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ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE

EQUATION Dx2 + kn = B

Zhongfeng Zhang and Alain Togbé

Zhaoqing University, China and Purdue University Northwest, USA

Abstract. In this paper, we prove that the Ramanujan-Nagell type
Diophantine equation Dx2+kn = B has at most three nonnegative integer
solutions (x, n) for k a prime and B,D positive integers.

1. Introduction

Studying some generalized Ramanujan-Nagell equations, Ulas ([3]) gave
the following conjecture.

Conjecture 1.1 ([3, Conjecture 4.4]). The Diophantine equation

(1.1) x2 + kn = B

has at most three nonnegative integers (x, n), for any given integers k ≥ 2
and B ≥ 1.

Meng Bai and the first author ([1]) confirmed Conjecture 1.1 for k = 2
and the authors ([6]) of this paper for k an odd prime, i.e. they proved the
following theorem.

Theorem 1.2. For any prime p and any positive integer B, the Diophan-

tine equation

x2 + pn = B

has at most three solutions (x, n) in nonnegative integers. Furthermore, if

p ≥ 3 and p2 ∤ B, we can replace three by two.
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Their result and our previous results (see [5]-[7]) give us the motivation
to consider the following equation

(1.2) Dx2 + kn = B

and to prove the following result.

Theorem 1.3. Let p be a prime, B and D be positive integers. Then, the

Diophantine equation

(1.3) Dx2 + pn = B

has at most three nonnegative integer solutions (x, n). Furthermore, if p2 ∤ B,

then we can replace three by two when p ≥ 3 or when p = 2 with D 6= 1 when

B is odd and D 6= 2 when B is even.

Remark 1.4. The result in Theorem 1.3 is the best possible.

(1) Choose D so that 4D ± 1 = pr, where p is a prime and r ≥ 1. Then,
for B = 64D3±48D2+13D±1, we have p2 ∤ B and the equation (1.3)
has the solutions (x, n) = (1, 3r), (8D ± 3, r), where the sign agrees
with the sign in 4D ± 1.

(2) For (p,D,B) =
(

2, 3, 43 (2
4m + 22m + 1)

)

,m > 1, the equation (1.3)
has the solutions

(x, n) =

(

1

3
(22m+1 + 1), 0

)

,

(

1

3
(22m+1 − 2), 2m+ 2

)

,

(

2

3
(22m−1 + 1), 4m

)

.

2. Preliminaries

First, we recall a result on Pell equation, which was proved by Walker
([4]) and a slightly improved version with a short and straightforward proof
by Luo and Yuan ([2]).

Lemma 2.1. Let (x, y) be a positive integer solution of the Diophantine

equation

(2.1) ux2 − vy2 = 1,

where u > 1 and v are coprime positive integers with uv nonsquare.

If every prime divisor of x divides u, then either

x
√
u+ y

√
v = ε

or

x
√
u+ y

√
v = ε3, x = 3tx1, 3 ∤ x1, 3

t + 3 = 4ux2
1,

where ε = x1
√
u + y1

√
v is the minimal positive solution of (2.1) and t is a

positive integer.
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Now, we will prove a series of three results that will be useful for the proof
of Theorem 1.3. The first result in this series is the following.

Lemma 2.2. Let D be a nonsquare positive integer and A a positive inte-

ger. Let p be a prime. Then, the Diophantine equation

(2.2) Ap2m −Dy2 = 1

has at most one positive integer solution (m, y).

Proof. Let (m, y) = (r, a) be the least positive integer solution of (2.2).
Consider (2.2) as an example of (2.1): letting u and v be as in Lemma 2.1, let

u = Ap2r, v = D.

Let (m, y) = (s, b) be any positive integer solution to (2.2). Let ε =
√

Ap2r +

a
√
D and let α = ps−r

√

Ap2r + b
√
D. By Lemma 2.1 either α = ε or α = ε3.

If α = ε3 then, by Lemma 2.1, ps−r = 3t, so that p = 3. But then the equation
3t + 3 = 4Ap2r, which is required by Lemma 2.1, is impossible modulo 9. So
by Lemma 2.1, we must have α = ε and then s = r, which completes the
proof of Lemma 2.2.

We will now prove the second preliminary result. Here, we deal with the
case where p is an odd prime with p2 ∤ B.

Lemma 2.3. Let B,D be positive integers with D > 1 and B ≥ 4D. Let

p be an odd prime with p2 ∤ B. Then, the Diophantine equation (1.3) has at

most two nonnegative integer solutions (x, n).

Proof. We will consider two cases according to the divisibility of B by
p.

(1) p ∤ B. At this level, we will also study the problem according to the
divisibility of D by p.

(i) If p|D, then n can only take the value 0 since p ∤ B. So, Diophantine
equation (1.3) has at most one nonnegative integer solution (x, n).

(ii) If p ∤ D, then here we will study the following two claims.

Claim 1. There is at most one nonnegative integer solution (x, n) satis-

fying pn < 2
√

D(B − 1)−D + 1.

Assume that (x1, n1) and (x2, n2) are two distinct integer solutions of equation

(1.3) satisfying x1 > x2 ≥ 0, pn1 < pn2 < 2
√

D(B − 1)−D+1. Thus, we get

D(x2
1 − x2

2) = pn2 − pn1 ≤ pn2 − 1

and

D(x2
1 − x2

2) = D(x1 + x2)(x1 − x2) ≥ D(x1 + x2) ≥ D(2x2 + 1) ≥ 2Dx2 +D.

This means that pn2 − (D + 1) ≥ 2Dx2, which yields

p2n2 − 2(D + 1)pn2 + (D + 1)2 ≥ 4D2x2
2 = 4D(B − pn2).
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Therefore, we obtain

p2n2 + 2(D − 1)pn2 + (D − 1)2 + 4D ≥ 4DB,

i.e.
(pn2 +D − 1)2 ≥ 4D(B − 1),

which yields pn2 ≥ 2
√

D(B − 1)−D + 1. This leads to a contradiction and
finishes the proof of the first claim.

Claim 2. There is at most one nonnegative integer solution (x, n) satis-

fying pn ≥ 2
√

D(B − 1)−D + 1.

In this case, we have n > 0 since 2
√

D(B − 1)−D+1 > 1, B ≥ 4D, and
D > 1. Assume that (x1, n1) and (x2, n2) are two distinct integer solutions

of equation (1.3) satisfying x1 > x2 ≥ 0, pn2 > pn1 ≥ 2
√

D(B − 1)−D + 1.
We have p ∤ x1x2 as p ∤ B. So, p ≥ 3 leads to p ∤ gcd(x1 + x2, x1 − x2). Then,
from

D(x1 + x2)(x1 − x2) = D(x2
1 − x2

2) = pn2 − pn1 = pn1(pn2−n1 − 1)

and p ∤ D, we deduce that pn1 |x1 + x2 or pn1 |x1 − x2. Therefore, we get

2x1 − 1 ≥ x1 + x2 ≥ pn1 .

This implies that

B − pn1 = Dx2
1 ≥ D

(

pn1 + 1

2

)2

.

Thus, we deduce that

4BD + 4D + 4 ≥ (Dpn1 +D + 2)2,

which yields

pn1 ≤
√

4B

D
+

4

D
+

4

D2
− 1− 2

D
.

Recall that D > 1 and B ≥ 4D. Thus, we have

2
√

D(B − 1)−D + 1 =
√

D(B − 1) +
√

D(B − 1)−D + 1

≥
√

2(B − 1) +
√

D(4D − 1)−D + 1

>
√

2(B − 1) + 2D − 1−D + 1

=
√

2(B − 1) +D ≥
√

2(B − 1) + 2

and
√

4B

D
+

4

D
+

4

D2
− 1− 2

D
<

√
2B + 3− 1 <

√

2(B − 1) + 2.

This leads to a contradiction and completes the proof of the second claim.

(2) p||B, that is p|B, but p2 ∤ B. At this level also, we will also study the
problem according to the divisibility of D by p.
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(i) Suppose that p|D. Let D = pD1. If p|D1, then n = 1 since p2 ∤ B.
If p ∤ D1, let B = pB1, then p ∤ B1. It is obvious that n ≥ 1 and
the Diophantine equation (1.3) turns into D1x

2+pn1 = B1, with n1 =
n−1. By the result of (1) for D1 > 1 and Theorem 1.2 for D1 = 1, this
equation has at most two nonnegative integer solutions (x, n1), then
the Diophantine equation (1.3) has at most two nonnegative integer
solutions (x, n).

(ii) Finally, suppose that p ∤ D. If n ≥ 2, then p|x and we get p2|B,
which is a contradiction. So we have n ≤ 1 and then the Diophantine
equation (1.3) has at most two nonnegative integer solutions (x, n).

The last preliminary result deals with the case p = 2. The proof will
follow the line of that of Lemma 2.3. But for the sake of completeness, we
will give some details.

Lemma 2.4. Let B,D be positive integers with 4 ∤ B, B ≥ 4D, D 6= 1
when B is odd and D 6= 2 when B is even. Then, the Diophantine equation

(2.3) Dx2 + 2n = B

has at most two nonnegative integer solutions (x, n).

Proof. We will also consider two cases.

(1) 2 ∤ B, then D > 1 since D 6= 1. Here will also distinguish two cases
according to the parity of D.

(i) If 2|D, then n can only take the value 0 since 2 ∤ B. Therefore, Dio-
phantine equation (1.3) has at most one nonnegative integer solution
(x, n).

(ii) If 2 ∤ D, then we will study the following two claims.

Claim 1. There is at most one nonnegative integer solution (x, n) satis-

fying 2n < 2
√

D(B − 1)−D + 1.

The proof of this claim is similar to that of Lemma 2.3, Claim 1. Then, we
leave it to the reader.

Claim 2. There is at most one nonnegative integer solution (x, n) satis-

fying 2n ≥ 2
√

D(B − 1)−D + 1.

In this case, we have n > 0 since 2
√

D(B − 1)−D+1 > 1, B ≥ 4D, and
D > 1. Assume that (x1, n1) and (x2, n2) are two distinct integer solutions

of equation (1.3) satisfying x1 > x2 ≥ 0, 2n2 > 2n1 ≥ 2
√

D(B − 1)−D + 1.
One can see that 2 ∤ x1x2 since 2 ∤ B. So, we get 2|| gcd(x1 + x2, x1 − x2).
Then, from

D(x1 + x2)(x1 − x2) = D(x2
1 − x2

2) = 2n2 − 2n1 = 2n1(2n2−n1 − 1),
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we deduce that 2n1−1|x1 + x2 or 2n1−1|x1 − x2. Hence, we obtain

2x1 − 2 ≥ x1 + x2 ≥ 2n1−1.

This implies that

B − 2n1 = Dx2
1 ≥ D(2n1−2 + 1)2.

Thus, we deduce that

BD + 4D + 4 ≥ (2n1−2D +D + 2)2,

which yields

2n1 ≤ 4

√

B

D
+

4

D
+

4

D2
− 4− 8

D
.

Recall that D > 1 and 2 ∤ D. We have D = 3 or D ≥ 5. As B ≥ 4D, if
D = 3, then a straightforward calculation shows that

4

√

B

D
+

4

D
+

4

D2
− 4− 8

D
< 2

√

D(B − 1)−D + 1.

For D ≥ 5, we can make a discussion similar that of Lemma 2.3, Claim 2.
This leads to a contradiction.

(2) If 2||B, that is 2|B, but 4 ∤ B, then one can use a method similar to
that of Lemma 2.3 (2) for D > 2, but the case D = 2 will leads to
D1 = 1 which is not handled by Theorem 1.2. If D = 1 and n ≥ 2,
then 2|x, which leads to 4|B, so we have n ≤ 1. We conclude that
the Diophantine equation (1.3) has at most two nonnegative integer
solutions (x, n) in this case for D 6= 2.

3. Proof of Theorem 1.3

Let us start the proof by studying some particular cases:

• If B < 4D, then x ≤ 1 and therefore equation (1.3) has at most two
nonnegative integer solutions (x, n).

• If D = d2D1, we can rewrite Dx2 as D1(dx)
2 = D1z

2. If D1 = 1, we
can use Theorem 1.2, with the exceptional case p = 2, 2||B by Lemma
2.4.

Therefore, for the remainder of the proof, we assume that B ≥ 4D and D > 1
squarefree. Moreover, we will consider two cases: p2 ∤ B and p2 | B.

Case 1: p2 ∤ B. Combining Lemma 2.3 and Lemma 2.4, we see that equation
(1.3) has at most two nonnegative integer solutions (x, n) in this case.

Case 2: p2|B. Here also, we will consider two cases according to the divisibility
of D by p.



RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION Dx
2 + k

n = B 269

(i) If p ∤ D, then we will use Lemma 2.2 to prove that equation (1.3) has
at most three nonnegative integer solutions (x, n). Assume that p2k|B
and p2(k+1) ∤ B. Let B = p2kB0. We will prove that there is at most
one nonnegative integer solution (x, n) satisfying n < 2k and at most
two nonnegative integer solutions (x, n) satisfying n ≥ 2k.

If (x, n) is a nonnegative integer solution of (1.3) with n < 2k,
then from Dx2 + pn = B = p2kB0, we deduce that 2|n. Put n = 2m.
Then, pm|x. Put x = pmz. Thus, we have

Dz2 + 1 = B0p
2(k−m),

with k −m = l ≥ 1, i.e.

B0p
2l −Dz2 = 1.

By Lemma 2.2, the above equation has most one positive integer solu-
tion (z, l). This means that equation (1.3) has at most one nonnegative
integer solution (x, n) satisfying n < 2k.

If n ≥ 2k, then pk|x. Put x = pkz, u = n− 2k, B = p2kB0. Then,
equation (1.3) becomes

Dz2 + pu = B0,

with p2 ∤ B0. By Case 1, this equation has at most two nonnegative
integer solution (z, u), i.e. equation (1.3) has at most two nonnegative
integer solutions (x, n) satisfying n ≥ 2k.

(ii) If p|D, then it is obvious that n ≥ 1. LetD = pD1, n1 = n−1, B = pB1,
then p ∤ D1 and equation (1.3) becomes

D1x
2 + pn1 = B1.

If p||B1, then n1 ≤ 1, and equation (1.3) has at most two nonnegative
integer solutions (x, n). If p2|B1, then equation (1.3) has at most three
nonnegative integer solutions (x, n) for D1 = 1 by Theorem 1.2 and
for D1 > 1 by Case 2 (i). This completes the proof of Theorem 1.3.
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[5] Z. Zhang and A. Togbé, On two Diophantine equations of Ramanujan-Nagell type,

Glas. Mat. Ser. III 51(71) (2016), 17–22.
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