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CONTINUITY OF GENERALIZED RIESZ POTENTIALS
FOR DOUBLE PHASE FUNCTIONALS WITH VARIABLE
EXPONENTS

TAKAO OHNO AND TETSU SHIMOMURA

Oita University and Hiroshima University, Japan

ABSTRACT. In this note, we discuss the continuity of generalized Riesz
potentials I, f of functions in Morrey spaces Lé”’(')(G) of double phase
functionals with variable exponents.

1. INTRODUCTION

The double phase functional introduced by Zhikov ([30]) in the 1980s
has been studied intensively by many mathematichans. Regarding regularity
theory of differential equations, Baroni, Colombo and Mingione in [1, 4, 5]
studied a double phase functional

(z,t) =t? +a(z)t?, 2 € RN, t >0,

where N > 2, 1 < p < ¢, a(+) is non-negative, bounded and Hélder continuous
of order 6 € (0,1]. We refer to [10, 16] for Sobolev’s inequality, [11] for
Trudinger’s inequality and e.g. [2, 7, 8] for other double phase problems.

For 0 < a < N and a locally integrable function f on RY the Riesz
potential I, f of order « is defined by

Inf@) = [ o= yl" ) dy

In [12] we discussed the continuity of Riesz potentials I, f of functions in
Morrey spaces L®" (RN ) of the double phase functionals ®(z,t). We refer to
[16, Section 5] for the L® case and [14] for the LP()*() case.
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In the present note, we consider the case ®(z,t) is a double phase func-
tional given by
®(x,t) = tP@ + (b(x)t) 1@,
where p(z) < g(z) and b(+) is non-negative, bounded and Hoélder continuous
of order 6 € (0, 1] ([10], cf. [3, 25]).

To obtain general results, we consider the family (p) of all functions p sat-
isfying the following conditions: p : (0,00) — (0, 00) is a measurable function

such that
r ds
p(s) — < oo
0 S

for all sufficiently small » > 0 and there exists constants 0 < k < 1,0 < k1 <
ko and C, > 0 such that

kot s
(1.1) swp o)< Cy [ o)

kr<s<r i S
for all » > 0 (e.g. [6, 26]). We do not postulate the doubling condition on p.

ExXaMPLE 1.1. If p satisfies the doubling condition, that is, there exists
a constant C' > 0 such that C~1 < p(r)/p(s) < C for 1/2 < r/s < 2, then
p satisfies (1.1) whenever k = 1/2 and 2k; = ko. If p is increasing, then
p satisfies (1.1) with & = 1/2, k; = 1 and k2 = 2. If @ € R such that
p(r) = r®e~ /" then p satisfies (1.1) with k = 1/2, ky = 1/4 and ky = 1/2.
See also [20, Lemma 2.5], [23, 26] and [27, Remark 2.2].

Let G be an open bounded set in R™. For a function p € (p), we define
the generalized Riesz potential I, f of f by

[pf(x):‘/cwdy,

|z —y[NV

where f € LY(G). We write I,f = I, f when p(r) = r®, 0 < a < N. We refer
to [15, 21, 22, 24, 29] etc. for the study of I, f.

Our aim in this note is to study the continuity of generalized Riesz po-
tential I,f of functions f in Morrey spaces L**()(G) of the double phase
functionals with variable exponents (Theorem 2.2), as an extension of [12,
Theorem 4.1].

2. DEFINITIONS AND THE MAIN THEOREM

Throughout this paper, let C' denote various constants independent of the
variables in question and log be a natural logarithm.
Let p(-) be a measurable functions on G such that

(P1) 1 <p :=infyeqp(z) <sup,cqp(x) = pT < oo,
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(P2) p(-) is log-Holder continuous on G, namely
< <
log(e +1/]z —yl)
with a constant C), > 0.
Let v(-) be a measurable functions on G such that

Ip(z) — p(y)| (z,y € G),

0<v™ :=inf v(z) < supr(z) = vh < .
zelG zeG

Let B(z,r) denote the open ball centered at z € RY with radius r > 0.
For a set £ C RY, |E| denotes the Lebesgue measure of E. Set dg =
sup{|z — y| : x,y € G}. Morrey space with variable exponents LP()*()(@) is
the family of measurable functions f on G satisfying

LrOYO(@) = {f € Lioe(G);

,r,u(w)

sup o [F()PW dy < OO}
z€G,0<r<dg |B(Ia T)| GNB(x,r)

It is a Banach space with respect to the norm

1l rrwore) = inf{)\ ~0;

v(z) p(y)
ap M) dygl}

veG0<r<dg |B(z,7)| GNB(z,r) ( A
(cf. see [18]).
We consider a function ®(z,t) : G x [0,00) — [0, 00) satisfying the follow-
ing conditions (®1) and (P2):
(®1) P(-,t) is measurable on G for each t > 0 and ®(z, -) is convex on
[0, 00) for each = € G;
(®2) there exists a constant A; > 1 such that A;' < ®(x,1) < A, for all
req.

The Musielak-Orlicz-Morrey space L*¥()(G) is defined by
L0(6) = {f € L6

v(z)
sup S d (y, M) dy < oo for some A > O}.
veG0<r<dg |B(®,7)| JanB(ar A

It is a Banach space with respect to the norm

1fllzevore = inf{)\ >0 :

() / ( |f(y)|>
sup _ P |y, dy < 1}
z€G,0<r<da |B($,T)| GNB(z,r) A
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(see [9, 19]).

Let ¢(-) be a measurable function on G such that
(Ql) 1 < ¢ :=infyeqq(x) <supyeqq(x) =: ¢ < oo,
(Q2) q(-) is log-Holder continuous on G, namely

< &
log(e +1/]z - yl)
with a constant C; > 0.

lg(z) — q(y)] (z,y € G),

In what follows, set
®(x,t) = tP@ + (b(x)t) 1@,

where p(x) < g(z) and b(-) is non-negative, bounded and Hoélder continuous
of order 6 € (0,1] ([10], cf. [3, 25]).

REMARK 2.1. Let f € L(I””(')(G) be a measurable function on G. Then
note that f € LPO»(O)(G) and bf € L1OO(G).

We state the following, as an extension of [12, Theorem 4.1].

THEOREM 2.2. Let p € (p). Assume that there are constants ny > 0,12 >
0,7 > 0 and Cy > 0 such that

(2.1)

p(lz —yl) p(lz—yl)‘ <c |z — 2| p(r|z —yl)

- 0
e [z —yl" fo—yY

whenever z,y,z € G and |z — z| < |x — y|/2. Abbreviate

4k2’l" d 4k2’l" d
W, 2,7) = / @ /()0 ) 95 / @) /a@) pg) B
0

s 0 s
6kor d Gkor d
n / s OO0 (5) / s () 2
0 0
4kodg d
4y / /0(2) p() B
klr S

4k}27’dc dS
m / s (@) =mato 5 oy 95
2kyTr S

4k}27’dc d
m / s—v@)/a@)=m g 95
2

kiTtr S

for x,z € G and 0 < r < dg, where k1 and ko are constants in (p). Assume
that (x,z,r) < oo for all x,z € G and 0 < r < dg. Then there exists a
constant C' > 0 such that

b(2) L, f(x) = b(2) L, f(2)| < CY(z, 2 |z — z])

for all x, 2z € G and measurable functions f on G with ||f| p+.vc)c) < 1.
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REMARK 2.3. Let p(r) = 7®e¢~'/" be as in Example 1.1. Then the mean
value property implies that (2.1) holds for 91 = 1,72 = 2 and 7 = 3/2. Note
here that there exists a constant C > 1 such that

o120 < 4 (80 <20

rN+2 = gy \ N rN+2

forall0 <r <dgand |z —y|/2<|z—y+t(z—2z)] <3z —y|/2for 0 <t <1
and |z — z| < |z —y|/2.

REMARK 2.4. If p(r)r® is increasing for some a > 0 and p(r)/r® is de-
creasing for some b > 0, then p satisfies the doubling condition and

p(r)  p(s) pr) 1

_ P> or =
rN sV rN+1’ 2

< Colr — 5| <Z<o
'

See [21].

3. COROLLARIES
In this section, we give consequences of our theorem.

COROLLARY 3.1. Let p(r) = r*(log(e + 1/7))? for « > 0 and B € R.
Suppose infyeq(v(z)—ap(z)) > 0 and inf ;e ((a+0)p(z) —v(x)) > 0. Further
suppose infycq(v(z) — (a — 1)g(x)) > 0 and inf,eq(ag(x) —v(z)) > 0. Then
there exists a constant C' > 0 such that

o), () — (), £ 2)]
< C{|:1: _ Z|a—V(w)/p(w)+9 + |z — Z|a—V(w)/q(w)
o — 2| EEIN g 2| ) Y log(e + 1/ — 21)°
for all 7,z € G and measurable functions f on G with || f| e ) < 1.

PROOF. Since inf,eq((a + 0)p(x) — v(z)) > 0, taking €1 such that 0 <
g1 < a—v(x)/p(x) + 0, there exists a constant ¢; > 0 such that

sy log e+ 1/51))” < easy TP log(e +1/52))
whenever 0 < s1 < so (see e.g. [17, 28]). Therefore we have

ear ds
/ so—v(@)/p(z)+0 (log(e + 1/5))6 e
; S

4k2’l"
< Cl(4k2T)a7V(m)/p(I)+9*51(log(e + 1/(4k2r)))ﬁ/ 561 %

0
< Ore=v@/P@+0 (1og(e 4 1/1))?

and, similarly we obtain

6kor d
/ sa_”(z)/p(z)""g(log(e + 1/5))[3 ?‘9 < Oro‘_”(z)/p(z)+9(log(e + 1/1“))'8.
0
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Since inf,eq(ag(x) — v(z)) > 0, we obtain
4k2’l" dS
/ sV @/a@) (1og(e 4+ 1/5))? = < Crev@/4@) (Jog(e 4 1/7))P
0
and
6]{}27‘ dS
/ so‘_”(z)/Q(Z)(log(e +1/s))? ~ < Orev)/az) (log(e + 1/1))".
0
Since infyeq(v(z) — ap(z)) > 0, taking e, such that 0 < g2 < v(z)/p(2) — «,
there exists a constant co > 0 such that
sg‘”(’”/p(“*” (log(e +1/s2))P < 025(11_'}(2)/1)(2)%2 (log(e +1/51))?
whenever 0 < s7 < sg, so that
dkadg ds
0 / /23 (log(e + 1/5))7 L
kl’l" S
dkoda ds

< C2T0(klr)a—v(z)/p(z)+sz (log(e + 1/(k1r)))ﬁ/ €2 -

kl’l"
< Cro= @ IE0 (1og(e 11 /1)
We also have
4kQTdG dS
7“/ Sa—u(z)/p(w)—l"‘e(log(e +1/s))f =
, S

kiTr
< C,«aﬂ/(m)/p(m)w(log(e +1/r))P,
since infyeq(v(x) — (a+ 6 — 1)p(z)) > infeq(v(z) — ap(z)) > 0, and

4k27’dG dS
r/ so‘_”(w)/q(w)_l(log(e + 1/5))6 5 < ore—v@)/a(z) (log(e + 1/7“))'3,
2

kiTr
since infyeq(v(z) — (o — 1)g(z)) > 0.
Collecting these facts, we obtain by our assumptions

Y(x, z,7) < C{ra_”(w)/p(w)‘“g + pa—v(@)/q(x)
—+ ,r,afv(z)/p(z)+9 + ,,,.Oé*l/(z)/q(z)}(log(e + 1/’)”))ﬁ < 0

for z,z € G and 0 < r < dg. By Theorem 2.2, we obtain the required result.
O

COROLLARY 3.2. Suppose inf,cq(v(z) — ap(z)) > 0 and infyeq((o +
O)p(x) — v(z)) > 0. Further suppose inf,cq(v(z) — (o — 1)g(z)) > 0 and
infyeq(ag(z) — v(x)) > 0. Then there exists a constant C' > 0 such that

(@) o f (@) = b(z) o f(2)] < C{la — 2|0V OPOH0 4 |g — pjamvi)/al@)
+ |z — Z|a—u(z)/p(z)+9 + |z — Z|a—v(z)/q(z)}

for all x,z € G and measurable functions f on G with ||f| p+.vc)(q) < 1.
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PROOF. This is the case 8 = 0 in Corollary 3.1. O

Compare Corollaries 3.1 and 3.2 with [12, Theorem 4.1].

—1/r

COROLLARY 3.3. Let p(r) = r%e be as in Example 1.1. Then there

exists a constant C' > 0 such that
[b(@) 1, f(2) = b(2)1,f(2)] < Clz — 2|
for all z,z € G and measurable functions f on G with || f| o)) < 1.

PROOF. Since, for a € R, there exists a constant ¢ > 0 such that

" d
_ S

s% 1/s 22 SC’I”H
0 S

for all 0 < r < dg, it follows from Remark 2.3 that
U(z,z,7) < C(r+ 1) < Cr?
forallz,z € Gand 0 < r < dg, since 6 € (0,1]. Hence, we obtain the required

inequality. O

COROLLARY 3.4. Let p(r) = r*(log(e + 1/7))? for « > 0 and B € R.
Suppose infyeq(v(x) — (@ —1)p(x)) > 0 and inf, eq(ap(z) —v(z)) > 0. Then
there exists a constant C' > 0 such that

(Lo f(x) = 1, f(2)]
<C {|x — gfamr@/p@) g - Z|a—u<z>/p<z>} (log(e + 1/|z — z|))?

for all 7,z € G and measurable functions f on G with || f| prc)ver () < 1.

PROOF. To show this, we take b(-) = 1 and ¢(-) = p(-) in the proof of
Theorem 2.2. As in the proof of Corollary 3.1, we obtain the result. O

4. LEMMAS

Before giving a proof of Theorem 2.2, we prepare two lemmas. To prove
the following lemma, (P2) and (Q2) were used.
LEMMA 4.1 ([13, Lemma 2.1], cf. [14, Lemma 2.7]). There exists a con-
stant C' > 0 such that
rv(@)/p(@) )l dy < ©
TR AT y)l dy <
|B(‘T7T‘)| GNB(x,r)

for all x € G, 0 < r < dg and measurable functions f on G with
HfHLP(-)w(-)(G) <1
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LEMMA 4.2. Let 7 > 0,8 € R and p € (p). Let f be a nonnegative

function on G such that | f||zs).v)(q) < 1. Then there exists a constant
C > 0 such that

2koTr
(41) / p(tlz —yl) f(y) dy < C/ : 5~V @)/2(@)=8 () ds
GNB(z,r) 0

|z — y[NFP s
and
4koTd
(4.2) / p(tlz —yl) f(y) dy < C e V@) /p() =8 o) ds
G\B(z,r) |.I - y|N+5 kiTr s

for all x € G and 0 < r < d¢, where ki and ko are constants in (p).

PROOF. Let f be a nonnegative function on G such that || f|| Lrc)ve) () <
1. Take v € R such that 1 < v < min{1/k,2}. If y € G N (B(z,+/r)\
B(x,~771r)) for j € Z, then a geometric observation and (1.1) show

p(r]z —y|) _ max {17V}

< 4 sup p(s)
|.’II - y|N+ﬂ (/YJT)N—i_B yi—lrr<s<yitr
max {1,V *+F}
<——— sup p(s)
(’YJT)NJrﬁ kyiTtr<s<~itr

_ Cpmax {14V} e (5) %

— i PLS) —,
(’YJT)NJrﬁ YikyTT s

by v < 1/k. By Lemma 4.1, we have

1
|B(‘T7 /er)| GNB(x,yIr)

for some constant C; > 0, so that

fy)dy < C(y/r)V@/P)

plrlz —yDfy)
, _ Ty _aNts W
GN(B(z,yir)\B(z,yi~1r)) |z —yl

Coon max{l,vNJ“@} v kaTr ds 1
< FInY; _ P(S)—'Bij - fy)dy
(7 ’f‘) YikiTr s | (‘/I:77 T)' GNB(x,yir)
C,on max {1,yN+F8 v karr ds i\ —v(z)/p(x)
< Goonamax {1700} (TR S ()
(FY T) yikiTr §
) YikoTr d
< O\ Gy max {1,287} (i) s [ i) &
~yikiTr

< C1Cyon max {1, 2N+ﬁ} max {(Tkl)”(m)/p(mHﬁ, (Tkg)”(z)/p(z)Jrﬁ}

v koTr d
» / (@) /()= ) B
Y

JkiTr s
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)

TkoTr
<0y /7 T @ @)=5 ) 4
.

kit S
where oy denotes the volume of the unit ball B(0,1) and
Cy = C1Cpon max {1,2V 17}
X max {(Tkﬂ'ﬁ/piw, (rhy)? /P78 (rhy) /P HE, (Tk2>u*/p++6} '

Therefore we have
(4.3)

Tl — v karr _ _ ds
/ | | p(| yjlv)féy) dy§02/, s @) /p(@)=8 55y L5
GN(B(z,yIr)\B(z,yI~1r)) |$ - y| YikiTr S

Let jo be the smallest integer such that ko/k; < 70, Using (4.3), we obtain

/ p(tlz —y)) f(y) dy
GNB(z,r) |.I - y|N+5
R p(rlz —y)) f ()
- Z N+p dy
=0/ GN(B(xy~Ir)\B(z,y~i-1r)) |z — v

o v T kaTr d
<G Z/ 5 @)/p()=6 () 8
1 v

=0 —JkiTr S
00 v71+j0k17'r
<0) / @) /@)= () 45
=0 y—ikiTr S

which proves (4.1).
Let j1 be the smallest integer such that dg < 471r. If we use (4.3),

p(tlz —y)) f(y)
— 2 dy
~/G\B(:E,r) |z — y|N+F
J1
<

/ p(rle —yDf(y)
GN(B(z,yir)\B(z,y7~1r)) |z — y|N+F

j=1

J1 NI ko ds
e Z/ §(@)/p(@)=B ) B

j=1 YikiTr S

J1 ~ITI0 ey 7o
<Gy Z/ @) /@)= () 45

j=1 YikiTr S

4]€2Tdc dS
< Czjo/ @) /@)= () B
k

17r §
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Thus, (4.2) follows. O

5. PROOF OF THEOREM 2.2

Without loss of generality, we can assume that f is a nonnegative function
on G such that || f[|p# ) < 1. First note from (2.1) that for z,z € G' and
r=|r—z|
b(x)1, f(z) — b(2)1,f(2)|

Sb(gc)/ MM—M%@LM
GNB(x,2r) |'r - y|
+M@/‘ fﬂz—m%@)@
GNB(x,2r) |Z - y|

+w@j_M@|Gw<z>ﬂ%£%%§@dy

plz—yl)  plz—yl)
- b(x) /G\B(z.,Zr) ‘ f
e =9Df )

|z —y|N V—mN
< C{b T /
( ) GNB(z,2r) |x_y|N

" oz = DI W), o oz =1
" ( )x/C;ﬂB(z,Br) |Z _y|N v L\B(z,r) |Z_y|N Y

+rb(z) / plrlz ~ v)iy) dy}
G\ B(z,2r) |.’II - y| 2

For I (z), we have

@< [ o P =D 1) ) ) dy

x,2r) |I - y|N

+ [ . =80 ) () dy

x,2r) |'r - y|N

<C MW—MV@EM+/' pllz = yDwr)t
N GNB(z,2r)

GNB(x,2r) |'r - y|N79 |I - y|N
= CIll(,T) + 112(,@).

By (4.1), we obtain

S

4k}27‘ dS
I (z) < O/ S—V(w)/P(ﬂﬂ)-'rOp(S) =,
0
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and
4k2’l" d
Lis(z) < C / va<m>/q<m>p(s)§'
0

For I,(z), we have by (4.1)

- Gkar d 6kor d
fi(z) <C {/ sV /p(:) 0 5y 85 +/ /4 p(s) _S} ,
0 0

S S

as in the estimate of I11(z) and I12(z).
For I5(z), we have by (4.2)

4koda d
(z) < O’ / /D) ) 85

klr S
Finally, for I3(x) we have

h@hwméwwmﬁgﬁﬁ%ww—MMﬂw@

p(r|z —y|)

b [ P b)) dy
G\B(w,2r) [T —y[N T2

< Crm / prle —yDIW) g,

G\B(z,2r) 1T =Yl 2

4m / plrle — yD{b() f ()}
G\ B(z,2r)

|z —y| N+

= 0131 (I) + 132(517).
Note from (4.2) that

4k}2TdG dS
I3 (z) < CrMm / s7V(@)/p(@)=matb gy 22
2]{}1 Tr S
and
4k}27’dc ds
Isp(z) < Cr™ / svi@)/a() = 5y B
2k17'r S

Collecting these facts, we obtain

[b(z)I, f(x) —b(2)I,f(2)| < CY(x, z,7).
Thus this theorem is proved.
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