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Abstract. Let Φn(x) be the n-th cyclotomic polynomial. In this
paper, for odd primes p < q < r with q ≡ ±1 (mod p) and 8r ≡ ±1
(mod pq), we prove that the coefficients of Φpqr(x) do not exceed 1 in
modulus if and only if (i) p = 3, q ≥ 19 and q ≡ 1 (mod 3) or (ii) p = 7,
q ≥ 83 and q ≡ −1 (mod 7).

1. Introduction

Let Φn(x) =
∑φ(n)

m=0 a(n,m)xm be the n-th cyclotomic polynomial and
put

A(n) = max{|a(n,m)| : 0 ≤ m ≤ φ(n)},

where φ is the Euler totient function. We can deduce that Φn(x) is a monic
polynomial over integers by induction on n. It turns out that A(n) = 1 when
n has no more than two distinct prime factors and this intriguing observation
peeked the interest of many mathematicians. In particular, there is a lot of
interest in flat cyclotomic polynomials (for which A(n) = 1, i.e., its nonzero
coefficients are 1 or −1). Using basic properties of such polynomials, we have

Φ2n(x) = ±Φn(−x) and Φn(x) = Φrad(n)(x
n/rad(n)),
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where rad(n) denotes the largest square-free factor of n. Therefore, the inves-
tigation of A(n) can be reduced to the case when n = pqr · · · , where p, q, r, · · ·
are distinct odd primes.

It is trivial to see that Φp(x) =
∑p−1

m=0 x
m and A(p) = 1. In 1883, Migotti

([12]) showed A(pq) = 1 and noted that A(3 · 5 · 7) > 1 with a(3 · 5 · 7, 7) =
−2. Approximately one hundred years later, Beiter gave the necessary and
sufficient conditions for A(3qr) = 1 by established the following result.

Proposition 1.1. Let 3 < q < r be primes such that r = (wq ± 1)/h,
1 < h ≤ (q − 1)/2. Then A(3qr) = 1 if and only if one of these conditions

holds:

(1) w ≡ 0 and h+ q ≡ 0 (mod 3), or
(2) h ≡ 0 and w + r ≡ 0 (mod 3).

The proofs are based on the consideration of four types of partitions of m
and the contribution of each type to the coefficients of xm in the polynomial,
see [4] for details. So the other case is n = pqr with 5 ≤ p < q < r primes.
Currently, there are several open problems involving ternary cyclotomic poly-
nomials Φpqr(x), an interesting and difficult one is to classify all flat ternary
cyclotomic polynomials. While it is know that

r ≡ ±1 (mod pq) ⇒ A(pqr) = 1,

there are examples of flat ternary cyclotomic polynomials not of this form,
and no simple general characterization of flatness is known. It has been con-
jectured by Elder ([6]), however, that if A(pqr) = 1 and r 6≡ ±1 (mod pq),
then necessarily q ≡ ±1 (mod p) (the latter condition is not sufficient for
flatness in general).

Observing computational data, Broadhurst made the following conjecture
about flat ternary cyclotoic polynomials.

Conjecture 1.2. Let p < q < r be odd primes with w the unique integer

0 ≤ w ≤ pq−1
2 satisfying r ≡ ±w (mod pq).

If w = 1, then we say that [p, q, r] is of Type 1.

If w > 1, q ≡ 1 (mod pw) and p ≡ 1 (mod w), then we say that [p, q, r]
is of Type 2.

If w > p, q > p(p− 1), q ≡ ±1 (mod p) and w ≡ ±1 (mod p), and in the

case where w ≡ 1 (mod p) we have wp ∤ q + 1 and wp ∤ q − 1, then we say

that [p, q, r] is of Type 3.

Then A(pqr) = 1 if and only if [p, q, r] is of Type 1 or 2, or [p, q, r] is
of Type 3 and Φpq(x

s)/Φpq(x) is flat, where s is the smallest positive integer

such that s ≡ 1 (mod p) and s ≡ ±r (mod pq).

In 2007, Kaplan ([9]) proved the following periodicity of A(pqr), which
implies that for given p and q, A(pqr) is completed determined by the residue
class of r mod pq.
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Proposition 1.3. Let 3 ≤ p < q < r be primes. Then for any prime

s > q such that s ≡ ±r (mod pq), A(pqr) = A(pqs).

Moreover, if z is the least positive integer such that zr ≡ ±1 (mod pq),
then the smaller the value of z is the simpler analysis of the function A(pqr)
appears to be. Consequently, we may try to investigate flatness of Φpqr(x)
with q ≡ ±1 (mod p) for small values of z. So far, the analysis has been
completed for all z ≤ 7, see [2, 3, 6, 7, 8, 9, 14, 15, 16, 17, 18]. In this paper, we
continue the study of the flatness of ternary cyclotomic polynomials Φpqr(x)
in the case z = 8. First note that in this case, by taking h = 8, w ≡ 0
(mod 3) in Proposition 1.1, we have, for odd primes 3 < q < r with q ≥ 17
and 8r ≡ ±1 (mod 3q), A(3qr) = 1 if and only if q ≥ 19 and q ≡ 1 (mod 3).
For q = 5, 7, 11, 13, by using the PARI/GP system (or consulting literature
([1])) and Proposition 1.3, we obtain A(3qr) = 2 when q = 5, 7, 11, 13 and
8r ≡ ±1 (mod 3q). Therefore, we infer that the following statement holds.

Corollary 1.4. Let 3 < q < r be primes such that 8r ≡ ±1 (mod 3q).
Then A(3qr) = 1 if and only if q ≥ 19 and q ≡ 1 (mod 3).

Our purpose here is to establish the following result.

Theorem 1.5. Let 3 ≤ p < q < r be primes such that q ≡ ±1 (mod p)
and 8r ≡ ±1 (mod pq). Then A(pqr) = 1 if and only if

(i) p = 3, q ≥ 19 and q ≡ 1 (mod 3), or
(ii) p = 7, q ≥ 83 and q ≡ −1 (mod 7).

We remark that, on invoking Proposition 1.3 and Corollary 1.4, it remains
to prove this theorem in the cases

p ≥ 5, q ≡ ±1 (mod p) and 8r ≡ +1 (mod pq).

We will present the proof for p = 5, p = 7, p > 7 in Sections 3, 4, 5,
respectively.

2. Preliminaries

Recall that the binary cyclotomic polynomial coefficients a(pq,m) have
been completely determined in a simple and explicit way, see Lenstra ([11,
(2.16)]), Lam and Leung ([10, Theorem]) or Thangadurai ([13, Theorem 2.3]).
Considering this in the cases q ≡ ±1 (mod p), we can obtain the following
two useful results.

Lemma 2.1. Let 3 ≤ p < q be primes such that q = kp+ 1. Then

a(pq,m) =











1, if m = up with 0 ≤ u ≤ q − k − 1,

−1, if m = up+ vq + 1 with 0 ≤ u ≤ k − 1, 0 ≤ v ≤ p− 2,

0, otherwise.
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Lemma 2.2. Let 3 ≤ p < q be primes such that q = kp− 1. Then

a(pq,m) =











1, if m = up+ vq with 0 ≤ u ≤ k − 1, 0 ≤ v ≤ p− 2,

−1, if m = up+ 1 with 0 ≤ u ≤ q − k − 1,

0, otherwise.

In 2007, by using the fact that

Φpqr(x) =
1

1− xpq

(

p−1
∑

i=0

xi −

p−1
∑

i=0

xq+i

)

Φpq(x
r),

Kaplan ([9]) proved the following technical lemma, revealing the relationship
between coefficients of Φpqr(x) and Φpq(x).

Lemma 2.3. Let 3 ≤ p < q < r be primes. Given nonnegative integer l,
let f(i) denote the unique value 0 ≤ f(i) ≤ pq − 1 such that

(2.1) f(i) ≡
(l − i)

r
(mod pq).

(1) Then
p−1
∑

i=0

a(pq, f(i)) =

p−1
∑

i=0

a(pq, f(q + i)).

(2) Set

(2.2) a∗(pq,m) =

{

a(pq,m), if m ≤ l
r ,

0, otherwise.

Then

a(pqr, l) =

p−1
∑

i=0

a∗(pq, f(i))−

p−1
∑

i=0

a∗(pq, f(q + i)).

3. Proof of Theorem 1.5 when p = 5

We will show the non-flatness of Φ5qr(x) for q ≡ ±1 (mod 5) and 8r ≡ 1
(mod 5q) by proving the following two propositions.

Proposition 3.1. Let 5 < q < r be primes such that q ≡ 1 (mod 5) and
8r ≡ 1 (mod 5q).

(1) If q = 11, then A(55r) = 3.
(2) If q > 11, then a(5qr, qr + q + 6r + 2) = 2.

Proof. (1) By using PARI/GP or consulting literature ([1]), we have
A(5·11·227) = 3. Then it follows from 8·227 ≡ 1 (mod 5·11) and Proposition
1.3 that A(5 · 11 · r) = 3 when 8r ≡ 1 (mod 5 · 11).

(2) Let q > 11 and l = qr + q + 6r + 2. Then by using congruence
f(i) ≡ r−1(l − i) (mod 5q) and 0 ≤ f(i) ≤ 5q − 1, we obtain



A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS 245

f(i) = 4q + 22− 8i and f(q + i) = q + 22− 8i,

where 0 ≤ i ≤ 4. So

f(q + 4) < f(q + 3) < f(q + 2) <
l

r
< f(q + 1) < f(q) < f(4) < · · · < f(0).

By equation (2.2), it follows that

a∗(5q, f(i)) =

{

a(5q, f(i)), if i ∈ {q + 2, q + 3, q + 4},

0, if i ∈ {0, 1, 2, 3, 4, q, q+ 1}.

Hence, by Lemma 2.3, we infer that

(3.1) a(5qr, l) = −a(5q, f(q + 4))− a(5q, f(q + 3))− a(5q, f(q + 2)).

On rewriting f(q + 2) and f(q + 4) as

f(q + 2) = 1 · 5 + 1 · q + 1 and f(q + 4) = q−11
5 · 5 + 1,

we obtain from Lemma 2.1 that

a(5q, f(q + 2)) = a(5q, f(q + 4)) = −1.

Note that f(q + 3) = q − 2 ≡ 4 (mod 5). On invoking Lemma 2.1, we
have a(5q, f(q+3)) 6= 1. If a(5q, f(q+3)) = −1, then, by another application

of Lemma 2.1, there must exist integers 0 ≤ u ≤ q−1
p − 1 and 0 ≤ v ≤ 3 such

that f(q + 3) = q − 2 = 5u+ vq + 1. Since 0 < f(q + 3) < q, we have v = 0.
This yields q − 2 = 5u+ 1, a contradiction to the fact q ≡ 1 (mod 5). So

a(5q, f(q + 3)) = 0.

Finally, by substituting the values of a(5q, f(q + i)) into (3.1), we obtain
a(5qr, l) = 2.

Proposition 3.2. Let 5 < q < r be primes such that q ≡ −1 (mod 5)
and 8r ≡ 1 (mod 5q). Then a(5qr, 2qr + 10r + 1) = 2.

Proof. Let l = 2qr + 10r + 1. By using congruence (2.1), we have

f(i) = 2q + 18− 8i and f(q + i) = 4q + 18− 8i,

where 0 ≤ i ≤ 4. So

f(4) < f(3) < f(2) < f(1) <
l

r
< f(0) < f(q + 4) < · · · < f(q).

Then it follows from Lemma 2.3 that

a(5qr, l) = a(5q, f(4)) + a(5q, f(3)) + a(5q, f(2)) + a(5q, f(1)).

Since f(1) = 2 · 5 + 2q and f(4) = q−14
5 · 5 + q, we have a(5q, f(1)) =

a(5q, f(4)) = 1 by Lemma 2.2. Note that f(2) ≡ 0 (mod 5) and f(3) ≡ 2
(mod 5). In view of Lemma 2.2, we infer that a(5q, f(2)) 6= −1 and
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a(5q, f(3)) 6= −1. It is easy to show that neither f(2) nor f(3) can be written

in the form u · 5 + v · q for 0 ≤ u ≤ q+1
5 and 0 ≤ v ≤ 3. Then it follows from

Lemma 2.2 that a(5q, f(2)) = a(5q, f(3)) = 0, and thus a(5qr, l) = 2.

4. Proof of Theorem 1.5 when p = 7

In this section, we will give the necessary and sufficient conditions for
Φ7qr(x) to be flat in the cases q ≡ ±1 (mod 7) and 8r ≡ 1 (mod 7q) by
showing the following two propositions.

Proposition 4.1. Let 7 < q < r be primes such that q ≡ 1 (mod 7) and
8r ≡ 1 (mod 7q).

(1) If q = 29, then A(203r) = 2.
(2) If q > 29, then a(7qr, 5qr + q + r + 5) = 2.

Proof. (1) If q = 29, we obtain A(7 · 29 · 127) = 2 by using PARI/GP
or [1]. Then it follows from 8 · 127 ≡ 1 (mod 7 · 29) and Lemma 1.3 that
A(7 · 29 · r) = 2 when 8r ≡ 1 (mod 7q).

(2) Let l = 5qr+ q+ r+5. By using the congruence (2.1) and 0 ≤ f(i) ≤
7q − 1, we obtain

f(i) = 6q + 41− 8i and f(q + i) = 5q + 41− 8i,

where 0 ≤ i ≤ 6. Then

f(q + 6) < f(q + 5) <
l

r
< f(q + 4) < · · · < f(q) < f(6) < · · · < f(0).

Thus, by Lemma 2.3,

(4.1) a(7qr, l) = −a(7q, f(q + 6))− a(7q, f(q + 5)).

Note that f(q + 5) = 5q + 1 and f(q + 6) = q−8
7 · 7 + 4q + 1. It follows from

Lemma 2.1 that a(7q, f(q + 5)) = a(7q, f(q + 6)) = −1. Hence a(7qr, l) = 2.

Proposition 4.2. Let 7 < q < r be primes such that q ≡ −1 (mod 7)
and 8r ≡ 1 (mod 7q). Then

A(7qr) =

{

2, if q = 13, 41,

1, if q ≥ 83.

Proof. The smallest three primes such that q ≡ −1 (mod 7) are 13, 41
and 83. With the help of PARI/GP or [1], we know that A(7 · 13 · 239) = 2.
On noting that 8 · 239 ≡ 1 (mod 7 · 13), we infer from Proposition 1.3 that
A(7 · 13 · r) = 2 for r satisfying 8r ≡ 1 (mod 7 · 13). Similarly, we obtain that
A(7 · 41 · r) = 2 for r with 8r ≡ 1 (mod 7 · 41), since A(7 · 41 · 1471) = 2 and
8 · 1471 ≡ 1 (mod 7 · 41).
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Next we show that A(7qr) = 1 when q ≥ 83, q ≡ −1 (mod 7) and 8r ≡ 1
(mod 7q). Note that Lemma 2.3 gives

(4.2) a(7qr, l) =

6
∑

i=0

a∗(7q, f(i)) +

6
∑

i=0

(

− a∗(7q, f(q + i))
)

,

where f(i) ≡ l−i
r (mod 7q), 0 ≤ f(i) ≤ 7q − 1, and

(4.3) a∗(7q, f(i)) =

{

a(7q, f(i)), if f(i) ≤ l
r ,

0, otherwise.

As for binary coefficients a(7q, f(i)), we can rewrite the results of Lemma 2.2
in the following form

(4.4) a(7q, f(i)) =



























































1, if f(i) ≡ 0 (mod 7) and 0 ≤ f(i) ≤ q − 6,

1, if f(i) ≡ 6 (mod 7) and q ≤ f(i) ≤ 2q − 6,

1, if f(i) ≡ 5 (mod 7) and 2q ≤ f(i) ≤ 3q − 6,

1, if f(i) ≡ 4 (mod 7) and 3q ≤ f(i) ≤ 4q − 6,

1, if f(i) ≡ 3 (mod 7) and 4q ≤ f(i) ≤ 5q − 6,

1, if f(i) ≡ 2 (mod 7) and 5q ≤ f(i) ≤ 6q − 6,

−1, if f(i) ≡ 1 (mod 7) and 1 ≤ f(i) ≤ 6q − 7,

0, otherwise.

Given l ∈ [0, φ(7qr)], the value of f(i) is uniquely defined and we have

(4.5) f(i) ≡ f(0)− 8i (mod 7q),

(4.6) f(q + i) ≡ f(0)− q − 8i (mod 7q),

where 0 ≤ i ≤ 6.
For f(0) = 0, by using (4.5) and (4.6), we have f(i) = 7q − 8i when

1 ≤ i ≤ 6 and f(q + i) = 6q − 8i when 0 ≤ i ≤ 6. So

(4.7) f(0) < f(q + 6) < · · · < f(q) < f(6) < · · · < f(1).

In the rest of this section, because of space limitation, we set

ai := a(7q, f(i)),

and it follows from (4.4) that
Table 1. f(0) = 0

a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1

value 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

For any given integer l ∈ [0, φ(7qr)], if f(1) ≤ l
r , then, by (4.2) and (4.3),

we infer that

a(7qr, l) =

6
∑

i=0

a(7q, f(i)) +

6
∑

i=0

(

− a(7q, f(q + i))
)

= 0.
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Otherwise, there must exist two neighboring symbols f(j1) and f(j2) in
(4.7) such that

f(j1) ≤
l

r
< f(j2).

If 0 ≤ j1 ≤ 6 (or q ≤ j1 ≤ q + 6), the value of a(7qr, l) is given by computing
the sum of binary coefficients from the start of the third row in Table 1 to
af(j1) (or −af(j1)). It is clear to see that the data in Table 1 reveal that the
sums in (4.2) are always in the set {0, 1}.

For f(0) = 1, we have f(i) = 7q− 8i+ 1, when 1 ≤ i ≤ 6, and f(q + i) =
6q − 8i + 1, when 0 ≤ i ≤ 6. So the inequalities (4.7) still hold in this case.
And it follows from (4.4) that

Table 2. f(0) = 1
a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1

value -1 0 0 0 0 0 1 0 0 0 0 0 0 0

Given integer l ∈ [0, φ(7qr)], if f(1) ≤ l
r , then

a(7qr, l) =

6
∑

i=0

a(7q, f(i)) +

6
∑

i=0

(

− a(7q, f(q + i))
)

= 0.

If l
r < f(0), then

a(7qr, l) =

6
∑

i=0

0 +

6
∑

i=0

0 = 0.

Otherwise, there must exist two neighboring symbols f(j1) and f(j2) in (4.7)
such that f(j1) ≤ l

r < f(j2). Similarly, the data in Table 2 yield that
a(7qr, l) ∈ {−1, 0}.

Now according to the values of f(0), we give the following tables. The sec-
ond row of each table is the inequality about f(i) for i ∈ {0, 1, 2, 3, 4, 5, 6, q, q+
1, q+2, q+3, q+4, q+5, q+6}. In the rest of this section, for the reasons of
space, we set

ai := a(7q, f(i))

and let f(0) be the unique integer such that 0 ≤ f(0) ≤ 6 and f(0) ≡ f(0)
(mod 7). The values of ai are obtained by using (4.4)–(4.6).

Table 3. 2 ≤ f(0) ≤ 7
f(0) < f(q + 6) < · · · < f(q) < f(6) < · · · < f(1)

f(0) a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1

2 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
3 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
4 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
5 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
6 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
7 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
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Table 4. 8 ≤ f(0) ≤ 15
f(1) < f(0) < f(q + 6) < · · · < f(q) < f(6) < · · · < f(2)

f(0) a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2

8 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
9 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
11 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
12 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
13 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
14 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
15 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 5. 16 ≤ f(0) ≤ 23
f(2) < f(1) < f(0) < f(q + 6) < · · · < f(q) < f(6) < · · · < f(3)

f(0) a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3

16 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
17 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
18 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
19 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
20 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
21 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
22 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
23 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. 24 ≤ f(0) ≤ 31
f(3) < f(2) < f(1) < f(0) < f(q + 6) < · · · < f(q) < f(6) < f(5) < f(4)

f(0) a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4

24 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
25 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
26 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
27 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
28 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
29 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
30 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
31 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 7. 32 ≤ f(0) ≤ 39
f(4) < f(3) < f(2) < f(1) < f(0) < f(q + 6) < · · · < f(q) < f(6) < f(5)

f(0) a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5

32 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
33 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
34 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
35 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
36 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
37 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
38 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
39 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 8. 40 ≤ f(0) ≤ 47
f(5) < f(4) < f(3) < f(2) < f(1) < f(0) < f(q + 6) < · · · < f(q) < f(6)

f(0) a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6

40 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
41 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
42 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
43 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
44 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
45 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
46 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
47 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

Table 9. 48 ≤ f(0) ≤ q − 1
f(6) < · · · < f(0) < f(q + 6) < · · · < f(q)

f(0) a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq

0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
2 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
3 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
4 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
5 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
6 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
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Table 10. q ≤ f(0) ≤ q + 7
f(q) < f(6) < · · · < f(0) < f(q + 6) < · · · < f(q + 1)

f(0) −aq a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1

q -1 1 -1 0 0 0 0 1 0 0 0 0 0 0
q + 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
q + 2 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
q + 3 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
q + 4 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
q + 5 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
q + 6 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
q + 7 -1 1 -1 0 0 0 0 1 0 0 0 0 0 0

Table 11. q + 8 ≤ f(0) ≤ q + 15
f(q + 1) < f(q) < f(6) < · · · < f(0) < f(q + 6) < · · · < f(q + 2)

f(0) −aq+1 −aq a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3 −aq+2

q + 8 -1 1 -1 0 0 0 0 1 0 0 0 0 0 0
q + 9 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
q + 10 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
q + 11 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
q + 12 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
q + 13 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
q + 14 0 -1 1 -1 0 0 0 0 1 0 0 0 0 0
q + 15 -1 1 -1 0 0 0 0 1 0 0 0 0 0 0

Table 12. q + 16 ≤ f(0) ≤ q + 23
f(q + 2) < f(q + 1) < f(q) < f(6) < · · · < f(0) < f(q + 6) < · · · < f(q + 3)

f(0) −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4 −aq+3

q + 16 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
q + 17 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
q + 18 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
q + 19 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
q + 20 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
q + 21 0 0 -1 1 -1 0 0 0 0 1 0 0 0 0
q + 22 0 -1 1 -1 0 0 0 0 1 0 0 0 0 0
q + 23 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0

Table 13. q + 24 ≤ f(0) ≤ q + 31
f(q + 3) < f(q + 2) < f(q + 1) < f(q) < f(6) < · · · < f(0) < f(q + 6) < f(q + 5) < f(q + 4)

f(0) −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5 −aq+4

q + 24 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
q + 25 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
q + 26 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
q + 27 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
q + 28 0 0 0 -1 1 -1 0 0 0 0 1 0 0 0
q + 29 0 0 -1 1 -1 0 0 0 0 1 0 0 0 0
q + 30 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
q + 31 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0

Table 14. q + 32 ≤ f(0) ≤ q + 39
f(q + 4) < f(q + 3) < f(q + 2) < f(q + 1) < f(q) < f(6) < · · · < f(0) < f(q + 6) < f(q + 5)

f(0) −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0 −aq+6 −aq+5

q + 32 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
q + 33 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
q + 34 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
q + 35 0 0 0 0 -1 1 -1 0 0 0 0 1 0 0
q + 36 0 0 0 -1 1 -1 0 0 0 0 1 0 0 0
q + 37 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
q + 38 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
q + 39 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0

Table 15. q + 40 ≤ f(0) ≤ q + 47
f(q + 5) < f(q + 4) < f(q + 3) < f(q + 2) < f(q + 1) < f(q) < f(6) < · · · < f(0) < f(q + 6)

f(0) −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0 −aq+6

q + 40 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
q + 41 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
q + 42 0 0 0 0 0 -1 1 -1 0 0 0 0 1 0
q + 43 0 0 0 0 -1 1 -1 0 0 0 0 1 0 0
q + 44 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0
q + 45 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
q + 46 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
q + 47 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
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Table 16. q + 48 ≤ f(0) ≤ 2q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 0 0 0 0 0 -1 1 -1 0 0 0 0 1 0
1 0 0 0 0 -1 1 0 0 0 0 0 1 0 -1
2 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0
3 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
4 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
5 -1 1 0 0 0 0 0 1 0 -1 0 0 0 0
6 1 0 0 0 0 0 -1 0 -1 0 0 0 0 1

Table 17. 2q ≤ f(0) ≤ 2q + 47
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

2q -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 1 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
2q + 2 0 0 0 0 0 -1 1 -1 0 0 0 0 1 0
2q + 3 0 0 0 0 -1 1 0 0 0 0 0 1 0 -1
2q + 4 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0
2q + 5 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
2q + 6 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
2q + 7 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 8 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 9 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
2q + 10 0 0 0 0 -1 1 0 0 0 0 0 1 0 -1
2q + 11 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0
2q + 12 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
2q + 13 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
2q + 14 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 15 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 16 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
2q + 17 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
2q + 18 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0
2q + 19 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
2q + 20 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
2q + 21 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 22 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 23 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
2q + 24 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
2q + 25 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
2q + 26 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0
2q + 27 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
2q + 28 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 29 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 30 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
2q + 31 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
2q + 32 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
2q + 33 0 0 0 1 0 0 0 0 0 0 0 -1 0 0
2q + 34 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0
2q + 35 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 36 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 37 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
2q + 38 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
2q + 39 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
2q + 40 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
2q + 41 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
2q + 42 -1 1 0 0 0 0 -1 1 0 -1 0 0 0 1
2q + 43 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
2q + 44 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
2q + 45 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
2q + 46 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
2q + 47 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
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Table 18. 2q + 48 ≤ f(0) ≤ 3q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
1 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
2 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
3 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
4 -1 0 1 0 0 0 0 1 0 0 -1 0 0 0
5 0 1 0 0 0 0 -1 0 0 -1 0 0 0 1
6 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0

Table 19. 3q ≤ f(0) ≤ 3q + 47
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

3q -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0
3q + 2 1 0 0 0 0 -1 0 0 -1 0 0 0 1 0
3q + 3 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
3q + 4 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
3q + 5 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
3q + 6 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
3q + 7 -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 8 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 9 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
3q + 10 0 0 0 0 -1 0 1 -1 0 0 0 1 0 0
3q + 11 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
3q + 12 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
3q + 13 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
3q + 14 -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 15 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 16 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
3q + 17 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
3q + 18 0 0 0 -1 0 1 0 0 0 0 1 0 0 -1
3q + 19 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
3q + 20 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
3q + 21 -1 0 1 0 0 0 -1 1 0 0 0 -1 0 1
3q + 22 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 23 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
3q + 24 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
3q + 25 0 0 0 0 1 0 0 0 0 0 0 0 0 -1
3q + 26 0 0 -1 0 1 0 0 0 0 1 0 0 -1 0
3q + 27 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
3q + 28 -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 29 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 30 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
3q + 31 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
3q + 32 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
3q + 33 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
3q + 34 0 -1 0 1 0 0 0 0 1 0 0 -1 0 0
3q + 35 -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 36 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 37 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
3q + 38 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
3q + 39 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
3q + 40 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
3q + 41 0 0 0 1 0 0 0 0 0 0 0 -1 0 0
3q + 42 -1 0 1 0 0 0 -1 1 0 0 -1 0 0 1
3q + 43 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
3q + 44 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
3q + 45 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
3q + 46 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
3q + 47 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
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Table 20. 3q + 48 ≤ f(0) ≤ 4q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
1 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
2 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
3 -1 0 0 1 0 0 0 1 0 0 0 -1 0 0
4 0 0 1 0 0 0 -1 0 0 0 -1 0 0 1
5 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
6 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0

Table 21. 4q ≤ f(0) ≤ 4q + 47
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

4q -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 1 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
4q + 2 0 1 0 0 0 -1 0 0 0 -1 0 0 1 0
4q + 3 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
4q + 4 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
4q + 5 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
4q + 6 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
4q + 7 -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 8 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 9 0 1 0 0 0 0 0 0 0 -1 0 0 0 0
4q + 10 1 0 0 0 -1 0 0 0 -1 0 0 1 0 0
4q + 11 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
4q + 12 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
4q + 13 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
4q + 14 -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 15 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 16 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
4q + 17 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
4q + 18 0 0 0 -1 0 0 1 -1 0 0 1 0 0 0
4q + 19 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
4q + 20 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
4q + 21 -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 22 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 23 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
4q + 24 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
4q + 25 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
4q + 26 0 0 -1 0 0 1 0 0 0 1 0 0 0 -1
4q + 27 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
4q + 28 -1 0 0 1 0 0 -1 1 0 0 -1 0 0 1
4q + 29 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 30 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
4q + 31 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
4q + 32 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
4q + 33 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
4q + 34 0 -1 0 0 1 0 0 0 1 0 0 0 -1 0
4q + 35 -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 36 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 37 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
4q + 38 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
4q + 39 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
4q + 40 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
4q + 41 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
4q + 42 -1 0 0 1 0 0 -1 1 0 0 0 -1 0 1
4q + 43 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
4q + 44 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
4q + 45 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
4q + 46 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
4q + 47 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
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Table 22. 4q + 48 ≤ f(0) ≤ 5q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
1 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
2 -1 0 0 0 1 0 0 1 0 0 0 0 -1 0
3 0 0 0 1 0 0 -1 0 0 0 0 -1 0 1
4 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
5 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
6 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0

Table 23. 5q ≤ f(0) ≤ 5q + 47
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

5q -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0
5q + 2 0 0 1 0 0 -1 0 0 0 0 -1 0 1 0
5q + 3 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
5q + 4 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
5q + 5 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
5q + 6 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
5q + 7 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 8 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
5q + 9 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
5q + 10 0 1 0 0 -1 0 0 0 0 -1 0 1 0 0
5q + 11 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
5q + 12 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
5q + 13 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
5q + 14 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 15 0 0 0 -1 0 1 0 0 0 0 0 -1 1 0
5q + 16 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5q + 17 0 1 0 0 0 0 0 0 0 -1 0 0 0 0
5q + 18 1 0 0 -1 0 0 0 0 -1 0 1 0 0 0
5q + 19 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
5q + 20 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
5q + 21 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 22 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
5q + 23 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5q + 24 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
5q + 25 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
5q + 26 0 0 -1 0 0 0 1 -1 0 1 0 0 0 0
5q + 27 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
5q + 28 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 29 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
5q + 30 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5q + 31 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
5q + 32 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
5q + 33 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
5q + 34 0 -1 0 0 0 1 0 0 1 0 0 0 0 -1
5q + 35 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 36 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
5q + 37 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5q + 38 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
5q + 39 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
5q + 40 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
5q + 41 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
5q + 42 -1 0 0 0 1 0 -1 1 0 0 0 0 -1 1
5q + 43 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
5q + 44 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5q + 45 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
5q + 46 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
5q + 47 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0



A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS 255

Table 24. 5q + 48 ≤ f(0) ≤ 6q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
1 -1 0 0 0 0 1 0 1 0 0 0 0 0 -1
2 0 0 0 0 1 0 -1 0 0 0 0 0 -1 1
3 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
4 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
5 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
6 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0

Table 25. 6q ≤ f(0) ≤ 6q + 47
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

6q -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 1 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
6q + 2 0 0 0 1 0 -1 0 0 0 0 0 -1 1 0
6q + 3 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
6q + 4 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
6q + 5 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
6q + 6 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
6q + 7 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 8 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 9 0 0 0 1 0 0 0 0 0 0 0 -1 0 0
6q + 10 0 0 1 0 -1 0 0 0 0 0 -1 1 0 0
6q + 11 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
6q + 12 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
6q + 13 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
6q + 14 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 15 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 16 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
6q + 17 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
6q + 18 0 1 0 -1 0 0 0 0 0 -1 1 0 0 0
6q + 19 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
6q + 20 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
6q + 21 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 22 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 23 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
6q + 24 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
6q + 25 0 1 0 0 0 0 0 0 0 -1 0 0 0 0
6q + 26 1 0 -1 0 0 0 0 0 -1 1 0 0 0 0
6q + 27 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
6q + 28 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 29 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 30 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
6q + 31 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
6q + 32 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
6q + 33 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
6q + 34 0 -1 0 0 0 0 1 -1 1 0 0 0 0 0
6q + 35 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 36 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 37 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
6q + 38 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
6q + 39 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
6q + 40 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
6q + 41 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
6q + 42 -1 0 0 0 0 1 -1 1 0 0 0 0 0 0
6q + 43 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
6q + 44 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
6q + 45 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
6q + 46 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
6q + 47 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
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Table 26. 6q + 48 ≤ f(0) ≤ 7q − 1
f(q + 6) < · · · < f(q) < f(6) < · · · < f(0)

f(0) −aq+6 −aq+5 −aq+4 −aq+3 −aq+2 −aq+1 −aq a6 a5 a4 a3 a2 a1 a0

0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
2 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
3 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
4 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
5 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
6 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

It is a routine matter to check that the sum of values about ±ai, from
the start to anywhere of the row in all tables, is equal to −1, 0 or 1. That is
to say, the data reveals that the sums in (4.2) are always in the set {−1, 0, 1}.
So A(7qr) = 1 in the case q ≥ 83, q ≡ −1 (mod 7) and 8r ≡ 1 (mod 7q).

5. Proof of Theorem 1.5 when p > 7

The theorem will be completely proved by showing the following two
propositions.

Proposition 5.1. Let 7 < p < q < r be primes such that q = kp− 1 and

8r ≡ 1 (mod pq).

(1) If p = 11, then a(11qr, qr + 22r + q + 6) ≤ −2.

(2) If p ≡ 1 (mod 8), then a(pqr, pqr − 12qr + q + 7p−7
8 ) ≤ −2.

(3) If p ≡ 3 (mod 8) and p > 11, then a(pqr, pqr+pr−12qr+ q+ 5p−7
8 ) ≤

−2.
(4) If p ≡ 5 (mod 8), then a(pqr, pqr + 3pr − 11qr + q + 3p−7

8 ) ≤ −2.

(5) If p ≡ 7 (mod 8) and k = 2, then a(pqr, 9qr + q + 3p−5
8 ) ≤ −2.

(6) If p ≡ 7 (mod 8) and k = 4, then a(pqr, 8qr + q + p−3
4 ) ≤ −2.

(7) If p ≡ 7 (mod 8) and k ≥ 6, then a(pqr, 5pr + 7qr + q + p−7
8 ) ≤ −2.

Proof. (1) Let l = qr+22r+ q+6. By using congruence (2.1), we have

f(i) ≡ 9q + 70− 8i (mod 11q).

According to Lemma 2.3, we only consider f(i) for i ∈ [0, 10]∪[q, q+10]. Since
the value of f(i) is in the range 0 ≤ f(i) ≤ 11q−1, we have f(i) = 9q+70−8i.
Then

f(q + 10) < · · · < f(q + 6) <
l

r
< f(q + 5) · · · < f(q) < f(10) < · · · < f(0).

It follows from Lemma 2.3 that

a(11qr, l) = −
10
∑

i=6

a(11q, f(q + i)).

Since f(q+6) = 2 · 11+ q and f(q+10) = (k− 1)11, by Lemma 2.2, we have
a(11q, f(q + 6)) = a(11q, f(q + 10)) = 1. Thus

a(11qr, l) =− 2− a(11q, f(q + 7))− a(11q, f(q + 8))− a(11q, f(q + 9)).
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It is easy to see that f(q + 7) ≡ 2 (mod 11), f(q + 8) ≡ 5 (mod 11) and
f(q+9) ≡ 8 (mod 11). In view of Lemma 2.2, we infer a(11q, f(q+i)) ∈ {0, 1}
when i = 7, 8, 9. Therefore, a(11qr, l) ≤ −2.

(2) Let l = pqr − 12qr + q + 7p−7
8 . By using congruence f(i) ≡ (l−i)

r
(mod pq), we have f(i) ≡ pq + 7p − 4q − 8i − 7 (mod pq). According to
Lemma 2.3, we only consider f(i) for i ∈ [0, p − 1] ∪ [q, q + p − 1]. Since
0 ≤ f(i) ≤ pq − 1, we obtain

(5.1) f(i) = pq + 7p− 4q − 8i− 7.

Then we have

f(q + p− 1) < · · · < f(q +
7p− 7

8
) <

l

r
,

l

r
< f(q +

7p+ 1

8
) < · · · < f(q) < f(p− 1) < · · · < f(0).

So, by Lemma 2.3,

(5.2) a(pqr, l) = −

p−1
∑

i= 7p−7

8

a(pq, f(q + i)).

Note that f(q+ 7p−7
8 ) = (p− 12)q and f(q+p− 1) = (k− 1)p+(p− 13)q.

It follows from Lemma 2.2 that a(pq, f(q + 7p−7
8 )) = a(pq, f(q + p− 1)) = 1.

Substituting this into (5.2) yields

a(pqr, l) = −2−

p−2
∑

i= 7p+1

8

a(pq, f(q + i)).

As is known to all, the binary coefficient a(pq, f(q + i)) takes on one of
three values: −1, 0 or 1. For the purpose of proving a(pqr, l) ≤ −2, it suffices
to show that

a(pq, f(q + i)) 6= −1 when 7p+1
8 ≤ i ≤ p− 2.

If the statement was not true, then, by Lemma 2.2, we certainly have

f(q + i) ≡ 1 (mod p).

Applying (5.1) to the above congruence gives

8i− 4 ≡ 0 (mod p).

Combing this and 7p − 3 ≤ 8i − 4 ≤ 8p − 20, we obtain 8i − 4 = 7p, a
contradiction to p ≡ 1 (mod 8). Hence a(pqr, l) ≤ −2. (3) Let l = pqr +

pr − 12qr + q + 5p−7
8 . By using congruence (2.1) and p > 11, we have f(i) =

pq − 4q + 6p − 7 − 8i, where i ∈ [0, p − 1] ∪ [q, q + p − 1]. Then l
r > f(i)

whenever i ∈ {q + 5p−7
8 , q + 5p+1

8 , · · · , q + p− 1} and l
r < f(i) whenever i ∈
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{0, 1 · · · , p−1}∪{q, q+1, · · · , q+ 5p−15
8 }. Note that f(q+ 5p−7

8 ) = p+(p−12)q
and f(q + p− 1) = (k − 2)p+ (p− 13)q. So, by Lemmas 2.2 and 2.3,

a(pqr, l) = −

p−1
∑

i= 5p−7

8

a(pq, f(q + i)) = −2−

p−2
∑

i= 5p+1

8

a(pq, f(q + i)).

It is clear that a(pq, f(q + i)) ∈ {−1, 0, 1}. In order to show a(pqr, l) ≤ −2,

we only need to prove that a(pq, f(q + i)) 6= −1 for 5p+1
8 ≤ i ≤ p − 2. If

a(pq, f(q + i)) = −1, then, by Lemma 2.2, we infer

f(q + i) ≡ 5− 8i ≡ 1 (mod p).

Since 5p−3 ≤ 8i−4 ≤ 8p−20, we obtain 8i−4 = 5p, 6p, 7p. This contradicts
the fact p ≡ 3 (mod 8). Hence a(pqr, l) ≤ −2.

(4) Let l = pqr+3pr−11qr+ q+ 3p−7
8 . By substituting l into congruence

rf(i) ≡ l − i (mod pq), we have f(i) = pq − 3q + 6p − 7 − 8i, where i ∈
[0, p− 1] ∪ [q, q + p− 1]. On invoking Lemma 2.3, we can obtain

a∗(pq, f(i)) =

{

a(pq, f(i)), if i ∈ [q + 3p−7
8 , q + p− 1],

0, if i ∈ [0, p− 1] ∪ [q, q + 3p−15
8 ].

Then

(5.3) a(pqr, l) = −

p−1
∑

i= 3p−7

8

a(pq, f(q + i)).

Since f(q+ 3p−7
8 ) = 3p+(p−11)q and f(q+p−1) = (k−2)p+(p−12)q,

we have a(pq, f(q+ 3p−7
8 )) = a(pq, f(q+ p− 1)) = 1 by Lemma 2.2. Applying

this to (5.3) gives

a(pqr, l) = −2−

p−2
∑

i= 3p+1

8

a(pq, f(q + i)).

Next we use Lemma 2.2 to show that

a(pq, f(q + i)) 6= −1 for 3p+1
8 ≤ i ≤ p− 2.

If the statement would not hold, then

f(q + i) ≡ 4− 8i ≡ 1 (mod p).

It follows from 3p+1
8 ≤ i ≤ p− 2 that

8i− 3 = 3p, 4p, 5p, 6p, 7p.

This is contrary to p ≡ 5 (mod 8). Then in the range 3p+1
8 ≤ i ≤ p − 2,

the quantity a(pq, f(q + i)) takes on one of two values: 0 or 1, and thus
a(pqr, l) ≤ −2.
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(5) Let l = 9qr + q + 3p−5
8 . Proceeding as before, we have f(i) = 3p +

17q− 5− 8i, where i ∈ [0, p− 1] ∪ [q, q + p− 1]. According to Lemma 2.3, we
deduce that

a(pqr, l) = −

p−1
∑

i= 3p−5

8

a(pq, f(q + i)).

On noting that q = 2p−1, we have f(q+ 3p−5
8 ) = 9q and f(q+p−1) = p+6q.

It follows from Lemma 2.2 that

a(pq, f(q +
3p− 5

8
)) = a(pq, f(q + p− 1)) = 1,

and then

a(pqr, l) = −2−

p−2
∑

i= 3p+3

8

a(pq, f(q + i)).

Our task now is to show

f(q + i) 6≡ 1 (mod p) when 3p+3
8 ≤ i ≤ p− 2.

If the assertion was false, then f(q + i) ≡ −8i − 14 ≡ 1 (mod p). Since
3p+3

8 ≤ i ≤ p− 2, we obtain 8i+ 15 = 4p, 5p, 6p, 7p, a contradiction to p ≡ 7
(mod 8). On invoking Lemma 2.2, we infer that a(pq, f(q + i)) ∈ {0, 1} for
3p+3

8 ≤ i ≤ p− 2. Therefore, a(pqr, l) ≤ −2.

(6) Let l = 8qr + q + p−3
4 , where q = 4p − 1. By using the congruence

(2.1), we have f(i) = 2p+16q−6−8i when 0 ≤ i ≤ p−1 and q ≤ i ≤ q+p−1.
It follows from Lemma 2.3 that

a(pqr, l) = −

p−1
∑

i= p−3

4

a(pq, f(q + i)).

Note that f(q+ p−3
4 ) = 8q and f(q+ p− 1) = 2p+6q. In view of Lemma 2.2,

we have a(pq, f(q + p−3
4 )) = a(pq, f(q + p− 1)) = 1, and then

a(pqr, l) = −2−

p−2
∑

i= p+1

4

a(pq, f(q + i)).

Let p+1
4 ≤ i ≤ p− 2. We claim that f(q + i) 6≡ 1 (mod p). If otherwise,

then

f(q + i) ≡ −14− 8i ≡ 1 (mod p).

Since 2p+17 ≤ 8i+15 ≤ 8p−1, we obtain 8i+15 = 3p, 4p, 5p, 6p, 7p. This leads
to a contradiction to p ≡ 7 (mod 8). So, by Lemma 2.2, a(pq, f(q + i)) = 0
or 1. Hence a(pqr, l) ≤ −2.



260 B. ZHANG

(7) Our argument here proceeds along the same lines. Taking l = 5pr +

7qr + q + p−7
8 in congruence (2.1), we have f(i) = 6p + 15q − 7 − 8i, where

i ∈ [0, p− 1] ∪ [q, q + p− 1]. According to Lemma 2.3, we deduce that

a(pqr, l) = −

p−1
∑

i= p−7

8

a(pq, f(q + i)).

On noting that f(q + p−7
8 ) = 5p + 7q and f(q + p − 1) = (k − 2)p + 6q, we

have, in light of k ≥ 6 and Lemma 2.2,

a(pq, f(q +
p− 7

8
)) = a(pq, f(q + p− 1)) = 1,

and then

a(pqr, l) = −2−

p−2
∑

i= p+1

8

a(pq, f(q + i)).

Let p+1
8 ≤ i ≤ p− 2. Our goal now is to show

f(q + i) 6≡ 1 (mod p).

If the assertion was false, then f(q + i) ≡ −8i − 14 ≡ 1 (mod p). Since
p+1
8 ≤ i ≤ p − 2, we obtain 8i+ 15 = 2p, 3p, 4p, 5p, 6p, 7p, a contradiction to

p ≡ 7 (mod 8). On invoking Lemma 2.2, we infer that a(pq, f(q+ i)) ∈ {0, 1}.
Finally, we obtain a(pqr, l) ≤ −2. This completes the proof.

Proposition 5.2. Let 7 < p < q < r be odd primes such that q = kp+ 1
and 8r ≡ 1 (mod pq).

(1) If p ≡ 1 (mod 8), then

2 ≤











a(pqr, 6pr + 5qr + q + 4r + 3p−11
8 ), if k = 2,

a(pqr, pqr − 9qr + q + r + p−5
4 ), if k = 4,

a(pqr, pqr + 5pr − 9qr + q + r + p−9
8 ), if k ≥ 6.

(2) If p ≡ 3 (mod 8), then

2



















= A(pqr), if k = 2 and p = 11,

≤ a(pqr, pqr − pr − 8qr + q + p−11
8 ), if k = 2 and p > 11,

≤ a(pqr, pqr − pr − 10qr + q + 3p−9
8 ), if k = 4,

≤ a(pqr, pqr + 3pr − 9qr + q + r + 3p−9
8 ), if k ≥ 6.

(3) If p ≡ 5 (mod 8), then

2 ≤

{

a(pqr, pqr + 3pr − 13qr + q + 2r + 5p−9
8 ), if k = 2,

a(pqr, pqr + pr − 10qr + q + r + 5p−9
8 ), if k ≥ 4.

(4) If p ≡ 7 (mod 8), then 2 ≤ a(pqr, pqr − 10qr + q + r + 7p−9
8 ).
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Proof. The proof of this proposition follows in a similar manner and so
is omitted.
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