CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS WITH VARIABLE EXPONENTS

TAKAO OHNO AND TETSU SHIMOMURA
Oita University and Hiroshima University, Japan

Abstract. In this note, we discuss the continuity of generalized Riesz potentials $I_\alpha f$ of functions in Morrey spaces $L^{\Phi,\nu}(G)$ of double phase functionals with variable exponents.

1. Introduction

The double phase functional introduced by Zhikov ([30]) in the 1980s has been studied intensively by many mathematicians. Regarding regularity theory of differential equations, Baroni, Colombo and Mingione in [1, 4, 5] studied a double phase functional

$$\tilde{\Phi}(x,t) = t^p + a(x)t^q, \quad x \in \mathbb{R}^N, \quad t \geq 0,$$

where $N \geq 2$, $1 < p < q$, $a(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in (0, 1]$. We refer to [10, 16] for Sobolev’s inequality, [11] for Trudinger’s inequality and e.g. [2, 7, 8] for other double phase problems.

For $0 < \alpha < N$ and a locally integrable function f on \mathbb{R}^N the Riesz potential $I_\alpha f$ of order α is defined by

$$I_\alpha f(x) = \int_{\mathbb{R}^N} |x-y|^{\alpha-N} f(y) \, dy.$$

In [12] we discussed the continuity of Riesz potentials $I_\alpha f$ of functions in Morrey spaces $L^{\tilde{\Phi},\nu}(\mathbb{R}^N)$ of the double phase functionals $\tilde{\Phi}(x,t)$. We refer to [16, Section 5] for the L^Φ case and [14] for the $L^{p(\cdot),\nu(\cdot)}$ case.

2020 Mathematics Subject Classification. 31B15, 46E35.

Key words and phrases. Riesz potentials, Morrey spaces, double phase functionals, continuity.
In the present note, we consider the case \(\Phi(x,t) \) is a double phase functional given by
\[
\Phi(x,t) = t^{p(x)} + (b(x)t)^{q(x)},
\]
where \(p(x) < q(x) \) and \(b(\cdot) \) is non-negative, bounded and Hölder continuous of order \(\theta \in (0,1] \) ([10], cf. [3, 25]).

To obtain general results, we consider the family \((\rho) \) of all functions \(\rho \) satisfying the following conditions:
\[
\rho : (0, \infty) \to (0, \infty) \text{ is a measurable function such that }
\int_0^r \rho(s) \frac{ds}{s} < \infty
\]
for all sufficiently small \(r > 0 \) and there exists constants \(0 < k < 1 \), \(0 < k_1 < k_2 \) and \(C_\rho > 0 \) such that
\[
\sup_{k_2 \leq s \leq r} \rho(s) \leq C_\rho \int_{k_1 r}^{k_2 r} \rho(s) \frac{ds}{s}
\]
for all \(r > 0 \) (e.g. [6, 26]). We do not postulate the doubling condition on \(\rho \).

Example 1.1. If \(\rho \) satisfies the doubling condition, that is, there exists a constant \(C > 0 \) such that \(C^{-1} \leq \rho(r)/\rho(s) \leq C \) for \(1/2 \leq r/s \leq 2 \), then \(\rho \) satisfies (1.1) whenever \(k = 1/2 \) and \(2k_1 = k_2 \). If \(\rho \) is increasing, then \(\rho \) satisfies (1.1) with \(k = 1/2, k_1 = 1/4 \) and \(k_2 = 1/2 \). See also [20, Lemma 2.5], [23, 26] and [27, Remark 2.2].

Let \(G \) be an open bounded set in \(\mathbb{R}^N \). For a function \(\rho \in (\rho) \), we define the generalized Riesz potential \(I_\rho f \) of \(f \) by
\[
I_\rho f(x) = \int_G \rho(|x-y|) f(y) \frac{dy}{|x-y|^N},
\]
where \(f \in L^1(G) \). We write \(I_\rho f = I_\rho f \) when \(\rho(r) = r^\alpha \), \(0 < \alpha < N \). We refer to [15, 21, 22, 24, 29] etc. for the study of \(I_\rho f \).

Our aim in this note is to study the continuity of generalized Riesz potential \(I_\rho f \) of functions \(f \) in Morrey spaces \(L^{\Phi, \nu(\cdot)}(G) \) of the double phase functionals with variable exponents (Theorem 2.2), as an extension of [12, Theorem 4.1].

2. Definitions and the main Theorem

Throughout this paper, let \(C \) denote various constants independent of the variables in question and \(\log \) be a natural logarithm.

Let \(p(\cdot) \) be a measurable functions on \(G \) such that
\[
(P1) \ 1 \leq p^- := \inf_{x \in G} p(x) \leq \sup_{x \in G} p(x) =: p^+ < \infty,
\]
Continuity of Generalized Riesz Potentials

(P2) $p(\cdot)$ is log-Hölder continuous on G, namely

$$|p(x) - p(y)| \leq \frac{C_p}{\log(e + 1/|x - y|)} \quad (x, y \in G),$$

with a constant $C_p \geq 0$.

Let $\nu(\cdot)$ be a measurable functions on G such that

$$0 < \nu^- := \inf_{x \in G} \nu(x) \leq \sup_{x \in G} \nu(x) =: \nu^+ < \infty.$$

Let $B(x, r)$ denote the open ball centered at $x \in \mathbb{R}^N$ with radius $r > 0$.

For a set $E \subset \mathbb{R}^N$, $|E|$ denotes the Lebesgue measure of E. Set $d_G = \sup\{|x - y| : x, y \in G\}$. Morrey space with variable exponents $L^{p(\cdot), \nu(\cdot)}(G)$ is the family of measurable functions f on G satisfying

$$L^{p(\cdot), \nu(\cdot)}(G) = \left\{ f \in L^1_{\text{loc}}(G) : \sup_{x \in G, 0 < r < d_G} \frac{r^{p(x)}}{|B(x, r)|} \int_{G \cap B(x, r)} |f(y)|^p \nu(y) \, dy < \infty \right\}.$$

It is a Banach space with respect to the norm

$$\|f\|_{L^{p(\cdot), \nu(\cdot)}(G)} = \inf \left\{ \lambda > 0 : \sup_{x \in G, 0 < r < d_G} \frac{r^{p(x)}}{|B(x, r)|} \int_{G \cap B(x, r)} \left(\frac{|f(y)|}{\lambda} \right)^p \nu(y) \, dy \leq 1 \right\}.$$

(cf. see [18]).

We consider a function $\Phi(x, t) : G \times [0, \infty) \to [0, \infty)$ satisfying the following conditions (Φ1) and (Φ2):

(Φ1) $\Phi(\cdot, t)$ is measurable on G for each $t \geq 0$ and $\Phi(x, \cdot)$ is convex on $[0, \infty)$ for each $x \in G$;

(Φ2) there exists a constant $A_1 \geq 1$ such that $A_1^{-1} \leq \Phi(x, 1) \leq A_1$ for all $x \in G$.

The Musielak-Orlicz-Morrey space $L^{\Phi, \nu(\cdot)}(G)$ is defined by

$$L^{\Phi, \nu(\cdot)}(G) = \left\{ f \in L^1_{\text{loc}}(G) : \sup_{x \in G, 0 < r < d_G} \frac{r^{\nu(x)}}{|B(x, r)|} \int_{G \cap B(x, r)} \Phi \left(y, \frac{|f(y)|}{\lambda} \right) \, dy < \infty \right\}.$$

for some $\lambda > 0$.

It is a Banach space with respect to the norm

$$\|f\|_{L^{\Phi, \nu(\cdot)}(G)} = \inf \left\{ \lambda > 0 : \sup_{x \in G, 0 < r < d_G} \frac{r^{\nu(x)}}{|B(x, r)|} \int_{G \cap B(x, r)} \Phi \left(y, \frac{|f(y)|}{\lambda} \right) \, dy \leq 1 \right\}.$$
(see [9, 19]).

Let \(q(\cdot) \) be a measurable function on \(G \) such that

(Q1) \(1 \leq q^- := \inf_{x \in G} q(x) \leq \sup_{x \in G} q(x) =: q^+ < \infty \),

(Q2) \(q(\cdot) \) is \(p \)-log-Hölder continuous on \(G \), namely

\[
|q(x) - q(y)| \leq \frac{C_q}{\log(e + 1/|x - y|)} \quad (x, y \in G),
\]

with a constant \(C_q \geq 0 \).

In what follows, let

\[
\Phi(x, t) = t^{p(x)} + (b(x)t)^{q(x)},
\]

where \(p(x) < q(x) \) and \(b(\cdot) \) is non-negative, bounded and Hölder continuous of order \(\theta \in (0, 1) \) ([10], cf. [3, 25]).

Remark 2.1. Let \(f \in L^{\Phi, \nu}(G) \) be a measurable function on \(G \). Then note that \(f \in L^{p(\cdot), \nu(\cdot)}(G) \) and \(bf \in L^{\Phi(\cdot), \nu(\cdot)}(G) \).

We state the following, as an extension of [12, Theorem 4.1].

Theorem 2.2. Let \(\rho \in (\rho) \). Assume that there are constants \(\eta_1 > 0, \eta_2 > 0, \tau > 0 \) and \(C_0 > 0 \) such that

\[
(2.1) \quad \left| \frac{\rho(|x - y|)}{|x - y|^N} - \frac{\rho(|z - y|)}{|z - y|^N} \right| \leq C_0 \frac{|x - z|^{\eta_1}}{|x - y|^{\eta_2}} \rho(\tau|x - y|) \quad \text{whenever } x, y, z \in G \text{ and } |x - z| \leq |x - y|/2.
\]

Abbreviate

\[
\psi(x, z, r) = \int_0^{4k_2r} s^{-\nu(x)/p(x) + \theta} \rho(s) \frac{ds}{s} + \int_0^{4k_2r} s^{-\nu(x)/q(x)} \rho(s) \frac{ds}{s}
\]

\[
+ \int_0^{6k_2r} s^{-\nu(z)/p(z) + \theta} \rho(s) \frac{ds}{s} + \int_0^{6k_2r} s^{-\nu(z)/q(z)} \rho(s) \frac{ds}{s}
\]

\[
+ \nu^{\eta_1} \int_{k_1\tau}^{4k_2\tau} s^{-\nu(x)/p(x) - \eta_2 + \theta} \rho(s) \frac{ds}{s}
\]

\[
+ \nu^{\eta_1} \int_{k_1\tau}^{4k_2\tau} s^{-\nu(x)/q(x) - \eta_2} \rho(s) \frac{ds}{s}
\]

for \(x, z \in G \) and \(0 < r \leq d_G \), where \(k_1 \) and \(k_2 \) are constants in \((\rho) \). Assume that \(\psi(x, z, r) < \infty \) for all \(x, z \in G \) and \(0 < r \leq d_G \). Then there exists a constant \(C > 0 \) such that

\[
|b(x)I_\rho f(x) - b(z)I_\rho f(z)| \leq C\psi(x, z, |x - z|)
\]

for all \(x, z \in G \) and measurable functions \(f \) on \(G \) with \(\|f\|_{L^{\Phi,\nu}(G)} \leq 1 \).
Remark 2.3. Let $\rho(r) = r^\alpha e^{-1/r}$ be as in Example 1.1. Then the mean value property implies that (2.1) holds for $\eta_1 = 1, \eta_2 = 2$ and $\tau = 3/2$. Note here that there exists a constant $C \geq 1$ such that

$$C^{-1} \frac{\rho(r)}{r^{N+2}} \leq \frac{d}{dr} \left(\frac{\rho(r)}{r^N} \right) \leq C \frac{\rho(r)}{r^{N+2}}$$

for all $0 < r < d_G$ and $|x - y|/2 \leq |x - y + t(z - x)| \leq 3|x - y|/2$ for $0 \leq t \leq 1$ and $|x - z| \leq |x - y|/2$.

Remark 2.4. If $\rho(r)^a$ is increasing for some $a \geq 0$ and $\rho(r)/r^b$ is decreasing for some $b \geq 0$, then ρ satisfies the doubling condition and

$$\frac{|\rho(r) - \rho(s)|}{s^N} \leq C_0 |r - s| \rho(r) r^{N+1} \quad \text{for} \quad \frac{1}{2} \leq \frac{s}{r} \leq 2.$$

See [21].

3. Corollaries

In this section, we give consequences of our theorem.

Corollary 3.1. Let $\rho(r) = r^\alpha (\log(e + 1/r))^{\beta}$ for $\alpha > 0$ and $\beta \in \mathbb{R}$. Suppose $\inf_{x \in G} (\nu(x) - \alpha p(x)) > 0$ and $\inf_{x \in G} ((\alpha + \theta) p(x) - \nu(x)) > 0$. Further suppose $\inf_{x \in G} (\nu(x) - (\alpha - 1)q(x)) > 0$ and $\inf_{x \in G} (\alpha q(x) - \nu(x)) > 0$. Then there exists a constant $C > 0$ such that

$$|b(x)f(x) - b(z)f(z)| \leq C \{ |x - z|^{\alpha - \nu(x)/p(x) + \theta} + |x - z|^{\alpha - \nu(x)/q(x)} \}
\leq \frac{1}{2} \leq \frac{s}{r} \leq 2.$$

for all $x, z \in G$ and measurable functions f on G with $\|f\|_{L^{\nu(x)}}(G) \leq 1$.

Proof. Since $\inf_{x \in G} ((\alpha + \theta) p(x) - \nu(x)) > 0$, taking ε_1 such that $0 < \varepsilon_1 < \alpha - \nu(x)/p(x) + \theta$, there exists a constant $c_1 > 0$ such that

$$s_1^{\alpha - \nu(x)/p(x) + \theta - \varepsilon_1} (\log(e + 1/s_1))^{\beta} \leq c_1 s_2^{\alpha - \nu(x)/p(x) + \theta - \varepsilon_1} (\log(e + 1/s_2))^{\beta}$$

whenever $0 < s_1 \leq s_2$ (see e.g. [17, 28]). Therefore we have

$$\int_{s_1}^{4k_2 r} \int_{s_2}^{4k_2 r} s^{\alpha - \nu(x)/p(x) + \theta} (\log(e + 1/s))^\beta \frac{ds}{s}$$

$$\leq c_1 (4k_2 r)^{\alpha - \nu(x)/p(x) + \theta - \varepsilon_1} (\log(e + 1/(4k_2 r)))^{\beta} \int_{s_1}^{4k_2 r} s^{\varepsilon_1} \frac{ds}{s}$$

$$\leq C r^{\alpha - \nu(x)/p(x) + \theta} (\log(e + 1/r))^{\beta}$$

and, similarly we obtain

$$\int_{s_1}^{6k_2 r} \int_{s_2}^{6k_2 r} s^{\alpha - \nu(x)/p(x) + \theta} (\log(e + 1/s))^\beta \frac{ds}{s} \leq C r^{\alpha - \nu(x)/p(x) + \theta} (\log(e + 1/r))^{\beta}.$$
Since $\inf_{x \in G}(\alpha q(x) - \nu(x)) > 0$, we obtain
\[
\int_0^{4k_2r} s^{\alpha - \nu(x)/q(x)}(\log(e + 1/s))^\beta \frac{ds}{s} \leq C r^{\alpha - \nu(x)/q(x)}(\log(e + 1/r))^\beta
\]
and
\[
\int_0^{6k_2r} s^{\alpha - \nu(x)/q(x)}(\log(e + 1/s))^\beta \frac{ds}{s} \leq C r^{\alpha - \nu(x)/q(x)}(\log(e + 1/r))^\beta.
\]
Since $\inf_{x \in G}(\nu(x) - \alpha p(x)) > 0$, taking ε_2 such that $0 < \varepsilon_2 < \nu(z)/p(z) - \alpha$, there exists a constant $c_2 > 0$ such that
\[
s_2^{\alpha - \nu(z)/p(z) + \varepsilon_2}(\log(e + 1/s_2))^\beta \leq c_2 s_1^{\alpha - \nu(z)/p(z) + \varepsilon_2}(\log(e + 1/s_1))^\beta
\]
whenever $0 < s_1 \leq s_2$, so that
\[
n \int_{k_1r}^{4k_2d_G} s^{\alpha - \nu(z)/p(z)}(\log(e + 1/s))^\beta \frac{ds}{s}
\leq c_2 r^{\varepsilon_2}(k_1r)^{\alpha - \nu(z)/p(z) + \varepsilon_2}(\log(e + 1/(k_1r)))^\beta \int_{k_1r}^{4k_2d_G} s^{-\varepsilon_2} \frac{ds}{s}
\leq C r^{\alpha - \nu(z)/p(z) + \varepsilon_2}(\log(e + 1/r))^\beta.
\]
We also have
\[
r \int_{2k_1r}^{4k_2d_G} s^{\alpha - \nu(x)/p(x) - 1 + \theta}(\log(e + 1/s))^\beta \frac{ds}{s}
\leq C r^{\alpha - \nu(x)/p(x) + \theta}(\log(e + 1/r))^\beta,
\]
since $\inf_{x \in G}(\nu(x) - (\alpha + \theta - 1)p(x)) \geq \inf_{x \in G}(\nu(x) - \alpha p(x)) > 0$, and
\[
r \int_{2k_1r}^{4k_2d_G} s^{\alpha - \nu(x)/q(x) - 1}(\log(e + 1/s))^\beta \frac{ds}{s} \leq C r^{\alpha - \nu(x)/q(x)}(\log(e + 1/r))^\beta,
\]
since $\inf_{x \in G}(\nu(x) - (\alpha - 1)q(x)) > 0$.

Collecting these facts, we obtain by our assumptions
\[
\psi(x, z, r) \leq C \left\{ r^{\alpha - \nu(x)/p(x) + \theta} + r^{\alpha - \nu(x)/q(x)} + r^{\alpha - \nu(z)/p(z) + \theta} + r^{\alpha - \nu(z)/q(z)} \right\}(\log(e + 1/r))^\beta < \infty
\]
for $x, z \in G$ and $0 < r \leq d_G$. By Theorem 2.2, we obtain the required result.

\[\square\]

Corollary 3.2. Suppose $\inf_{x \in G}(\nu(x) - \alpha p(x)) > 0$ and $\inf_{x \in G}(\nu(x) - \nu(x)) > 0$. Further suppose $\inf_{x \in G}(\nu(x) - (\alpha - 1)q(x)) > 0$ and $\inf_{x \in G}(\alpha q(x) - \nu(x)) > 0$. Then there exists a constant $C > 0$ such that
\[
|b(x)I_\alpha f(x) - b(z)I_\alpha f(z)| \leq C \left\{ |x - z|^{\alpha - \nu(x)/p(x) + \theta} + |x - z|^{\alpha - \nu(x)/q(x)} + |x - z|^{\alpha - \nu(z)/p(z) + \theta} + |x - z|^{\alpha - \nu(z)/q(z)} \right\}
\]
for all $x, z \in G$ and measurable functions f on G with $\|f\|_{L^1(G)} \leq 1$.

CONTINUITY OF GENERALIZED RIESZ POTENTIALS

PROOF. This is the case \(\beta = 0 \) in Corollary 3.1.

Compare Corollaries 3.1 and 3.2 with [12, Theorem 4.1].

Corollary 3.3. Let \(\rho(r) = r^\alpha e^{-1/r} \) be as in Example 1.1. Then there exists a constant \(C > 0 \) such that

\[
|b(x)I_{\rho}f(x) - b(z)I_{\rho}f(z)| \leq C|x - z|^{\theta}
\]

for all \(x, z \in G \) and measurable functions \(f \) on \(G \) with \(\|f\|_{L_{\rho}(G)} \leq 1 \).

Proof. Since, for \(a \in \mathbb{R} \), there exists a constant \(c > 0 \) such that

\[
\int_0^r s^\alpha e^{-1/s} \frac{ds}{s} \leq cr^\theta
\]

for all \(0 < r \leq d_G \), it follows from Remark 2.3 that

\[
\psi(x, z, r) \leq C(r + r^\theta) \leq Cr^\theta
\]

for all \(x, z \in G \) and \(0 < r \leq d_G \), since \(\theta \in (0, 1] \). Hence, we obtain the required inequality.

Corollary 3.4. Let \(\rho(r) = r^\alpha (\log(e + 1/r))^\beta \) for \(\alpha > 0 \) and \(\beta \in \mathbb{R} \). Suppose \(\inf_{x \in G} (\nu(x) - (\alpha - 1)p(x)) > 0 \) and \(\inf_{x \in G} (\alpha p(x) - \nu(x)) > 0 \). Then there exists a constant \(C > 0 \) such that

\[
\left| I_{\rho}f(x) - I_{\rho}f(z) \right| \\
\leq C \left\{ |x - z|^{\alpha - \nu(x)/p(x)} + |x - z|^{\alpha - \nu(z)/p(z)} \right\} \left(\log(e + 1/||x - z||) \right)^\beta
\]

for all \(x, z \in G \) and measurable functions \(f \) on \(G \) with \(\|f\|_{L^p(\nu)(G)} \leq 1 \).

Proof. To show this, we take \(b(\cdot) \equiv 1 \) and \(q(\cdot) = p(\cdot) \) in the proof of Theorem 2.2. As in the proof of Corollary 3.1, we obtain the result.

4. Lemmas

Before giving a proof of Theorem 2.2, we prepare two lemmas. To prove the following lemma, (P2) and (Q2) were used.

Lemma 4.1 ([13, Lemma 2.1], cf. [14, Lemma 2.7]). There exists a constant \(C > 0 \) such that

\[
\frac{\rho^{\nu(x)/p(x)}}{|B(x, r)|} \int_{G \cap B(x, r)} |f(y)| \, dy \leq C
\]

for all \(x \in G \), \(0 < r < d_G \) and measurable functions \(f \) on \(G \) with \(\|f\|_{L^p(\nu)(G)} \leq 1 \).
Let $\tau > 0$, $\beta \in \mathbb{R}$ and $\rho \in (\rho)$. Let f be a nonnegative function on G such that $\|f\|_{L^p(\nu(G))} \leq 1$. Then there exists a constant $C > 0$ such that

$$
\int_{G \cap B(x,r)} \frac{\rho(\tau|x-y|)f(y)}{|x-y|^{N+\beta}} \, dy \leq C \int_{0}^{2k_2r} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s}
$$

and

$$
\int_{G \setminus B(x,r)} \frac{\rho(\tau|x-y|)f(y)}{|x-y|^{N+\beta}} \, dy \leq C \int_{k_1\tau r}^{4k_2\tau r} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s}
$$

for all $x \in G$ and $0 < r \leq d_G$, where k_1 and k_2 are constants in (ρ).

Proof. Let f be a nonnegative function on G such that $\|f\|_{L^p(\nu(G))} \leq 1$. Take $\gamma \in \mathbb{R}$ such that $1 < \gamma \leq \min\{1/k, 2\}$. If $y \in G \cap (B(x, \gamma^j r) \setminus B(x, \gamma^{j-1} r))$ for $j \in \mathbb{Z}$, then a geometric observation and (1.1) show

$$
\frac{\rho(\tau|x-y|)}{|x-y|^{N+\beta}} \leq \frac{\max\{1, \gamma^N + \beta\}}{(\gamma^j r)^{N+\beta}} \sup_{\gamma^{j-1} \leq s \leq \gamma^j} \rho(s)
$$

by $\gamma \leq 1/k$. By Lemma 4.1, we have

$$
\frac{1}{|B(x, \gamma^j r)|} \int_{G \cap B(x, \gamma^j r)} f(y) \, dy \leq C_1 (\gamma^j r)^{-\nu(x)/p(x)}
$$

for some constant $C_1 > 0$, so that

$$
\int_{G \cap (B(x, \gamma^j r) \setminus B(x, \gamma^{j-1} r))} \frac{\rho(\tau|x-y|)f(y)}{|x-y|^{N+\beta}} \, dy
\leq C_1 \sigma_N \max\{1, \gamma^{2N+\beta}\} \log^{2\gamma^j} \frac{\tau k_2 r}{(\gamma^j r)^{\beta}} \rho(s) \frac{ds}{s} \sup_{G \cap B(x, \gamma^j r)} \frac{1}{|B(x, \gamma^j r)|} \int_{G \cap B(x, \gamma^j r)} f(y) \, dy
\leq C_1 \sigma_N \max\{1, 2^{N+\beta}\} \log^{2\gamma^j} \frac{\tau k_2 r}{(\gamma^j r)^{\beta}} \rho(s) \frac{ds}{s} C_1 (\gamma^j r)^{-\nu(x)/p(x)}
\leq C_1 \sigma_N \max\{1, 2^{N+\beta}\} \log^{2\gamma^j} \frac{\tau k_2 r}{(\gamma^j r)^{\beta}} \rho(s) \frac{ds}{s}
\leq C_1 \sigma_N \max\{1, 2^{N+\beta}\} \log^{2\gamma^j} \frac{\tau k_2 r}{(\gamma^j r)^{\beta}} \rho(s) \frac{ds}{s}
\times \int_{\gamma^{j} k_1 \tau r}^{\gamma^{j} k_2 \tau r} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s}
$$
Therefore we have
\[
\int_{\gamma/k_{1}^{r}} \int_{\gamma/k_{2}^{r}} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s},
\]
which proves (4.1).

Let \(j_{0} \) be the smallest integer such that \(k_{2}/k_{1} \leq \gamma^{j_{0}} \). Using (4.3), we obtain
\[
\int_{G \cap \{B(x, r) \setminus B(x, \gamma^{j_{0}-1}r)\}} \frac{\rho(\tau|x-y|)f(y)}{|x-y|^{N+\beta}} \, dy \leq C_{2} \int_{\gamma/k_{1}^{r}} \int_{\gamma/k_{2}^{r}} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s},
\]
Let \(j_{1} \) be the smallest integer such that \(d_{G} \leq \gamma^{j_{1}r} \). If we use (4.3),
\[
\int_{G \setminus \{B(x, r) \setminus B(x, \gamma^{j_{1}-1}r)\}} \frac{\rho(\tau|x-y|)f(y)}{|x-y|^{N+\beta}} \, dy \leq C_{2} \int_{\gamma/k_{1}^{r}} \int_{\gamma/k_{2}^{r}} s^{-\nu(x)/p(x)-\beta} \rho(s) \frac{ds}{s},
\]
which proves (4.1).
Thus, (4.2) follows.

5. PROOF OF THEOREM 2.2

Without loss of generality, we can assume that \(f \) is a nonnegative function on \(G \) such that \(\| f \|_{L^{p,\infty}(G)} \leq 1 \). First note from (2.1) that for \(x, z \in G \) and \(r = |x - z| \)

\[
|b(x)I_{\rho}f(x) - b(z)I_{\rho}f(z)|
\leq b(x) \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)f(y)}{|x - y|^N} \, dy
\]

\[
+ b(z) \int_{G \cap B(x,2r)} \frac{\rho(|z - y|)f(y)}{|z - y|^N} \, dy
\]

\[
+ |b(x) - b(z)| \int_{G \cap B(x,2r)} \frac{\rho(|z - y|)f(y)}{|z - y|^N} \, dy
\]

\[
+ b(x) \int_{G \backslash B(x,3r)} \left| \rho(|x - y|) - \rho(|z - y|) \right| f(y) \, dy
\]

\[
\leq C \left\{ b(x) \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)f(y)}{|x - y|^N} \, dy
\]

\[
+ b(z) \int_{G \cap B(x,2r)} \frac{\rho(|z - y|)f(y)}{|z - y|^N} \, dy + r^\theta \int_{G \backslash B(x,r)} \frac{\rho(|z - y|)f(y)}{|z - y|^N} \, dy
\]

\[
+ r^\eta b(x) \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)f(y)}{|x - y|^{|N + \eta_2|}} \, dy \right\}
\]

\[
= C \left\{ I_1(x) + I_1(z) + I_2(z) + I_3(x) \right\}.
\]

For \(I_1(x) \), we have

\[
I_1(x) \leq \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)}{|x - y|^N} |b(x) - b(y)|f(y) \, dy
\]

\[
+ \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)}{|x - y|^N} b(y)f(y) \, dy
\]

\[
\leq C \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)f(y)}{|x - y|^N} \, dy + \int_{G \cap B(x,2r)} \frac{\rho(|x - y|)b(y)f(y)}{|x - y|^N} \, dy
\]

\[
= CI_{11}(x) + I_{12}(x).
\]

By (4.1), we obtain

\[
I_{11}(x) \leq C \int_0^{4kr} s^{-\nu(x)/p(x)} + \theta \rho(s) \frac{ds}{s},
\]
\[I_{12}(x) \leq C \int_{0}^{4k_{2}r} s^{-\nu(x)/q(s)} \rho(s) \frac{ds}{s}. \]

For \(\tilde{I}_1(z) \), we have by (4.1)
\[
\tilde{I}_1(z) \leq C \left\{ \int_{0}^{6k_{2}r} s^{-\nu(z)/p(s) + \theta} \rho(s) \frac{ds}{s} + \int_{0}^{6k_{2}r} s^{-\nu(z)/q(s)} \rho(s) \frac{ds}{s} \right\},
\]
as in the estimate of \(I_{11}(x) \) and \(I_{12}(x) \).

For \(I_2(z) \), we have by (4.2)
\[
I_2(z) \leq Cr^{\theta} \int_{k_{1}r}^{4k_{2}dG} s^{-\nu(z)/p(s)} \rho(s) \frac{ds}{s}.
\]

Finally, for \(I_3(x) \) we have
\[
I_3(x) \leq r^{m_1} \int_{G \setminus B(x,2r)} \frac{\rho(\tau|x-y|)}{|x-y|^{N+\eta_2}} |b(x) - b(y)| f(y) dy
+ r^{m_1} \int_{G \setminus B(x,2r)} \frac{\rho(\tau|x-y|)}{|x-y|^{N+\eta_2}} b(y) f(y) dy
\leq Cr^{m_1} \int_{G \setminus B(x,2r)} \frac{\rho(\tau|x-y|) f(y)}{|x-y|^{N-\theta+\eta_2}} dy
+ r^{m_1} \int_{G \setminus B(x,2r)} \frac{\rho(\tau|x-y|) \{b(y) f(y)\}}{|x-y|^{N+\eta_2}} dy
= CI_{31}(x) + I_{32}(x).
\]

Note from (4.2) that
\[I_{31}(x) \leq Cr^{m_1} \int_{2k_{1}r}^{4k_{2}dG} s^{-\nu(x)/p(x)-\eta_2 + \theta} \rho(s) \frac{ds}{s} \]
and
\[I_{32}(x) \leq Cr^{m_1} \int_{2k_{1}r}^{4k_{2}dG} s^{-\nu(x)/q(x)-\eta_2} \rho(s) \frac{ds}{s} \]

Collecting these facts, we obtain
\[|b(x)I_{\rho}f(x) - b(z)I_{\rho}f(z)| \leq C\psi(x,z,r). \]

Thus this theorem is proved.

Acknowledgements.
We would like to express our thanks to the referees for their kind comments and helpful suggestions.
References

T. Ohno
Faculty of Education
Oita University
Dannoharu Oita-city 870-1192
Japan
E-mail: t-ohno@oita-u.ac.jp

T. Shimomura
Department of Mathematics
Graduate School of Humanities and Social Sciences
Hiroshima University
Higashi-Hiroshima 739-8524
Japan
E-mail: tshimo@hiroshima-u.ac.jp

Received: 31.5.2021.