7 < q < r be primes such that $q \equiv -1 \pmod{7}$ and $8r \equiv 1 \pmod{7q}$. Then

$$A(7qr) = \begin{cases} 2, & \text{if } q = 13, 41, \\ 1, & \text{if } q \ge 83. \end{cases}$$

PROOF. The smallest three primes such that $q \equiv -1 \pmod{7}$ are 13, 41 and 83. With the help of PARI/GP or [1], we know that $A(7 \cdot 13 \cdot 239) = 2$. On noting that $8 \cdot 239 \equiv 1 \pmod{7 \cdot 13}$, we infer from Proposition 1.3 that $A(7 \cdot 13 \cdot r) = 2$ for r satisfying $8r \equiv 1 \pmod{7 \cdot 13}$. Similarly, we obtain that $A(7 \cdot 41 \cdot r) = 2$ for r with $8r \equiv 1 \pmod{7 \cdot 41}$, since $A(7 \cdot 41 \cdot 1471) = 2$ and $8 \cdot 1471 \equiv 1 \pmod{7 \cdot 41}$. Next we show that A(7qr) = 1 when $q \ge 83$, $q \equiv -1 \pmod{7}$ and $8r \equiv 1 \pmod{7q}$. Note that Lemma 2.3 gives

(4.2)
$$a(7qr,l) = \sum_{i=0}^{6} a^*(7q, f(i)) + \sum_{i=0}^{6} \left(-a^*(7q, f(q+i)) \right),$$

where $f(i) \equiv \frac{l-i}{r} \pmod{7q}, 0 \le f(i) \le 7q-1$, and

(4.3)
$$a^*(7q, f(i)) = \begin{cases} a(7q, f(i)), & \text{if } f(i) \le \frac{l}{r}, \\ 0, & \text{otherwise.} \end{cases}$$

As for binary coefficients a(7q, f(i)), we can rewrite the results of Lemma 2.2 in the following form

$$(4.4) \quad a(7q, f(i)) = \begin{cases} 1, & \text{if } f(i) \equiv 0 \pmod{7} \text{ and } 0 \leq f(i) \leq q-6, \\ 1, & \text{if } f(i) \equiv 6 \pmod{7} \text{ and } q \leq f(i) \leq 2q-6, \\ 1, & \text{if } f(i) \equiv 5 \pmod{7} \text{ and } 2q \leq f(i) \leq 3q-6, \\ 1, & \text{if } f(i) \equiv 4 \pmod{7} \text{ and } 3q \leq f(i) \leq 4q-6, \\ 1, & \text{if } f(i) \equiv 3 \pmod{7} \text{ and } 4q \leq f(i) \leq 5q-6, \\ 1, & \text{if } f(i) \equiv 2 \pmod{7} \text{ and } 5q \leq f(i) \leq 6q-6, \\ -1, & \text{if } f(i) \equiv 1 \pmod{7} \text{ and } 1 \leq f(i) \leq 6q-7, \\ 0, & \text{otherwise.} \end{cases}$$

Given $l \in [0, \phi(7qr)]$, the value of f(i) is uniquely defined and we have

(4.5)
$$f(i) \equiv f(0) - 8i \pmod{7q}$$

(4.6)
$$f(q+i) \equiv f(0) - q - 8i \pmod{7q},$$

where $0 \leq i \leq 6$.

For f(0) = 0, by using (4.5) and (4.6), we have f(i) = 7q - 8i when $1 \le i \le 6$ and f(q+i) = 6q - 8i when $0 \le i \le 6$. So

(4.7)
$$f(0) < f(q+6) < \dots < f(q) < f(6) < \dots < f(1).$$

In the rest of this section, because of space limitation, we set

$$a_i := a(7q, f(i)),$$

and it follows from (4.4) that

						Table	1. $f(0)$:	= 0							
		a_0	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1
	value	1	-1	0	0	0	0	0	0	0	0	0	0	0	0
1				1											

For any given integer $l \in [0, \phi(7qr)]$, if $f(1) \leq \frac{l}{r}$, then, by (4.2) and (4.3), we infer that

$$a(7qr,l) = \sum_{i=0}^{6} a(7q, f(i)) + \sum_{i=0}^{6} \left(-a(7q, f(q+i)) \right) = 0.$$

Otherwise, there must exist two neighboring symbols $f(j_1)$ and $f(j_2)$ in (4.7) such that

$$f(j_1) \le \frac{l}{r} < f(j_2).$$

If $0 \le j_1 \le 6$ (or $q \le j_1 \le q + 6$), the value of a(7qr, l) is given by computing the sum of binary coefficients from the start of the third row in Table 1 to $a_{f(j_1)}$ (or $-a_{f(j_1)}$). It is clear to see that the data in Table 1 reveal that the sums in (4.2) are always in the set $\{0, 1\}$.

For f(0) = 1, we have f(i) = 7q - 8i + 1, when $1 \le i \le 6$, and f(q + i) = 6q - 8i + 1, when $0 \le i \le 6$. So the inequalities (4.7) still hold in this case. And it follows from (4.4) that

					Table	⊿ • J(0) -	- 1							
	a_0	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1
value	-1	0	0	0	0	0	1	0	0	0	0	0	0	0

Given integer $l \in [0, \phi(7qr)]$, if $f(1) \leq \frac{l}{r}$, then

$$a(7qr,l) = \sum_{i=0}^{6} a(7q, f(i)) + \sum_{i=0}^{6} \left(-a(7q, f(q+i)) \right) = 0.$$

If $\frac{l}{r} < f(0)$, then

$$a(7qr, l) = \sum_{i=0}^{6} 0 + \sum_{i=0}^{6} 0 = 0.$$

Otherwise, there must exist two neighboring symbols $f(j_1)$ and $f(j_2)$ in (4.7) such that $f(j_1) \leq \frac{l}{r} < f(j_2)$. Similarly, the data in Table 2 yield that $a(7qr, l) \in \{-1, 0\}$.

Now according to the values of f(0), we give the following tables. The second row of each table is the inequality about f(i) for $i \in \{0, 1, 2, 3, 4, 5, 6, q, q+1, q+2, q+3, q+4, q+5, q+6\}$. In the rest of this section, for the reasons of space, we set

$$a_i := a(7q, f(i))$$

and let $\overline{f(0)}$ be the unique integer such that $0 \leq \overline{f(0)} \leq 6$ and $\overline{f(0)} \equiv f(0)$ (mod 7). The values of a_i are obtained by using (4.4)–(4.6).

					Table a	5. $2 \leq f(0)$	$0) \leq 7$							
				f(0) < j	f(q + 6) <	$< \cdots < f($	q) < f(6)	$< \cdots <$	< f(1))				
f(0)	a_0	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1
2	0	0	0	0	0	1	-1	0	0	0	0	0	0	0
3	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
4	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
5	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
6	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
7	1	-1	0	0	0	0	0	0	0	0	0	0	0	0

A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS

											(0)										
L	1				f(1)	< f($\frac{T}{0}$	able	+ 4.8	$\leq f$	(0) <	≤ 15	< f(6	3) <		f())				
f(0)	<i>a</i> ₁	<i>a</i> 0	-a	1.0	-a	<u> </u>	a = a	$\int (q)$	(± 0)	<u> </u>	- <u>a</u>	(4)	-a	$\frac{1}{1}$		J (2)	a	a	.	0.0
3(0)	1	-1	- <i>u</i> _q	1+6	$\frac{-u_{q}}{0}$	-5	$\frac{-u_{q+}}{0}$	4	$\frac{-u_{q+3}}{0}$	-	$\frac{-u_{q+}}{0}$	-2	$\frac{-u_{q-}}{0}$	+1	$-u_q$ 0	0	0	0	<u> </u>	3	0
9	-1	0	0)	0		0		0	+	1		Ő		0	0	0	0	(0
10	0	0	0)	0		0		1		-1		0		0	0	0	0	(0
11	0	0	0)	0		1		-1		0		0		0	0	0	0	()	0
12	0	0	0)	1		-1		0		0		0		0	0	0	0	(0
13	0	0	1		-1		0		0		0		0		0	0	0	0	(0
14	0	1	-1	1	0		0		0		0		0		0	0	0	0	()	0
15	1	-1	0)	0		0		0		0		0		0	0	0	0	()	0
							T	blo	5 16	~	f(0)	2 22	,								
	1			f (2) <	f(1)	10		f(a + 1)	$\frac{2}{6}$	/(U) /	≥ 23 $\leq f$	$(a) \leq$	f(6) < .		f(3)			_	
f(0)	a2	<i>a</i> ₁	a_0	-a	$\frac{-}{2}$	$-a_{a}$	< J (♥	$-a_a$	+4 -	$-a_{a}$		$-a_a$	+2	$-a_i$	y ヽ y±1	-a.	J (0)	a		4	<i>a</i> 3
16	1	-1	0	()	0		0	74	0	- 3	0	T ²	0)	0	0	0	(1	0
17	-1	0	0	()	0		0		1		0		C)	0	0	0	(0
18	0	0	0	()	0		1		-1		0		C)	0	0	0	(0
19	0	0	0	()	1		-1		0		0		C)	0	0	0	(0
20	0	0	0	1		-1		0		0		0		C)	0	0	0	(0
21	0	0	1	-	1	0		0		0		0		C)	0	0	0	(1	0
22	0	1	-1	()	0		0		0		0		C)	0	0	0	(1	0
23	1	-1	0	()	0		0		0		0	[C)	0	0	0	(0
							Ta	able	6 , 24	<	f(0)	< 31									
			f((3) <	f(2)	< f(1) <	f(0)	< f(q)	+6	(3) < -	<	f(q)) <	f(6) <	$< f(\xi)$	5) < 1	f(4)			
f(0)	a_3	a_2	a_1	a_0	$-a_{i}$	1+6	$-a_a$	+5	$-a_{a+}$	4	$-a_a$	+3	$-a_c$	1+2	$-a_{c}$	+1	$-a_a$	a		5	a_4
24	1	-1	0	0	()	0		0	-	0	1.0	0)	0		0	0	(Ĩ	0
25	-1	0	0	0	()	0		1		0		0)	0	1	0	0	()	0
26	26 0 0 0 0 0 0 0						1		-1		0		0)	0)	0	0	(0
27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-1		0		0		0)	0		0	0	(0
28	0	0	0	1	-	1	0		0		0		0)	0	1	0	0	()	0
29	0	0	1	-1	()	0		0		0		0)	0	1	0	0	()	0
30	0	1	-1	0	()	0		0		0		0)	0		0	0	(0
31	1	-1	0	0	()	0		0		0		0)	0		0	0	(0
							Т	able	7. 32	<	f(0)	< 39)								
			f((4) <	f(3)	< f($\frac{1}{2} < \frac{1}{2}$	f(1)	< f(0)	$\frac{-}{2}$	$f(q \cdot$	$\frac{-6}{+6}$	<	• <	f(q) <	< f(6	5) < 1	f(5)			
f(0)	a_4	a_3	a_2	a_1	a_0	$-a_{0}$	7+6	-a	a+5	$-a_{c}$	+4	-a	a+3	-0	l_{q+2}	-a	a+1	$-a_{a}$		6	a_5
32	1	-1	0	0	0	0		()	C		(0		0	(0	0	()	0
- 33	-1	0	0	0	0	0)	1	L	0)	(0		0	(0	0	()	0
34	0	0	0	0	0	1		-	1	0)	(0		0	(0	0	(0
35	0	0	0	0	1	-	1	()	C)	(0		0	(0	0	(0
36	0	0	0	1	-1	0)	()	0)	(0		0	(U	0	(0
37	0	0	1	-1	0			(0		(U		0		U	0	(0
38	1	1	-1	0	0			(0	<u>'</u>		0		0		U D	0			0
- 28	Ţ	-1	U	0	0		,	(,	C	,		v		U	L '	U	0			0
							Ta	able	8. 40	\leq	f(0)	≤ 47	·								
			f((5) <	f(4)	< f(3) < 1	f(2)	< f(1)) <	f(0)	< f	(q +	6) <	< · · · «	< f(q)	(1) < j	f(6)			
$f(\overline{0})$	a_5	a_4	a_3	a_2	a_1	a_0	$-a_{a}$	q + 6	$-a_q$	+5	-a	q+4	-a	l_{q+3}	-a	q+2	-a	q+1	-a	9	a_6
40	1	-1	0	0	0	0	()	0		(0		0		0	(0	0		0
41	-1	0	0	0	0	0	1	1	0		(U	1	0	-	0)	0		0
42	0	0	0	0	0	1	-	1	0		(U	1	0	-	0	(J	0		0
43	0	0	0	0	1	-1)	0		(U		0		0		J	0	_	0
44	0	0	1	1	-1	0		ر ۱			(0		0	+	0		J D	0	_	0
40	0	1	_1	-1	0	0		,)	0			0	+	0	+	0	+	, 1	0	_	0
40	1	_1	-1	0	0	0		,)	0			0	-	0	+	0		<u>,</u>	0	-	0
-11	1	-1	0	0	0	U		,	0		<u> </u>	0	1	<u> </u>	1	~	<u> </u>	9	0		0
							Tal	ole 9	9. 48 <u><</u>	$\leq f($	$(0) \leq$	q –	1								
						f((6) <		$< \overline{f(0)}$	<	f(q +	- 6)	$< \cdots$	< f	$r(\overline{q})$					_	
f(0)	a_6	a_5	a_4	a_3	a_2	a_1	a_0	-0	a_{q+6}	-a	l_{q+5}		a_{q+4}		a_{q+3}		a_{q+2}	-0	q+1	Ŀ	$-a_q$
0	-1	0	0	0	0	0	1		0		0		0		0		0		0		0
1	0	0	0	0	0	1	-1		0		0		0		0		0		0		0

0 0 0

0 0

0 0

						'	Tabl	e 10.	$q \leq$	$\leq f(0$) ≤	q +	7							
8(0)					f(q)	< f	(6) <	••• «	< f(0) < 0	f(q	+6)	<		< f(q + 1)			1
f(0)	$-a_q$	a ₆	a ₅	a ₄	a ₃	a ₂	<i>a</i> ₁	a ₀	-	a_{q+6}	; -	$-a_{q+}$	-5	-0	$\frac{\iota_{q+4}}{0}$	-0	l_{q+3}	-a	q+2	$-a_{q+1}$
q = 1	-1	1	-1	0	0	0	0	1	-	0	_	0			0	-	0		0	0
$\frac{q+1}{q+2}$	0	0	0	0	0	0	1	-1	-	0	-	0			0	1	0		0	0
q + 3	0	0	0	0	0	1	-1	0		0		0			0		0		0	0
q + 4	0	0	0	0	1	-1	0	0		0		0			0		0		0	0
q + 5	0	0	0	1	-1	0	0	0		0		0			0		0		0	0
q + 6	0	0	1	-1	0	0	0	0	_	0		0			0		0		0	0
q + 7	-1	1	-1	0	0	0	0	1		0		0			0		0		0	0
						Ta	ble 1	1. q	+8	< f(0) <	$\langle q +$	- 15							
				f(q	+1)	< f(q)	q) < 1	f(6)	$< \cdot \cdot$	$\cdot < f$	(0)	< f((q +	6)	$< \cdot \cdot$	$\cdot < f$	(q + d)	2)		
f(0)	$-a_q$	+1	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a	0	$-a_q$	+6	-0	a_{q+5}	- 0	i_{q+4}	-0	l_{q+3}	$-a_{q+2}$
q + 8	-1		1	-1	0	0	0	0	1	0)	0			0		0		0	0
q + 9	1		0	0	0	0	0	0	0	-	1	0			0	_	0		0	0
q + 10 q + 11	0		0	0	0	0	1	1	-1		,	0			0	+	0		0	0
$\frac{q+11}{a+12}$	0		0	0	0	1	-1	-1	0)	0			0	-	0		0	0
q + 13	0		0	Ũ	1	-1	0	Ő	0	0)	0			0		0		0	0
q + 14	0		-1	1	-1	0	0	0	0	1		0			0	1	0	1	0	0
q + 15	-1		1	-1	0	0	0	0	1	0)	0			0		0		0	0
						Tel		2 ~	1.16	< r	(0)	<u> </u>	L 00	2						
	1		f(a -	- 2)	< f(a	(+1)	< f($\frac{a}{a} < q$	$\frac{+10}{f(6)}$	$\frac{J}{1} \ge J$	<u>(v) :</u> <	$\frac{\geq q}{f(0)}$	⊤ 23) <	, f(a	+6) < · ·	. < 1	(a +	3)	
f(0)	- <i>a</i>	12	$-a_{a^{\perp}}$		$-a_a$	a ₆	a5	4) \ a_	a3	 	1 1	1	a_0	J(q) = q	$a_{a\pm 6}$	1-1	$\sim J$ $l_{a\pm 5}$	(4 T	0) la±4	$-a_{a\pm 2}$
q + 16	-1	- 4	1	-	0	0	0	0	0	1	()	-1		0		0	1	0	0
q + 17	1		0		0	0	0	0	0	0	-	1	0		0		0		0	0
q + 18	0		0		0	0	0	0	1	-1	()	0		0		0		0	0
q + 19	0		0		0	0	0	1	-1	0	()	0		0		0		0	0
q + 20	0		0	_	0	0	1	-1	0	0	()	0		0	_	0	<u> </u>	0	0
q + 21 q + 22	0		0	_	-1	1	-1	0	0	0	1		1		0	-	0	-	0	0
$\frac{q+22}{a+23}$	-1		-1		0	0	0	0	0	1	()	-1		0		0		0	0
4 + ===	-	1	-			~				-			-				~			×
					- `	Tal	ole 1	3. q	+24	$\leq f$	(0)	$\leq q$ -	+ 31	_				-		
£(0)	f	q +	(3) < f	q +	(2) < (2)	f(q +	-1) <	f(q)	< f	(6)	< · ·	$\cdot < $	f(0)	< .	f(q +	- 6) <	f(q)	+ 5)	< f((q + 4)
$f(0) = a \pm 24$	$-a_{q}$	+3	$-a_{q+2}$	2 -	$\frac{-a_{q+1}}{0}$	-	a_q	a_6	a_5	a ₄	a ₃		2	a1	a ₀	-0	$\frac{l_{q+6}}{0}$	-0	$\frac{l_{q+5}}{0}$	$-a_{q+4}$
$\frac{q+24}{q+25}$	1		0		0)	0	0	0	0	-	1	0	0	+	0		0	0
q + 26	0		Ũ		0	()	0	0	1	-1	()	0	0		0		0	0
q + 27	0		0		0	()	0	1	-1	0	()	0	0		0		0	0
q + 28	0		0		0	-	1	1	-1	0	0	()	0	1		0		0	0
q + 29	0		0		-1	1	L	-1	0	0	0	()	1	0	_	0		0	0
q + 30	0		-1	_	1	()	0	0	0	0			0	-1	-	0	-	0	0
q + 51	-1		1		0		,	0	0	0	1		,	-1	0		0		0	0
						Tal	ole 1	4. q	+32	$\leq f$	(0)	$\leq q$ -	+ 39)						
	f((q +	(4) < f	(q +	3) < 1	f(q +	2) <	f(q)	+1)	< f	(q) <	$< \bar{f}($	6) <	< • • •	$\cdot < f$	[*] (0) <	f(q)	+6)	< f(q + 5)
f(0)	$-a_q$	+4	$-a_{q+2}$	-	$-a_{q+2}$	-	a_{q+1}	-0	ι_q	a_6	a_5	a_4	(13	a_2	a_1	a_0	-0	l_{q+6}	$-a_{q+5}$
q + 32	-1		1	+	0	-	0	0		0	0	1	+	0	-1	0	0	 	0	0
q + 33 $a \pm 34$	0	-	0	+	0	+	0			0	1	1	+	-1 0	0	0	0		0	0
q + 34 q + 35	0		0	+	0	+	0	-1		1	-1	0	+	0	0	0	1	-	0	0
q + 36	0		0	+	0	+	-1	1	+	-1	0	0	+	0	0	1	0	1	0	0
q + 37	0		0		-1		1	0		0	0	0		0	1	0	-1	L	0	0
q + 38	0		-1		1		0	0		0	0	0		1	0	-1	0		0	0
q + 39	-1		1		0		0	0		0	0	1		0	-1	0	0		0	0
						Tol	ole 1	5. a	+ 40	< <i>f</i>	(0) ·	< 11 -	+ 47	7						
	f	a +	5) < f	a +	4) <	f(a +	3) <	f(a)	+2)	$\frac{2}{\sqrt{f}}$	(q +	$\frac{Y}{1} < \frac{Y}{2}$; +=1 ; f(<i>a</i>) <	< f(F	(3) < (3)	<	f(0)	< f((a + 6)
f(0)	$-a_a$	+5	$-a_{q+i}$	- 1	-a _{q+3}		a_{q+2}	-0	l_{q+1}	-	a_q	a ₆	a	5	a_4	a ₃	a_2	a ₁	a ₀	$-a_{q+6}$
q + 40	-1		1		0		0		0	(0	0	1		0	-1	0	0	0	0
q + 41	1		0	T	0		0		0	(0	0	0	2	-1	0	0	0	0	0
q + 42	0		0	\perp	0	_	0	<u> </u>	0		1	1		L	0	0	0	0	1	0
q + 43	0		0	+	0	-	0	+ ·	-1	+	1	-1	0	'	0	0	0	1	0	0
q + 44 $a \pm 45$	0	-	0	+	_1	+	-1 1	+	1	+	u n	0		<u>'</u>	0	1	1	_1	-1	0
q + 40 q + 46	0	-	-1	+	-1	+	0	+	0		Ď	0	0)	1	1 0	-1	0	0	0
q + 47	-1		1	+	0	+	0	+	0		0	0	1		0	-1	0	0	Ő	0
<u> </u>						-						-			- 1					

A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS 251

				Table 1	 q + 48 	$\leq f(0) \leq$	2q - 1							
				f(q+6)	$< \cdots < j$	f(q) < f(0)	$\delta) < \cdots$	< f((0)					-
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	0	0	0	0	0	-1	1	-1	0	0	0	0	1	0
1	0	0	0	0	-1	1	0	0	0	0	0	1	0	-1
2	0	0	0	-1	1	0	0	0	0	0	1	0	-1	0
3	0	0	-1	1	0	0	0	0	0	1	0	-1	0	0
4	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
5	-1	1	0	0	0	0	0	1	0	-1	0	0	0	0
6	1	0	0	0	0	0	-1	0	-1	0	0	0	0	1

				Table 1	7. $2q \leq f$	$f(0) \leq 2q$	+ 47							
				f(q+6)	$< \cdots < j$	$f(q) < f(\theta)$	$i) < \cdots$	< f(0)					
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
2q	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 1	1	0	0	0	0	0	0	0	-1	0	0	0	0	0
2q + 2	0	0	0	0	0	-1	1	-1	0	0	0	0	1	0
2q + 3	0	0	0	0	-1	1	0	0	0	0	0	1	0	-1
2q + 4	0	0	0	-1	1	0	0	0	0	0	1	0	-1	0
2q + 5	0	0	-1	1	0	0	0	0	0	1	0	-1	0	0
2q + 6	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
2q + 7	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 8	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 9	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
2q + 10	0	0	0	0	-1	1	0	0	0	0	0	1	0	-1
2q + 11	0	0	0	-1	1	0	0	0	0	0	1	0	-1	0
2q + 12	0	0	-1	1	0	0	0	0	0	1	0	-1	0	0
2q + 13	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
2q + 14	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 15	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 16	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
2q + 17	0	0	0	0	0	1	0	0	0	0	0	0	0	-1
2q + 18	0	0	0	-1	1	0	0	0	0	0	1	0	-1	0
2q + 19	0	0	-1	1	0	0	0	0	0	1	0	-1	0	0
2q + 20	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
2q + 21	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 22	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 23	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
2q + 24	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
2q + 25	0	0	0	0	1	0	0	0	0	0	0	0	-1	0
2q + 26	0	0	-1	1	0	0	0	0	0	1	0	-1	0	0
2q + 27	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
2q + 28	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 29	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 30	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
2q + 31	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
2q + 32	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
2q + 33	0	0	0	1	0	0	0	0	0	0	0	-1	0	0
2q + 34	0	-1	1	0	0	0	0	0	1	0	-1	0	0	0
2q + 35	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 36	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 37	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
2q + 38	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
2q + 39	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
2q + 40	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
2q + 41	0	0	1	0	0	0	0	0	0	0	-1	0	0	0
2q + 42	-1	1	0	0	0	0	-1	1	0	-1	0	0	0	1
2q + 43	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
2q + 44	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
2q + 45	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
2q + 46	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
2a + 47	0	-1	0	1	0	0	0	0	1	0	0	I -1	0	0

				Table 18	8. $2q + 48$	$8 \leq f(0) \leq c$	$\leq 3q - 1$	1						
				f(q+6)	$< \cdots < j$	f(q) < f(6)	$\delta) < \cdots$	< f((0)					
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
1	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
2	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
3	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
4	-1	0	1	0	0	0	0	1	0	0	-1	0	0	0
5	0	1	0	0	0	0	-1	0	0	-1	0	0	0	1
6	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0

				Table 1	9. $3q \le f$	$f(0) \leq 3q$	+47							
				f(q+6)	$< \cdots < j$	f(q) < f(0)	$\beta) < \cdots$	< f(0)					
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
3q	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 1	0	1	0	0	0	0	0	0	0	-1	0	0	0	0
3q + 2	1	0	0	0	0	-1	0	0	-1	0	0	0	1	0
3q + 3	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
3q + 4	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
3q + 5	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
3q + 6	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
3q + 7	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 8	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 9	1	0	0	0	0	0	0	0	-1	0	0	0	0	0
3q + 10	0	0	0	0	-1	0	1	-1	0	0	0	1	0	0
3q + 11	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
3q + 12	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
3q + 13	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
3q + 14	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 15	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 16	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
3q + 17	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
3q + 18	0	0	0	-1	0	1	0	0	0	0	1	0	0	-1
3q + 19	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
3q + 20	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
3q + 21	-1	0	1	0	0	0	-1	1	0	0	0	-1	0	1
3q + 22	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 23	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
3q + 24	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
3q + 25	0	0	0	0	1	0	0	0	0	0	0	0	0	-1
3q + 26	0	0	-1	0	1	0	0	0	0	1	0	0	-1	0
3q + 27	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
3q + 28	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 29	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 30	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
3q + 31	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
3q + 32	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
3q + 33	0	0	0	0	1	0	0	0	0	0	0	0	-1	0
3q + 34	0	-1	0	1	0	0	0	0	1	0	0	-1	0	0
3q + 35	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 36	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 37	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
3q + 38	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
3q + 39	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
3q + 40	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
3q + 41	0	0	0	1	0	0	0	0	0	0	0	-1	0	0
3q + 42	-1	0	1	0	0	0	-1	1	0	0	-1	0	0	1
3q + 43	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
3q + 44	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
3q + 45	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
3q + 46	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
3a + 47	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0

A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS 253

				Table 20	D. $3q + 48$	$8 \leq f(0) \leq c$	$\leq 4q - 1$	L						
				f(q+6)	$< \cdots < j$	$f(q) < f(\theta)$	$(5) < \cdots$	< f((0)					
$\overline{f(0)}$	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
1	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
2	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
3	-1	0	0	1	0	0	0	1	0	0	0	-1	0	0
4	0	0	1	0	0	0	-1	0	0	0	-1	0	0	1
5	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
6	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0

				Table 2	1. $4q \le f$	$f(0) \le 4q$	+ 47							
				f(q+6)	$< \cdots < f$	$f(q) < f(\theta)$	$i) < \cdots$	< f(0)					-
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
4q	-1	0	0	1	0	0	-1	1	0	0	0	-1	0	1
4q + 1	0	0	1	0	0	0	0	0	0	0	-1	0	0	0
4q + 2	0	1	0	0	0	-1	0	0	0	-1	0	0	1	0
4q + 3	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
4q + 4	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
4q + 5	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
4q + 6	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
4q + 7	-1	0	0	1	0	0	-1	1	0	0	0	-1	0	1
4q + 8	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
4q + 9	0	1	0	0	0	0	0	0	0	-1	0	0	0	0
4q + 10	1	0	0	0	-1	0	0	0	-1	0	0	1	0	0
4q + 11	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
4q + 12	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
4q + 13	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
4q + 14	-1	0	0	1	0	0	-1	1	0	0	0	-1	0	1
4q + 15	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
4q + 16	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
4q + 17	1	0	0	0	0	0	0	0	-1	0	0	0	0	0
4q + 18	0	0	0	-1	0	0	1	-1	0	0	1	0	0	0
4q + 19	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
4q + 20	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
4q + 21	-1	0	0	1	0	0	-1	1	0	0	0	-1	0	1
4q + 22	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
4q + 23	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
4q + 24	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
4q + 25	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
4q + 26	0	0	-1	0	0	1	0	0	0	1	0	0	0	-1
4q + 27	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
4q + 28	-1	0	0	1	0	0	-1	1	0	0	-1	0	0	1
4q + 29	0	1	1	0	1	-1	0	0	0	1	-1	1	1	0
4q + 30	1	1	0	1	-1	0	0	0	1	-1	1	1	0	0
4q + 31 $4a \pm 32$	1	0	1	-1	0	0	1	1	-1	1	1	0	0	0
$4q \pm 32$	0	0	-1	0	0	1	1	-1	0	1	0	0	0	1
$4q \pm 34$	0	-1	0	0	1	0	0	0	1	0	0	0	-1	0
4q + 34 4a + 35	-1	-1	0	1	0	0	-1	1	0	0	0	-1	0	1
$4q \pm 36$	-1	0	1	0	0	-1	-1	0	0	0	-1	0	1	0
4q + 30 4a + 37	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
4q + 38	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
4a + 30	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
4a + 40	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
4a + 41	0	0	0	0	1	0	0	0	0	0	0	0	-1	0
4a + 42	-1	0	0	1	0	0	-1	1	0	0	0	-1	0	1
4a + 43	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
4a + 44	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
4a + 45	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
4a + 46	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
4q + 47	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1

				Table 22	2. $4q + 48$	$8 \le f(0) \le c$	$\leq 5q - 1$	1						
				f(q+6)	$< \cdots < j$	f(q) < f(6)	$\delta) < \cdots$	< f((0)					
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
1	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
2	-1	0	0	0	1	0	0	1	0	0	0	0	-1	0
3	0	0	0	1	0	0	-1	0	0	0	0	-1	0	1
4	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
5	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
6	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0

Table 23. $5q \le f(0) \le 5q + 47$														
$f(q+6) < \dots < f(q) < f(6) < \dots < f(0)$														
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
5q	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 1	0	0	0	1	0	0	0	0	0	0	0	-1	0	0
5q + 2	0	0	1	0	0	-1	0	0	0	0	-1	0	1	0
5q + 3	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
5q + 4	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
5q + 5	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
5q + 6	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
5q + 7	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 8	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
5q + 9	0	0	1	0	0	0	0	0	0	0	-1	0	0	0
5q + 10	0	1	0	0	-1	0	0	0	0	-1	0	1	0	0
5q + 11	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
5q + 12	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
5q + 13	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
5q + 14	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 15	0	0	0	-1	0	1	0	0	0	0	0	-1	1	0
5q + 16	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5q + 17	0	1	0	0	0	0	0	0	0	-1	0	0	0	0
5q + 18	1	0	0	-1	0	0	0	0	-1	0	1	0	0	0
5q + 19	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
5q + 20	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
5q + 21	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 22	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
5q + 23	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5q + 24	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
5q + 25	1	0	0	0	0	0	0	0	-1	0	0	0	0	0
5q + 26	0	0	-1	0	0	0	1	-1	0	1	0	0	0	0
5q + 27	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
5q + 28	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 29	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
5q + 30	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5q + 31	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
5q + 32	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
5q + 33	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
5q + 34	0	-1	0	0	0	1	0	0	1	0	0	0	0	-1
5q + 35	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 36	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
5q + 37	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5q + 38	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
5q + 39	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
5q + 40	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0
5q + 41	0	0	0	0	0	1	0	0	0	0	0	0	0	-1
5q + 42	-1	0	0	0	1	0	-1	1	0	0	0	0	-1	1
5q + 43	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
5q + 44	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5q + 45	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
5q + 46	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
5a + 47	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0

A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS 255

	Table 24. $5q + 48 \le f(0) \le 6q - 1$													
	$f(q+6) < \dots < f(q) < f(6) < \dots < f(0)$													
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0
1	-1	0	0	0	0	1	0	1	0	0	0	0	0	-1
2	0	0	0	0	1	0	-1	0	0	0	0	0	-1	1
3	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
4	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
5	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
6	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0

Table 25. $6q \le f(0) \le 6q + 47$														
$f(q+6) < \dots < f(q) < f(6) < \dots < f(0)$														
f(0)	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
6q	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 1	0	0	0	0	1	0	0	0	0	0	0	0	-1	0
6q + 2	0	0	0	1	0	-1	0	0	0	0	0	-1	1	0
6q + 3	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
6q + 4	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
6q + 5	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
6q + 6	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0
6q + 7	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 8	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
6q + 9	0	0	0	1	0	0	0	0	0	0	0	-1	0	0
6q + 10	0	0	1	0	-1	0	0	0	0	0	-1	1	0	0
6q + 11	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
6q + 12	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
6q + 13	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0
6q + 14	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 15	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
6q + 16	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
6q + 17	0	0	1	0	0	0	0	0	0	0	-1	0	0	0
6q + 18	0	1	0	-1	0	0	0	0	0	-1	1	0	0	0
6q + 19	1	0	-1	0	0	0	0	0	-1	1	0	0	0	0
6q + 20	0	-1	0	0	0	0	1	-1	1	0	0	0	0	0
6q + 21	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 22	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
6q + 23	0	0	1	1	-1	0	0	0	0	0	0	0	0	0
6q + 24	0	1	1	-1	0	0	0	0	0	1	0	0	0	0
6q + 25	1	1	1	0	0	0	0	0	1	-1	0	0	0	0
6q + 20	1	1	-1	0	0	0	1	1	-1	1	0	0	0	0
$6q \pm 28$	1	-1	0	0	0	1	1	-1	1	0	0	0	0	0
6q + 20	-1	0	0	0	1	-1	-1	0	0	0	0	0	0	0
6q + 20 6q + 30	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
6q + 31	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
6q + 32	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
6q + 33	1	0	0	0	0	Ő	Ő	Ő	-1	ŏ	ŏ	ŏ	ŏ	ŏ
6q + 34	0	-1	Ũ	Ũ	Ũ	0	1	-1	1	Ő	0	Ő	Ő	Ő
6q + 35	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 36	0	Ũ	Ũ	Ũ	1	-1	0	0	Ő	Ũ	Ũ	Ő	Ő	Ũ
6q + 37	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
6q + 38	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
6q + 39	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
6q + 40	1	-1	0	0	0	0	0	0	0	0	0	0	0	0
6q + 41	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
6q + 42	-1	0	0	0	0	1	-1	1	0	0	0	0	0	0
6q + 43	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
6q + 44	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
6q + 45	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
6q + 46	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
6q + 47	1	-1	0	0	0	0	0	0	0	0	0	0	0	0

	Table 26. $6q + 48 \le f(0) \le 7q - 1$													
	$f(q+6) < \dots < f(q) < f(6) < \dots < f(0)$													
$\overline{f(0)}$	$-a_{q+6}$	$-a_{q+5}$	$-a_{q+4}$	$-a_{q+3}$	$-a_{q+2}$	$-a_{q+1}$	$-a_q$	a_6	a_5	a_4	a_3	a_2	a_1	a_0
0	-1	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	1	-1	0	0	0	0	0	0	0
2	0	0	0	0	1	-1	0	0	0	0	0	0	0	0
3	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
4	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
5	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
6	1	-1	0	0	0	0	0	0	0	0	0	0	0	0

It is a routine matter to check that the sum of values about $\pm a_i$, from the start to anywhere of the row in all tables, is equal to -1, 0 or 1. That is to say, the data reveals that the sums in (4.2) are always in the set $\{-1, 0, 1\}$. So A(7qr) = 1 in the case $q \ge 83$, $q \equiv -1 \pmod{7}$ and $8r \equiv 1 \pmod{7q}$.

5. Proof of Theorem 1.5 when p > 7

The theorem will be completely proved by showing the following two propositions.

PROPOSITION 5.1. Let 7 be primes such that <math>q = kp - 1 and $8r \equiv 1 \pmod{pq}$.

- (1) If p = 11, then $a(11qr, qr + 22r + q + 6) \le -2$. (2) If $p \equiv 1 \pmod{8}$, then $a(pqr, pqr 12qr + q + \frac{7p-7}{8}) \le -2$. (3) If $p \equiv 3 \pmod{8}$ and p > 11, then $a(pqr, pqr + pr 12qr + q + \frac{5p-7}{8}) \le -2$. -2.

- (4) If $p \equiv 5 \pmod{8}$, then $a(pqr, pqr + 3pr 11qr + q + \frac{3p-7}{8}) \leq -2$. (5) If $p \equiv 7 \pmod{8}$ and k = 2, then $a(pqr, 9qr + q + \frac{3p-5}{8}) \leq -2$. (6) If $p \equiv 7 \pmod{8}$ and k = 4, then $a(pqr, 8qr + q + \frac{p-3}{4}) \leq -2$. (7) If $p \equiv 7 \pmod{8}$ and $k \geq 6$, then $a(pqr, 5pr + 7qr + q + \frac{p-7}{8}) \leq -2$.

PROOF. (1) Let l = qr + 22r + q + 6. By using congruence (2.1), we have

$$f(i) \equiv 9q + 70 - 8i \pmod{11q}.$$

According to Lemma 2.3, we only consider f(i) for $i \in [0, 10] \cup [q, q+10]$. Since the value of f(i) is in the range $0 \le f(i) \le 11q - 1$, we have f(i) = 9q + 70 - 8i. Then

$$f(q+10) < \dots < f(q+6) < \frac{l}{r} < f(q+5) \dots < f(q) < f(10) < \dots < f(0).$$

It follows from Lemma 2.3 that

$$a(11qr, l) = -\sum_{i=6}^{10} a(11q, f(q+i)).$$

Since $f(q+6) = 2 \cdot 11 + q$ and f(q+10) = (k-1)11, by Lemma 2.2, we have a(11q, f(q+6)) = a(11q, f(q+10)) = 1. Thus

$$a(11qr, l) = -2 - a(11q, f(q+7)) - a(11q, f(q+8)) - a(11q, f(q+9)).$$

257

It is easy to see that $f(q+7) \equiv 2 \pmod{11}$, $f(q+8) \equiv 5 \pmod{11}$ and $f(q+9) \equiv 8 \pmod{11}$. In view of Lemma 2.2, we infer $a(11q, f(q+i)) \in \{0, 1\}$ when i = 7, 8, 9. Therefore, $a(11qr, l) \leq -2$.

(2) Let $l = pqr - 12qr + q + \frac{7p-7}{8}$. By using congruence $f(i) \equiv \frac{(l-i)}{r}$ (mod pq), we have $f(i) \equiv pq + 7p - 4q - 8i - 7 \pmod{pq}$. According to Lemma 2.3, we only consider f(i) for $i \in [0, p-1] \cup [q, q+p-1]$. Since $0 \leq f(i) \leq pq - 1$, we obtain

(5.1)
$$f(i) = pq + 7p - 4q - 8i - 7.$$

Then we have

$$f(q+p-1) < \dots < f(q+\frac{rp-r}{8}) < \frac{t}{r},$$

<
$$f(q+\frac{rp+1}{8}) < \dots < f(q) < f(p-1) < \dots < f(0)$$

So, by Lemma 2.3,

 $\frac{l}{r}$

(5.2)
$$a(pqr,l) = -\sum_{i=\frac{Tp-7}{8}}^{p-1} a(pq, f(q+i)).$$

Note that $f(q + \frac{7p-7}{8}) = (p-12)q$ and f(q+p-1) = (k-1)p + (p-13)q. It follows from Lemma 2.2 that $a(pq, f(q + \frac{7p-7}{8})) = a(pq, f(q+p-1)) = 1$. Substituting this into (5.2) yields

$$a(pqr, l) = -2 - \sum_{i=\frac{7p+1}{8}}^{p-2} a(pq, f(q+i)).$$

As is known to all, the binary coefficient a(pq, f(q+i)) takes on one of three values: -1, 0 or 1. For the purpose of proving $a(pqr, l) \leq -2$, it suffices to show that

$$a(pq, f(q+i)) \neq -1$$
 when $\frac{7p+1}{8} \le i \le p-2$.

If the statement was not true, then, by Lemma 2.2, we certainly have

$$f(q+i) \equiv 1 \pmod{p}.$$

Applying (5.1) to the above congruence gives

$$8i - 4 \equiv 0 \pmod{p}.$$

Combing this and $7p-3 \leq 8i-4 \leq 8p-20$, we obtain 8i-4 = 7p, a contradiction to $p \equiv 1 \pmod{8}$. Hence $a(pqr,l) \leq -2$. (3) Let $l = pqr + pr - 12qr + q + \frac{5p-7}{8}$. By using congruence (2.1) and p > 11, we have f(i) = pq - 4q + 6p - 7 - 8i, where $i \in [0, p-1] \cup [q, q+p-1]$. Then $\frac{l}{r} > f(i)$ whenever $i \in \{q + \frac{5p-7}{8}, q + \frac{5p+1}{8}, \cdots, q+p-1\}$ and $\frac{l}{r} < f(i)$ whenever $i \in [0, p-1] \cup [q, q+p-1]$.

 $\{0, 1, \dots, p-1\} \cup \{q, q+1, \dots, q+\frac{5p-15}{8}\}$. Note that $f(q+\frac{5p-7}{8}) = p+(p-12)q$ and f(q+p-1) = (k-2)p + (p-13)q. So, by Lemmas 2.2 and 2.3,

$$a(pqr,l) = -\sum_{i=\frac{5p-7}{8}}^{p-1} a(pq, f(q+i)) = -2 - \sum_{i=\frac{5p+1}{8}}^{p-2} a(pq, f(q+i)).$$

It is clear that $a(pq, f(q+i)) \in \{-1, 0, 1\}$. In order to show $a(pqr, l) \leq -2$, we only need to prove that $a(pq, f(q+i)) \neq -1$ for $\frac{5p+1}{8} \leq i \leq p-2$. If a(pq, f(q+i)) = -1, then, by Lemma 2.2, we infer

$$f(q+i) \equiv 5 - 8i \equiv 1 \pmod{p}$$

Since $5p-3 \le 8i-4 \le 8p-20$, we obtain 8i-4 = 5p, 6p, 7p. This contradicts the fact $p \equiv 3 \pmod{8}$. Hence $a(pqr, l) \le -2$.

(4) Let $l = pqr + 3pr - 11qr + q + \frac{3p-7}{8}$. By substituting l into congruence $rf(i) \equiv l - i \pmod{pq}$, we have f(i) = pq - 3q + 6p - 7 - 8i, where $i \in [0, p-1] \cup [q, q+p-1]$. On invoking Lemma 2.3, we can obtain

$$a^*(pq, f(i)) = \begin{cases} a(pq, f(i)), & \text{if } i \in [q + \frac{3p-7}{8}, q+p-1], \\ 0, & \text{if } i \in [0, p-1] \cup [q, q + \frac{3p-15}{8}]. \end{cases}$$

Then

(5.3)
$$a(pqr,l) = -\sum_{i=\frac{3p-7}{8}}^{p-1} a(pq, f(q+i)).$$

Since $f(q + \frac{3p-7}{8}) = 3p + (p-11)q$ and f(q+p-1) = (k-2)p + (p-12)q, we have $a(pq, f(q + \frac{3p-7}{8})) = a(pq, f(q+p-1)) = 1$ by Lemma 2.2. Applying this to (5.3) gives

$$a(pqr, l) = -2 - \sum_{i=\frac{3p+1}{8}}^{p-2} a(pq, f(q+i)).$$

Next we use Lemma 2.2 to show that

$$a(pq, f(q+i)) \neq -1$$
 for $\frac{3p+1}{8} \le i \le p-2$.

If the statement would not hold, then

$$f(q+i) \equiv 4 - 8i \equiv 1 \pmod{p}$$

It follows from $\frac{3p+1}{8} \leq i \leq p-2$ that

$$8i - 3 = 3p, 4p, 5p, 6p, 7p.$$

This is contrary to $p \equiv 5 \pmod{8}$. Then in the range $\frac{3p+1}{8} \leq i \leq p-2$, the quantity a(pq, f(q+i)) takes on one of two values: 0 or 1, and thus $a(pqr, l) \leq -2$.

259

(5) Let $l = 9qr + q + \frac{3p-5}{8}$. Proceeding as before, we have f(i) = 3p + 17q - 5 - 8i, where $i \in [0, p-1] \cup [q, q+p-1]$. According to Lemma 2.3, we deduce that

$$a(pqr, l) = -\sum_{i=\frac{3p-5}{8}}^{p-1} a(pq, f(q+i)).$$

On noting that q = 2p-1, we have $f(q + \frac{3p-5}{8}) = 9q$ and f(q+p-1) = p+6q. It follows from Lemma 2.2 that

$$a(pq, f(q + \frac{3p - 5}{8})) = a(pq, f(q + p - 1)) = 1$$

and then

$$a(pqr, l) = -2 - \sum_{i=\frac{3p+3}{8}}^{p-2} a(pq, f(q+i)).$$

Our task now is to show

$$f(q+i) \not\equiv 1 \pmod{p}$$
 when $\frac{3p+3}{8} \le i \le p-2$.

If the assertion was false, then $f(q+i) \equiv -8i - 14 \equiv 1 \pmod{p}$. Since $\frac{3p+3}{8} \leq i \leq p-2$, we obtain 8i + 15 = 4p, 5p, 6p, 7p, a contradiction to $p \equiv 7 \pmod{8}$. On invoking Lemma 2.2, we infer that $a(pq, f(q+i)) \in \{0, 1\}$ for $\frac{3p+3}{8} \leq i \leq p-2$. Therefore, $a(pqr, l) \leq -2$.

(6) Let $l = 8qr + q + \frac{p-3}{4}$, where q = 4p - 1. By using the congruence (2.1), we have f(i) = 2p + 16q - 6 - 8i when $0 \le i \le p - 1$ and $q \le i \le q + p - 1$. It follows from Lemma 2.3 that

$$a(pqr, l) = -\sum_{i=\frac{p-3}{4}}^{p-1} a(pq, f(q+i))$$

Note that $f(q + \frac{p-3}{4}) = 8q$ and f(q + p - 1) = 2p + 6q. In view of Lemma 2.2, we have $a(pq, f(q + \frac{p-3}{4})) = a(pq, f(q + p - 1)) = 1$, and then

$$a(pqr, l) = -2 - \sum_{i=\frac{p+1}{4}}^{p-2} a(pq, f(q+i)).$$

Let $\frac{p+1}{4} \leq i \leq p-2$. We claim that $f(q+i) \not\equiv 1 \pmod{p}$. If otherwise, then

$$f(q+i) \equiv -14 - 8i \equiv 1 \pmod{p}$$

Since $2p+17 \leq 8i+15 \leq 8p-1$, we obtain 8i+15 = 3p, 4p, 5p, 6p, 7p. This leads to a contradiction to $p \equiv 7 \pmod{8}$. So, by Lemma 2.2, a(pq, f(q+i)) = 0 or 1. Hence $a(pqr, l) \leq -2$.

(7) Our argument here proceeds along the same lines. Taking $l = 5pr + 7qr + q + \frac{p-7}{8}$ in congruence (2.1), we have f(i) = 6p + 15q - 7 - 8i, where $i \in [0, p-1] \cup [q, q+p-1]$. According to Lemma 2.3, we deduce that

$$a(pqr, l) = -\sum_{i=\frac{p-7}{8}}^{p-1} a(pq, f(q+i)).$$

On noting that $f(q + \frac{p-7}{8}) = 5p + 7q$ and f(q + p - 1) = (k - 2)p + 6q, we have, in light of $k \ge 6$ and Lemma 2.2,

$$a(pq, f(q + \frac{p-7}{8})) = a(pq, f(q+p-1)) = 1,$$

and then

$$a(pqr, l) = -2 - \sum_{i=\frac{p+1}{8}}^{p-2} a(pq, f(q+i)).$$

Let $\frac{p+1}{8} \le i \le p-2$. Our goal now is to show

$$f(q+i) \not\equiv 1 \pmod{p}.$$

If the assertion was false, then $f(q+i) \equiv -8i - 14 \equiv 1 \pmod{p}$. Since $\frac{p+1}{8} \leq i \leq p-2$, we obtain 8i + 15 = 2p, 3p, 4p, 5p, 6p, 7p, a contradiction to $p \equiv 7 \pmod{8}$. On invoking Lemma 2.2, we infer that $a(pq, f(q+i)) \in \{0, 1\}$. Finally, we obtain $a(pqr, l) \leq -2$. This completes the proof.

PROPOSITION 5.2. Let 7 be odd primes such that <math>q = kp + 1and $8r \equiv 1 \pmod{pq}$.

(1) If $p \equiv 1 \pmod{8}$, then

$$2 \leq \begin{cases} a(pqr, 6pr + 5qr + q + 4r + \frac{3p-11}{8}), & \text{if } k = 2\\ a(pqr, pqr - 9qr + q + r + \frac{p-5}{4}), & \text{if } k = 4\\ a(pqr, pqr + 5pr - 9qr + q + r + \frac{p-9}{8}), & \text{if } k \ge 6 \end{cases}$$

(2) If $p \equiv 3 \pmod{8}$, then

$$2\begin{cases} = A(pqr), & \text{if } k = 2 \text{ and } p = 11, \\ \leq a(pqr, pqr - pr - 8qr + q + \frac{p-11}{8}), & \text{if } k = 2 \text{ and } p > 11, \\ \leq a(pqr, pqr - pr - 10qr + q + \frac{3p-9}{8}), & \text{if } k = 4, \\ \leq a(pqr, pqr + 3pr - 9qr + q + r + \frac{3p-9}{8}), & \text{if } k \ge 6. \end{cases}$$

(3) If $p \equiv 5 \pmod{8}$, then

$$2 \leq \begin{cases} a(pqr, pqr + 3pr - 13qr + q + 2r + \frac{5p - 9}{8}), & \text{if } k = 2\\ a(pqr, pqr + pr - 10qr + q + r + \frac{5p - 9}{8}), & \text{if } k \geq 4 \end{cases}$$

(4) If
$$p \equiv 7 \pmod{8}$$
, then $2 \le a(pqr, pqr - 10qr + q + r + \frac{7p-9}{8})$

261

PROOF. The proof of this proposition follows in a similar manner and so is omitted. $\hfill \Box$

ACKNOWLEDGEMENTS.

I would like to express my sincere gratitude to the referees and editors for careful reading of the manuscript and giving valuable comments.

References

- A. Arnold and M. Monagan, Data on the height and lengths of cyclotomic polynomials, available: http://wayback.cecm.sfu.ca/~ada26/cyclotomic/.
- [2] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
- [3] G. Bachman and P. Moree, On a class of inclusion-exclusion polynomials, Integers 11 (2011), A8.
- [4] M. Beiter, Coefficients of the cyclotomic polynomial $F_{3qr}(x)$, Fibonacci Quart. 16 (1978), 302–306.
- [5] L. Carlitz, The number of terms in the cyclotomic polynomial $F_{pq}(x)$, Amer. Math. Monthly **73** (1966), 979–981.
- [6] S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
- [7] G.B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, 2013.
- [8] C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
- [9] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
- [10] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(X)$, Amer. Math. Monthly **103** (1996), 562–564.
- [11] H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress, Wiskundig Genootschap, Part II, Math. Centrum, Amsterdam, 1979, 249–268.
- [12] A. Migotti, Zur Theorie der Kreisteilungsgleichung, Sitzber. Math.-Naturwiss. Classe der Kaiser. Akad. der Wiss. (1883), 7–14.
- [13] R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
- [14] B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
- [15] B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
- [16] B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
- [17] B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Sem. Mat. Univ. Padova 145 (2021), 1–42.
- [18] J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.

B. Zhang
School of Mathematical Sciences
Qufu Normal University
273165 Qufu
P. R. China *E-mail*: zhangbin100902025@163.com *Received*: 19.1.2021. *Revised*: 16.4.2021.