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ON HOMOTOPY NILPOTENCY
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Abstract. We review established and recent results on the homotopy
nilpotence of spaces. In particular, the homotopy nilpotency of the loop
spaces Ω(G/K) of homogenous spaces G/K for a compact Lie group G and
its closed homotopy nilpotent subgroup K < G is discussed.

Introduction

In group theory, if we consider only nilpotent groups, the nilpotency
class is the one which measures a distance from commutativity. Already
G. Whitehead ([35]) had the insight that the (J.H.C.) Whitehead products
satisfy identities which reflect commutator identities for groups. Berstein
and Ganea ([4]) adapted the nilpotency to H-spaces as follows. Let X be
an H-space, ϕX,1 = idX and ϕX,2 : X2 → X the commutator map. Put
ϕX,n+1 = ϕX,1 ◦ (idX × ϕX,n) for (n + 1)-fold commutator map of X with
n ≥ 2. An H-space X is called homotopy nilpotent of class n if ϕX,n+1 ≃ ∗,
is null homotopic but ϕX,n is not ([4]). In this case, we write nilX = n.

Then, Berstein and Ganea ([4]) introduced a concept of the homotopy
nilpotency of a pointed space by means of its loop space (resp. suspension
space). Its fibrewise version has been studied by James ([22]). In par-
ticular, the m-iterated Samelson products vanish in the loop space Ω(X),
or equivalently, the m-iterated Whitehead products vanish in X provided
m > nil Ω(X).

The homotopy nilpotency classes nilX of associative H-spaces X has
been extensively studied as well as their homotopy commutativity. Work
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of Hopkins ([19]) drew renewed attention to such problems by relating this
classical nilpotency notion with the nilpotence theorem of Devinatz, Hopkins,
and Smith ([9]). In particular, Hopkins ([19]) made substantial progress by
giving cohomological criteria for homotopy associative finite H-spaces to be
homotopy nilpotent. For example, he showed that if a homotopy associative
finite H-space has no torsion in the integral homology, then it is homotopy
nilpotent. Later, Rao ([29]) showed that the converse of the above criterion is
true in the case of groups Spin(n) and SO(n). Eventually, Yagita ([37]) proved
that, when G is a compact, simply connected Lie group, its p-localization G(p)

is homotopy nilpotent if and only if G has no torsion in the integral homology.
Finally, Rao ([30]) showed that a connected compact Lie group is homotopy
nilpotent if and only if it has no torsion in homology.

Crabb, Sutherland and Zhang in [8] got surprisingly low bounds for the
homotopy nilpotency class of gauge groups when the bundles are stages of
the Milnor construction of the classifying space for a compact Lie group G,
even when G itself is not homotopy nilpotent. Furthermore, they have proved
an equivariant version of Hopkin’s result for unitary groups. Although many
results on the homotopy nilpotency are obtained as above and others, e.g.,
[25] and [33], the homotopy nilpotency classes have not been determined in
almost all cases.

Before describing our purpose, it is worthwhile to mention a few recent
contributions along these lines. Berger and Bourn ([3]) study nilpotency in the
context of exact Mal’tsev categories taking central extensions as the primitive
notion. This yields a nilpotency tower which is analysed from the perspective
of Goodwillie’s functor calculus. They show in particular that the reflection
into the subcategory of n-nilpotent objects is the universal endofunctor of
degree n if and only if every n-nilpotent object is n-folded. In the special
context of a semi-Abelian category, an object is n-folded precisely when its
Higgins commutator of length (n+ 1) vanishes.

Biedermann and Dwyer ([5]) study the connection between the Goodwillie
tower of the identity and the lower central series of the loop group on con-
nected spaces. They define homotopy nilpotent groups as homotopy algebras
over certain simplicial algebraic theories. This notion interpolates between
infinite loop spaces and loop spaces, but backwards. Then, the relation to
ordinary nilpotent groups is studied. It is proved that n-excisive functors of
the form Ω(F ) factor over the category of homotopy n-nilpotent groups.

Kaji and Kishimoto ([24]) consider the problem: how far from being
homotopy commutative is a loop space having the homotopy type of the p-
completion of a product of finite numbers of spheres? They determine the
homotopy nilpotency of those loop spaces as an answer to this problem.

The paper is a survey of known results, some being older and some recent.
In Section 1, we set stages for developments to come. This introductory
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section is devoted to a general discussion and establishes notations on the
homotopy nilpotency of H-spaces used in the rest of the paper.

Section 2 makes use of [4] to review established and recent results on the
homotopy nilpotence of spaces.

Section 3, based mainly on [15], takes up the systematic study of the
homotopy nilpotency of homogeneous spaces G/K for a Lie group G and
its closed subgroup K < G. The homotopy nilpotency of the loop spaces
Ω(Gn,m(K)), Ω(Fn;n1,...,nk

(K)), and Ω(Vn,m(K)) of Grassmann Gn,m(K), flag
Fn;n1,...,nk

(K) and Stiefel Vn,m(K) manifolds for K = R, C, the field of reals
or complex numbers and H, the skew R-algebra of quaternions is studied.
In particular, the homotopy nilpotency nil Ω(HPn) < ∞ is shown for the
quaternionic projective space HPn with n ≥ 1 which does not appear in the
literature known to the author.

1. Prerequisites

All spaces and maps in this note are assumed to be connected and based
with the homotopy type of CW -complexes unless we assume otherwise. We
also do not distinguish notationally between a continuous map and its homo-
topy class. We write Ω(X) (resp. Σ(X)) for the loop (resp. suspension) space
on a space X and [X,Y ] for the set of homotopy classes of maps X → Y .

Given a space X , we use the customary notations X ∨X and X ∧X for
the wedge and the smash square of X , respectively.

Recall that an H-space is a pair (X,µ), where X is a space and µ :
X ×X → X is a map such that the diagram

X ×X
µ

// X

X ∨X
?�

OO

∇

==
③
③
③
③
③
③
③
③
③
③
③
③
③
③
③
③
③

commutes up to homotopy, where ∇ : X ∨ X → X is the folding map. We
call µ a multiplication or an H-structure for X . Two examples of H-spaces
come in mind: topological groups and the loop spaces Ω(X). In the sequel,
we identify an H-space (X,µ) with the space X .

An H-space X is called a group-like space if X satisfies all the axioms of
groups up to homotopy. Recall that a homotopy associative H-CW -complex
always has a homotopy inverse. More precisely, according to [39, 1.3.2. Corol-
lary] (see also [2, Proposition 8.4.4]), we have the following statement.

Proposition 1.1. If X is a homotopy associative H-CW -complex then

X is a group-like space.
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From now on, we assume that any H-space X is group-like.
Given spaces X1, . . . , Xn, we use the customary notations X1 × · · · ×Xn

for their Cartesian and Tm(X1, . . . , Xn) for the subspace of X1 × · · · × Xn

consisting of those points with at least m coordinates at base points with
m = 0, 1, . . . , n. Then, T0(X1, . . . , Xn) = X1 × · · · × Xn, T1(X1, . . . , Xn) is
the so called the fat wedge of spaces X1, . . . , Xn and Tn−1(X1, . . . , Xn) = X1∨
· · ·∨Xn, the wedge products of spacesX1, . . . , Xn. We write jm(X1, . . . , Xn) :
Tm(X1, . . . , Xn) → X1 × · · · ×Xn for the inclusion map with m = 0, 1, . . . , n
and X1 ∧ · · · ∧Xn = X1 × · · · ×Xn/T1(X1, . . . , Xn) for the smash product of
spaces X1, . . . , Xn.

Let fm : (Xm, ⋆m) → (Ym, ∗m) be continuous maps of pointed topo-
logical spaces for m = 1, . . . , n. The map f1 × · · · × fn : (X1 × · · · ×
Xn, (⋆1, . . . , ⋆n)) → (Y1 × · · · × Yn, (∗1, . . . , ∗n)) sends the point (x1, . . . , xn)
into (f1(x1), . . . , fn(xn)) for (x1, . . . , xn) ∈ X1×· · ·×Xn and restricts to maps
Tm(f1, . . . , fn) : Tm(X1, . . . , Xn) → Tm(Y1, . . . , Yn) with m = 0, 1, . . . , n. If
Xm = X and fm = f for m = 1, . . . , n then we write Xn = X1 × · · · ×Xn,
X∨n = X1 ∨ · · · ∨ Xn, X∧n = X1 ∧ · · · ∧ Xn, fn = f1 × · · · × fn and
f∨n = f1 ∨ · · · ∨ fn. The identity map of a space X involved is consistently
denoted by ιX .

Given an H-group X , the functor [−, X ] takes its values in the category
of groups. One may then ask when those functors take their values in various
subcategories of groups. For example, X is homotopy commutative if and
only if [Y,X ] is Abelian for all Y .

Given an H-space X , we write ϕ1,X = ιX , ϕ2,X : X2 → X for the basic
commutator map and ϕn+1,X = ϕ2,X ◦ (ϕn,X × ιX) for n ≥ 2.

1.1. The nilpotency class. The nilpotency class nil (X,µ) of an H-space
(X,µ) is the least integer n ≥ 0 for which the map ϕn+1,X ≃ ∗ is nullhomo-
topic and we call the homotopy associative H-space X homotopy nilpotent.
If no such integer exists, we put nil (X,µ) = ∞. In the sequel, we simply
write nilX for the nilpotency class of an H-space X . Thus, nilX = 0 if and
only if X is contractible and, as is easily seen, nilX ≤ 1 if and only if X is
homotopy commutative.

The set π0(X) of all path-components of an H-space X is known to be a
group. The following result is easy to prove.

Lemma 1.2. If X is an H-space and the path component of the base-point

⋆ ∈ X is contractible then nil π0(X) = nilX.

The definition of the nilpotency classes may be extended to maps. The
nilpotency class nil f of an H-map f : X1 → X2 is the least integer n ≥ 0 for
which the map f ◦ ϕn+1,X : Xn+1

1 → X2 is nullhomotopic; if no such integer
exists, we put nil f = ∞.

In the sequel we need the following result.
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Lemma 1.3. If X is an H-space then the composite map

T1(X, . . . , X)
j1(X,...,X)

−→ Xn ϕn,X

−→ X

is nullhomotopic.

Since the space X∧n, the n-th smash power of X is the homotopy cofiber
of the map j1(X, . . . , X) : T1(X, . . . , X) → Xn, the result above implies an
existence of a map ϕ̄n,X : X∧n → X for n ≥ 1 with ϕ̄1,X = ϕ1,X .

Next, notice that [15, Lemma 1.2] (cf. [36, Theorem 2.10]) leads to the
following lemma.

Lemma 1.4. If X is a group-like CW -space and Y a finite dimensional

CW -complex with dimY = n then the group [Y,X ] is nilpotent with the nilpo-

tency class at most n.

Proof. First, recall that given an H-CW -space X , in view of [23], all
its m-th Postnikov stages PmX are also an H-space and the canonical maps
X → PmX are H-maps for m ≥ 1. Since the map X → PnX is an (n − 1)-
homotopy equivalence and Y is a CW -complex with dimY = n, there is an
isomorphism [Y,X ] ≈ [Y, PnX ] of groups determined by the map X → PnX .
Then, the map ϕ̄PnX,n+1(f1∧· · ·∧fn+1) : Y

∧(n+1) → PnX is homotopy trivial

for any maps f1, . . . , fn+1 : Y → PnX since the space Y ∧(n+1) is n-connected.
Consequently, nil [Y,X ] = nil [Y, PnX ] ≤ n and the proof follows.

Next, any CW -complex Y can be expressed as

Y = lim
→

Yα,

where Yα are finite CW -complexes. Given a group-like space X , this leads to
the short exact sequence

1 → lim
←

1[ΣYα, X ] −→ [Y,X ] −→ lim
←

[Yα, X ] → 1,

where the group lim
←

[Yα, X ], by means of Lemma 1.4, is visibly pro-nilpotent.

By the proof of [19, Proposition 1.2], the intersection Γd∩ (lim
←

1[ΣYα, X ]) = 0

for dimX = d < ∞, where Γd stands for the d-th member of the lower central
series of the group [Y,X ]. This leads, by means of [19, Proposition 1.1], to
pro-nilpotency of the group [Y,X ] providedX is a finite group-like CW -space.

Thus, in view of Lemma 1.4, we obtain the following result.

Proposition 1.5. If X is a finite group-like CW -space then the group

[Y,X ] is pro-nilpotent for any CW -complex Y .

It is well known that the quotient map Xn → X∧n has a right homotopy
inverse after suspending for n ≥ 1, and the fact that X is an H-space means
that the suspension map [Y,X ] → [ΣY,ΣX ] is a monomorphism for any space
Y . Thus, we may state the proposition.
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Proposition 1.6. Let X be an H-space. Then ϕn,X ≃ ∗ if and only if

ϕ̄n,X ≃ ∗ for n ≥ 1.

Then, [4, 2.7. Theorem] and Proposition 1.6 lead to the following theorem.

Theorem 1.7. If X is an H-space then

nilX = supm nil[Xm, X ] = supm nil[X∧m, X ] = supY nil[Y,X ],

where m ranges over all integers and Y over all topological spaces.

Furthermore, in view of [39, Lemma 2.6.1], we may state the following.

Corollary 1.8. A connected H-space X is homotopy nilpotent if and

only if the functor [−, X ] on the category of all spaces is nilpotent group valued.

Proof. Certainly, the homotopy nilpotency of a connected associative
H-space X implies that the functor [−, X ] on the category of all pointed
spaces is nilpotent group valued.

Now, suppose that the functor [−, X ] is nilpotent groups valued and
nil [

∏∞

1 X,X ] < n. Then, for the projection map
∏∞

1 X → Xn on the first n
factors, the composite map

∞
∏

1

X → Xn ϕn,X

−→ X

is null-homotopic. Since, the projection
∏∞

1 X → Xn has a retraction, we
deduce that the map ϕn,X : Xn → X is also null-homotopic and the proof is
complete.

1.2. The nilpotency class of three and seven spheres. The nilpotency class
of the topological group S3, the 3-sphere has been calculated by Porter ([28])
for the standard multiplication on S3. We make use of Proposition 1.6, to
present another proof of that result.

Proposition 1.9. nil S3 = 3.

Proof. First, we notice that all calculations of compositions of homotopy
groups of spheres can be found in [34]. Next, James ([21, p. 176]) proves
that γ̄S3,2 generates π6(S

3) ≈ Z12 so that in Toda’s notation ([34]) we have
γ̄S3,2 = ν′ + α1(3). Now, γ̄S3,3 = γ̄S3,2 ◦ (γ̄S3,1 ∧ γ̄S3,2) = γ̄S3,2 ◦ Σ3(γ̄S3,2) ∈
π9(S

3) ≈ Z3 generated by (α1(3)+ν′)◦(α1(6)+Σ3(ν′)) = α1(3)◦α1(6). Next,
γ̄S3,4 = γ̄S3,2 ◦ (γ̄S3,1 ∧ γ̄S3,3) = γ̄S3,2 ◦ Σ3(γ̄S3,3) = γ̄S3,2 ◦ α1(6) ◦ α1(12) = 0
and the proof follows.

We point out that by Arkowitz-Curjel ([1, Lemma 2]) and James ([21])
that up to homotopy the sphere S3 admits twelve distinct H-structures which
can written as µt = µ0 + γt

S3,2 for t = 0, . . . , 11, where the exponent and

juxtaposition are taken with respect to the standard multiplication µ0 on S3.
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Denote by γ
(t)
n,S3

(resp. γ̄
(t)
n,S3

) the n-fold (resp. smash) commutator map on S3

with respect to the H-structure µt. Arkowitz-Curjel ([1]) have calculated the
homotopy nilpotency class nil (S3, µt) of S

3 for all of its twelve H-structures.
More precisely, in view of [1, Lemma 4], we have:

(1) γ
(t)
n,S3

= γ2t+1
n,S3

,

(2) γ̄
(t)
n,S3

= γ̄2t+1
n,S3

.

Then, [1, Theorem B] states the following.

Theorem 1.10. If t = 1, 4, 7 or 10, then nil (S3, µt) = 2.
If t = 0, 2, 3, 5, 6, 8, 9 or 11, then nil (S3, µt) = 3.

Furthermore, recall that the Cayley multiplication µ0 on the seven sphere
S
7 is not associative but is diassociative, i.e., any two elements generate an

associative subalgebra. Gilbert ([14]) make a choice in bracketing to define
inductively the n-fold commutator map ϕn,S7 : (S7)n → S7 for n ≥ 1 and
show that

nil (S7, µ0) = 3.

There are 120 different homotopy classes of multiplications on S7 and, as
in [1, Lemma 2], it can be shown that they can be written additively in the
form

µt = µ0 + tϕ2,S7

for t = 0, 1, . . . , 119. Then, in [14] it is deduced

nil (S7, µt) = 3

for t = 0, 1, . . . , 119.

2. Properties of the homotopy nilpotency

We mainly make use of [4] to present known and state some new results
on the homotopy nilpotency of loop spaces.

With any based space X , we associate the integer nil Ω(X) called the
nilpotency class of X .

Evidently, nilπ1(X) ≤ nil Ω(X). We give an extension of this result
involving Whitehead products, generally denoted by [α1, α2] ∈ πm1+m2−1(X)
if αi ∈ πmi

(X) for mi ≥ 1 with i = 1, 2.
We define (n+ 1)-fold Whitehead products [α1, . . . , αn+1] as

[[α1, . . . , αn], αn+1],

if αi ∈ πmi
(X) for mi ≥ 1 with i = 1, . . . , n + 1 agreeing that, for n = 0,

[α] = α.
Recall that W-lengthX , the Whitehead length of a space X is the least

integer n ≥ 0 such that [α1, . . . , αn+1] = 0 for all αi ∈ πmi
(X), mi ≥ 1; if no

such integer exists, we put W-lengthX = ∞.
Then, according to [4, 4.6. Theorem], we have the following result.
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Theorem 2.1. W-lengthX ≤ nil Ω(X).

Example 2.2. (1) It is well-known that

W-length Sn = nil Ω(Sn) =











3, for n even with n 6= 2,

2, for n odd with n 6= 1, 3, 7 or n = 2,

1, for n = 1, 3, 7.

(2) The Whitehead lengths W-lengthKPn of the n-th projective spaces
KPn for K = R, C, the field of reals or complex numbers and H, the
skew R-algebra of quaternions have been computed in [17].

The concept of a nilpotent space is due to E. Dror ([10]). Recall that a
pointed path-connected spaceX is said to be nilpotent if its fundamental group
π1(X) acts nilpotently on the higher homotopy groups πn(X) for n ≥ 1. But,
the action of π1(X) on πn(X) for n ≥ 1 may be written in terms of Whitehead
products. Then, by Theorem 2.1, the spaceX is nilpotent if Ω(X) is homotopy
nilpotent.

But, not every space Ω(X) is homotopy nilpotent if X is nilpotent or
even simply connected. For the wedge Sm ∨ Sn of two spheres with m,n ≥ 2,
there is an iterated nontrivial Whitehead product of any weight. Therefore,
by Theorem 2.1, we conclude that

nil Ω(Sm ∨ S
n) = ∞.

We now proceed to find upper bounds for nil Ω(X). First, let X be a con-
nected aspherical CW -complex. Then πm(X) = 0 for all m > 1. Therefore,
Lemma 1.2 yields the following statement.

Proposition 2.3. If X is a connected aspherical CW -complex, then

nilπ1(X) = nil Ω(X).

For further reference, we state the easily proved lemma.

Lemma 2.4. nil (X1 ×X2) = max{nilX1, nilX2}.

We notice that applying the principal refinement of the Postnikov system
of a path-connected nilpotent space, [4, 4.11. Theorem] yields the following.

Theorem 2.5. Let X be a path-connected nilpotent CW -complex. Sup-

pose the invariants kn+2(X) of a Postnikov system for X are trivial for almost

all values of n. Then nil Ω(X) < ∞.

In particular, if X is a path-connected nilpotent CW -complex with a finite

Postnikov system then nil Ω(X) < ∞.

Corollary 2.6. Let X be a path-connected nilpotent CW -complex.

(1) If πn(X) = 0 for almost all values of n, then nil Ω(X) < ∞.

(2) If the invariants kn+2(X) vanish for almost all values of n, then

W–lengthX < ∞.
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Recall that a space X is said to dominate a space Y provided there are
continuous maps f : X → Y and g : Y → X such that f ◦ g ≃ ιY , the
composite map f ◦ g is homotopic to ιY .

Next, in view of [12], co-catX , the co-category of a topological space X
is a (possibly infinite) strictly positive integer as given by:

co-catX = 1 if and only if X is contractible.
Let n ≥ 1 be given and suppose the phrase co-catY = m has been defined

for any space Y and all integers m satisfying 1 ≤ m ≤ n; then, co-catX = n+1
provided:

(i) co-catX 6= m for any m satisfying 1 ≤ m ≤ n, and
(ii) there exists a fibration Q → Y → B such that Q dominates X and

co-catY = n.

If co-catX 6= n for all n ≥ 1, we put co-catX = ∞.
Then, by [12, Theorem 2.12], we have the following theorem.

Theorem 2.7. nil Ω(X) ≤ co-catX − 1.

We close this section by reviewing some recent works related to the subject
above.

The Lusternik-Schnirelmann category of a space X , LS-catX is the mini-
mal number of open sets needed to cover X which are contractible in X . This
was originally defined for manifolds, and is a lower bound for the number of
critical points of a function on X . The definition was broadened to arbitrary
spaces, and later definitions include an inductive version, ind LS-cat by Ganea
([12]), and symmetric version, symm LS-cat, by Hopkins ([18]).

Co-category is much less well understood than category. The first attempt
to define co-category was made by Ganea ([12]). Different possible definitions
of co-category exist depending on which feature of the classical LS-category
is dualized.

Hopkins ([18]) presents new formulations of category and co-category
closer in spirit to the original definition of category ([12]). One byproduct
of these formulations is a new characterization of iterated loop spaces and a
dual characterization of iterated suspensions.

Eldred ([11]) uses constructions in Goodwillie’s calculus of homotopy
functors to reformulate Hopkins’s definition ([18]) of symmetric LS-co-cat and
applies it to spaces determined by functors associated to reduced homotopy
endofunctors of spaces. Her result is concluded by the following inequalities

W-lengthX ≤ nil Ω(X) ≤ ind LS-co-catX ≤ sym LS-co-catX.

Hovey ([20]) introduces a new definition of a co-category that has some
advantages over the previous two definitions. It dualizes Whitehead’s def-
inition of a category, so it is defined by a map making a suitable diagram
commutative. Another advantage of Hovey’s co-category is that in [33] it was
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shown that the weak (Hovey) co-category of X coincides with nil Ω(X) if X
is simply-connected.

Murillo and Viruel ([27]) present a new approach to the Lusternik -
Schnirelmann co-category of a space. This approach is based on a dual of
the Whitehead definition of category. Using this new definition they are able
to prove all the classical properties satisfied by Ganea’s original concept of
co-category.

Yau ([38]) introduces the Clapp - Puppe type generalized Lusternik -
Schnirelmann co-category in a Quillen model category, establishes some of
their basic properties and gives various characterizations of them. As an
application of these characterizations, it is shown that the generalized co-
category is invariant under Quillen modelization equivalences. In particular,
generalized co-category of spaces and simplicial sets coincide. Another appli-
cation of these characterizations is to define and study rational co-category.

3. The homotopy nilpotency of some homogeneous spaces

We mainly make use of [15] to review the homotopy nilpotency Ω(G/K)
of loop spaces for some Lie groups G and their closed subgroups K < G.

The homotopy nilpotency of H-spaces has been extensively studied as
well as the homotopy commutativity. The first major advance was made by
Hopkins ([19, Theorem 2.1]) and completed by Rao ([30, Theorem 0.2]). He
showed that a finite H-space X is homotopy nilpotent if and only if for suffi-
ciently large n, the ϕX,n’s induce trivial homomorphism in complex bordism.
This is the same as asking that the ϕX,n’s induce trivial homomorphisms in
all Morava K-theories. We point out that [19, Theorem 2.1] has been proved
by reducing the problem to one in stable homotopy theory and applying the
nilpotence theorem ([9]). Then, in [19, Corollary 2.2], it was deduced the
following corollary.

Corollary 3.1. If X is a finite associative H-space and the integral

homology H∗(X,Z) is torsion free then X is homotopy nilpotent.

This corollary implies:

nilU(n) < ∞ and nil Sp(n) < ∞.

Because ofH-homotopy equivalencesO(n) ≃ SO(n)×Z2 and U(n) ≃ SU(n)×
S1, we derive:

nilSO(n) = nilO(n) and nilSU(n) = nilU(n) < ∞.

Next, write O = lim
→

O(n), U = lim
→

U(n) and Sp = lim
→

Sp(n). Then, notice

that by Bott periodicity theorem: Ω8(O) ≃ O, Ω2(U) ≃ U and Ω8(Sp) ≃ Sp,
we get

nilO = nilU = nilSp = 1.
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But, the classical homotopy nilpotency does not capture the algebraic nilpo-
tency of a topological group.

Remark 3.2. Since the commutators [SO(3), SO(3)] = SO(3) and
[SU(2), SU(2)] = SU(2) and: SO(3) ⊆ SO(n) ⊆ O(n) for n ≥ 3, SU(2) ⊆
SU(n) ⊆ U(n) for n ≥ 2 and SU(2) = Sp(1) ⊆ Sp(n) for n ≥ 1, we derive
that the groups:

(1) SO(n) and O(n) are not nilpotent for n ≥ 3,
(2) U(n) and SU(n) are not nilpotent for n ≥ 2,
(3) Sp(n) is not nilpotent for n ≥ 1.

Recall that Biedermann and Dwyer ([5]) define homotopy n-nilpotent
groups as homotopy algebras over certain simplicial algebraic theories to study
the connection between the Goodwillie tower of the identity and the lower
central series of the loop group on connected spaces. This notion interpolates
between infinite loop spaces and loop spaces, but backwards. They study the
relation to ordinary nilpotent groups and prove that n-excisive functors of the
form Ω(F ) factor over the category of homotopy n-nilpotent groups.

Nilpotency for discrete groups can be defined in terms of central exten-
sions. Costoya, Scherer, and Viruel ([7]) study the analogous definition for
spaces in terms of principal fibrations having infinite loop spaces as fibers,
yielding a new invariant they compare with classical co-category, but also
with the more recent notion of homotopy nilpotency introduced by Bieder-
mann and Dwyer ([5]). This allows them to characterize finite homotopy
nilpotent loop spaces in the spirit of Hubbuck’s Torus Theorem and corre-
sponding results for p-compact groups and p-Noetherian groups.

Rao ([29]) showed that the converse of the criterion from Corollary 3.1 is
true in the case of Spin(n) and SO(n) by showing that Spin(n), SO(n), n ≥ 7
and SO(3), SO(4) are not homotopy nilpotent.

Let now G(p) stand for the p-localization in the sense of [6] of a compact
Lie group G. Then, Yagita ([37, Theorem]) has shown the following theorem.

Theorem 3.3. Let G be a simply connected Lie group. Then for each

prime p, the p-localization G(p) is homotopy nilpotent if and only if the coho-

mology H∗(G,Z) has no p-torsion.

Next, Rao ([30, Theorem 0.2]) has generalized Theorem 3.3 as follows.

Theorem 3.4. Let G be a compact connected Lie group and let p be

a prime. Then G(p) is homotopy nilpotent if and only if the homology

H∗(G,Z(p)) is torsion-free.

Recall that an H-map f : X → Y of H-spaces is called central provided
ϕ̄2,Y (f ∧ ιY ) ≃ ∗. Then, in view of [39, Lemma 2.6.6], we have the following
result.
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Lemma 3.5. Let F
i
→ E

q
→ B be an H-fibration, i.e., F

i
→ E

q
→ B is a

fibration, F,E and B are H-spaces and the maps i : F → E, and q : E → B
are H-maps.

(1) If nil q ≤ n and i : F → E is central then nilE ≤ n+ 1.

(2) If Ω(Y )
i
→ E

q
→ X is the induced H-fibration by an H-map f : X → Y

then the map i : Ω(Y ) → E is central.

Next, recall that if a topological group G acts freely on a paracompact
space X then there is a homeomorphism

X/G ≈ X ×G EG,

where G → EG → BG is the universal principal G-bundle.
Since the connecting map ∂X : Ω(X/G) → G, in view of [32, Theorem

8.6] (see also [16, Corollary 3.4]), is an H-map, the fibration X → X/G →
EG/G ≈ BG leads to the H-fibration

Ω(X) −→ Ω(X/G)
∂X−→ Ω(BG) ≃ G.

Now, let G be a compact Lie group and K < G its closed subgroup. Then,
the quotient space G/K is a manifold and the quotient map q : G → G/K is
a submersion. Hence, q : G → G/K has a local section at the point q(e) = K
for the unit e ∈ G. This certainly implies that the map q : G → G/K has
a local section at any point q(g) for any g ∈ G. Consequently, the quotient
map q : G → G/K is a fiber bundle with the fiber K as a principal H-bundle.
Thus, the fibration G → G/K → BK leads to the H-fibration

Ω(G) −→ Ω(G/K)
∂G−→ Ω(BK) ≃ K.

Since this fibration is induced by the inclusion map K →֒ G which is certainly
an H-map, Lemma 3.5 yields the following statement.

Proposition 3.6. If G is a compact Lie group and K < G its closed

subgroup with nilK < ∞ then nil Ω(G/K) < ∞.

3.1. Grassmannians. Let K = R, C be the field of reals or complex num-
bers and H, the skew R-algebra of quaternions. Then, we set:

UK(n) =











O(n), if K = R,

U(n), if K = C,

Sp(n), if K = H,

and SUK(n) =











SO(n), if K = R,

SU(n), if K = C,

Sp(n), if K = H.

Write Gn,m(K) (resp. G+
n,m(K)) for the (resp. oriented) Grassmannian of

m-dimensional subspaces in the n-dimensional K-vector space. For example,
the set of lines Gn+1,1(K) = KPn is the projective n-space over K.

The homotopy nilpotency of the loop spaces Ω(KPn) has been first stud-
ied by Ganea ([13]), Snaith ([31]) and then their p-localization Ω((KPn)(p))
by Meier [26]. Recall that by Ganea ([13, Propositions 1.3-1.5]) and Snaith
([31, Corollaries 2.6 and 2.13]), we have the following result.
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Proposition 3.7.

(1) nil Ω(RP 2n+1)=

{

2, for n ≥ 0,

1, if and only if n = 0, 1 or 3.

(2) nil Ω(RP 2n) = ∞ for n ≥ 1.

(3) nil Ω(CP 2n+1) =

{

2, for any odd n ≥ 1,

1, if and only if n = 1.

(4) 4 ≤ nil Ω(CP 2n) ≤ 6 for n ≥ 1.
(5) 3 ≤ nil Ω(HP 2n+1) for any n ≥ 1.
(6) 4 ≤ nil Ω(HP 2n) for any n ≥ 1.
(7) nil Ω(HPn) = 3 if n ≡ −1 (mod 24).

Remark 3.8. In view of [31, Propositions 2.11, 2.12], we have that
ϕ̄7,Ω(CP 2n) = 0. Hence, nil Ω(CP 2n) ≤ 6. But, in [31, Corollary 2.13] it

is stated that nil Ω(CP 2n) ≤ 7.

Then, Meier ([26, Theorem 5.4]) has shown some results on the homotopy
nilpotency of p-localized projective spaces.

Theorem 3.9. Let p be an odd prime and n ≥ 2 a natural number. Then:

(1) nil Ω(CPn
(p)) = 1,

(2) nil Ω(HPn
(p)) = 1 if p > 3,

(3) 3 ≤ nil Ω(HPn
(3)) ≤ 4,

(4) nil Ω(HPn
(3)) = 3 if n ≡ 2 (mod 3).

Since the space RP 2n+1 is simple, there is its p-localization RP 2n+1
(p) for

any prime p ≥ 2. It it also easy to see that nil Ω(RP 2n+1
(p) ) = 1 for any odd

prime p and n ≥ 0. But, the nilpotency nil Ω(HPn) for any n ≥ 2 does not
appear in the literature known to the author.

It is well known that Gn,m(K) (resp. G+
n,m(K)) are smooth manifolds with

diffeomorphisms

Gn,m(K) ≈ UK(n)/(UK(m)× UK(n−m))

and

G+
n,m(K) ≈ SUK(n)/(SUK(m)× SUK(n−m)),

for K = R, C, H.
Since the homomorphism π1(SU(m)K) → π1(SU(n)K) of fundamental

groups determined by the inclusion map SU(m)K →֒ SU(n)K for 2 ≤ m ≤ n
is an epimorphism, we derive that the spaces G+

n,m(K) are simply connected
for K = R,C, H. Next, there is the universal covering map

Z2 −→ G+
n,m(R) −→ Gn,m(R)



404 M. GOLASIŃSKI

and the fibre bundle

S
1 −→ G+

n,m(C) −→ Gn,m(C).

Now, recall that the classifying

BUK(m) = lim
→

Gn,m(K) = G∞,m(K).

Since the cohomologyH∗(SO(n),Z) has only 2-torsion and the cohomolo-
gies H∗(U(n),Z), H∗(Sp(n),Z) are torsion free, the fibration

Ω(SUK(n)) −→ Ω(G+
n,m(K)) −→ SUK(m)× SUK(n−m),

the homotopy equivalence Ω(BUK(m)) ≃ UK(m), Corollary 3.1, Theorem 3.4
and Proposition 3.6 lead to the following result.

Proposition 3.10. If 1 ≤ m < n ≤ ∞ then:

(1) nil Ω(G+
n,m(R)(p)) < ∞ for p > 2,

(2) nil Ω(Gn,m(K)) < ∞ and nil Ω(G+
n,m(K)) < ∞ for K = C, H.

In particular, nil Ω(HPn) < ∞.

We do not mention above any result on the p-localization of Gn,m(R)
because we are not sure of its existence.

Remark 3.11. The (resp. oriented) flag manifold Fn;n1,...,nk
(K) (resp.

F+
n;n1,...,nk

(K)) with 1 ≤ n1 < · · · < nk ≤ n− 1 in the n-dimensional K-vector
space is smooth with a diffeomorphism Fn;n1,...,nk

(K) ≈ UK(n)/(UK(n1) ×
UK(n1 − n2) × · · · × UK(nk−1 − nk) × UK(n − nk)) (resp. F+

n;n1,...,nk
(K) ≈

SUK(n)/(SUK(n1)× SUK(n1 − n2)× · · · × SUK(nk−1 − nk)× SUK(n− nk))).
Furthermore, there is the universal covering map

(Z2)
k → F+

n;n1,...,nk
(R) → Fn;n1,...,nk

(R)

and a fibre bundle

(S1)k → F+
n;n1,...,nk

(C) → Fn;n1,...,nk
(C).

Consequently, Corollary 3.1, Theorem 3.4 and Proposition 3.6 lead to:

(1) nil Ω(F+
n;n1,...,nk

(R)(p)) < ∞ for p > 2,

(2) nil Ω(Fn;n1,...,nk
(K)) < ∞ and nil Ω(F+

n;n1,...,nk
(K)) < ∞ for K = C, H.

As above, we do not mention above any result on the p-localization of
Fn;n1,...,nk

(R) because we are not sure of its existence.

3.2. Stiefel manifolds. The Stiefel manifold Vn,m(K) is the set of all or-
thonormal m-frames in the vector space Kn. That is, it is the set of ordered
orthonormal m-tuples of vectors in Kn for K = R,C or H.

It is well known that Vn,m(K) is a smooth manifold and there are diffeo-
morphisms:

(1) Vn,m(R) = Vn,m ≈ O(n)/O(n −m) ≈ SO(n)/SO(n−m),
(2) Vn,m(C) = Wn,m ≈ U(n)/U(n−m) ≈ SU(n)/SU(n−m),
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(3) Vn,m(H) = Xn,m ≈ Sp(n)/Sp(n−m).

Since the homomorphism π1(SU(m)K) → π1(SU(n)K) of fundamental
groups determined by the inclusion map SU(m)K →֒ SU(n)K for 2 ≤ m ≤ n
is an epimorphism, we derive that the spaces Vn,m(K) are simply connected
for K = R,C, H. Then, Corollary 3.1, Theorem 3.4 and Proposition 3.6 lead
to the following proposition.

Proposition 3.12. If 1 ≤ m ≤ n then:

(1) nil Ω(Vn,m)(p) < ∞ for p > 2,
(2) nil Ω(Wn,m) < ∞,

(3) nil Ω(Xn,m) < ∞.
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