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Abstract. In this manuscript, we deal with the regularity of a weak
solution to the fluid-composite structure interaction problem introduced in
[12]. The problem describes a linear fluid-structure interaction between an
incompressible, viscous fluid flow, and an elastic structure composed of a
cylindrical shell supported by a mesh-like elastic structure. The fluid and
the mesh-supported structure are coupled via the kinematic and dynamic
boundary coupling conditions describing continuity of velocity and balance
of contact forces at the fluid-structure interface. In [12], it is shown that
there exists a weak solution to the described problem. By using the stan-
dard techniques from the analysis of partial differential equations we prove
that such a weak solution possesses an additional regularity in both time
and space variables for initial and boundary data satisfying the appropriate
regularity and compatibility conditions imposed on the interface.

1. Introduction

Fluid-structure interaction (FSI) problems are multi-physics problems
which arise in many applications. The most known examples are aeroelas-
ticity and biomedicine. They are often too complex to be solved analytically
so they have to be analyzed by means of various advanced mathematical tools
and challenging numerical simulations. In FSI problems which involve an elas-
tic structure, there are generally two different scenarios: the first one in which
an elastic solid is fully immersed in a fluid, and the second one where a fluid
is flowing inside a container with elastic walls. The benchmark problem we
study in this manuscript corresponds the second scenario and is motivated by
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the interaction between the blood flow in a coronary artery treated with a
vascular stent.

We consider a fluid-structure interaction problem between the flow of a
viscous, incompressible fluid in a 3D cylindrical domain, and an elastic, com-
posite structure. The fluid flow is modeled by the time-dependent Stokes
equations, while the elastic structure consists of a cylindrical shell supported
by a mesh-like structure, the latter one being a 3D elastic body consisting of a
collection of slender elastic rod-like components. The structure displacement
is assumed to be small, modeled by a system of linear Koiter shell equa-
tions allowing displacement in all three spatial directions. A 1D hyperbolic
net model consisting of a collection of linearly elastic curved rods is used to
model the elastodynamics of the mesh-like structure. The fluid and the com-
posite structure are coupled via kinematic and dynamic coupling conditions
evaluated along a linearized fluid-structure interface, which coincides with the
fixed fluid domain boundary.

In a recent work [12], the existence of a weak solution to the corresponding
problem was proven, and here we focus on the other fundamental mathemati-
cal issue, the regularity of the obtained weak solution. Mathematical analysis
of solutions to the coupled fluid-mesh-shell interaction problem is challeng-
ing due to the parabolic-hyperbolic-hyperbolic nature with the coupling taking
place at the fluid-structure interface. Nevertheless it is of great practical
relevance since mathematical modeling and numerical simulations have been
proven to be an indispensable tool in guiding optimal stent design and per-
formance, see e.g. [10, 11, 49] and references therein.

Let us now mention a few references which are most closely related to the
present work in the area of analysis [16, 17, 18, 24, 25, 26, 29, 31, 33, 39, 40, 41]
and numerical simulations [2, 4, 7, 9, 32]. The fluid-structure interaction
problems with composite structure were studied in [8, 42]. The only works
in which analysis of an FSI problem including an approximation of a stent-
supported vessel were considered are [6, 12, 15]. In [12], a stent was modeled
as a separate mesh-like structure, while in the other two papers, the presence
of a stent was modeled by the jump in the elasticity coefficients of a shell.

In [13], the authors extended the weak solution existence result of [12] to
a nonlinear problem by considering the nonlinear flow modeled by the Navier-
Stokes equations, and by coupling the fluid to the mesh-supported shell along
the current, deformed interface, giving rise to a strong geometric nonlinearity.

We also mention that the 1D hyperbolic net model considered here was
first introduced in [46] as an alternative to computationally expensive engi-
neering approaches in which a stent is modeled as a single 3D elastic body
and approximated using 3D based finite elements. Although the model is one-
dimensional, it provides 3D information about the stent struts’ deformation
in all three spatial directions.
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When considering well-posedness (including regularity) of fluid equations
coupled with elastic structure equations, the authors in [23] and [24] proved
the local-in-time existence and uniqueness of a regular solution between 3D
incompressible, viscous fluid and a 3D linear/quasilinear structure. Further-
more, in series of papers [35, 36, 37, 38], the authors dealt with the existence
and uniqueness of a strong solution to the FSI problems in which they con-
sidered Navier-Stokes equations coupled to a linear second order hyperbolic
equation. Some other works that deal with the strong solutions of various FSI
problems are [3, 5, 44].

It is important to emphasize that all of the mentioned papers which deal
with the regularity of solutions have the same mathematical obstacle in com-
mon which is a mismatch between parabolic and hyperbolic regularity, mostly
pronounced at the interface. In the present manuscript, we establish regu-
larity of a weak solution to the stated fluid-mesh-shell interaction problem,
for initial and boundary data satisfying the appropriate regularity as well as
compatibility conditions imposed on the interface. The regularity result is
valid up to the boundary, i.e. up to mesh vertices.

The article is organized as follows. In Sections 2 and 3, we describe the
fluid-mesh-shell interaction problem in consideration, and state the existence
theorem proven in [12]. In Section 4, the main result is stated, and in Sec-
tions 5 and 6, we derive the formal estimates, as well as rigorous justification
of the time and space regularity, respectively.

2. The problem description

2.1. The fluid. We consider the flow of an incompressible, viscous fluid
through a cylindrical domain, denoted by Ω:

Ω = {(z, x, y) ∈ R
3 : z ∈ (0, L),

√

x2 + y2 < R}.

The fluid domain boundary consists of three parts: the lateral boundary Γ,
which is a cylinder of radius R, the inlet boundary Γin, which is a circular
area of radius R located at z = 0 and the outlet boundary Γout, which is a
circular area of radius R located at z = L, see Figure 1.

The time-dependent Stokes equations for an incompressible, viscous fluid
are used to model the flow in Ω:

(2.1)
ρF∂tu = ∇ · σ
∇ · u = 0

}

in Ω, t ∈ (0, T ),

where ρF denotes the fluid density, u is the fluid velocity, σ = −pI+2µFD(u)
is the fluid Cauchy stress tensor, p is the fluid pressure, µF is the dynamic
viscosity coefficient, and D(u) = 1

2 (∇u +∇Tu) is the symmetrized gradient
of u. At the inlet and outlet we prescribe the pressure, with the tangential
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Figure 1. A sketch of the fluid domain

fluid velocity equal to zero (see [22]):

p = Pin/out(t)
u× ez = 0

}

on Γin/out,

where Pin/out are given. Therefore, the fluid flow is driven by the pressure
drop, and the fluid flow is orthogonal to the inlet and outlet boundary.

The fluid velocity will be assumed to belong to the following classical
function space

(2.2) VF = {u ∈ H1(Ω;R3) : ∇ · u = 0,u× ez = 0 on Γin/out}.

2.2. The shell. The lateral boundary of the fluid domain will be assumed
elastic, and modeled by the cylindrical Koiter shell equations. The shell thick-
ness will be denoted by h > 0, the length by L, and its reference radius of the
middle surface by R. We consider a clamped cylindrical shell. This reference
configuration, which we denote by Γ, can be parameterized by

ϕ : ω → R
3, ϕ(z, θ) = (z,R cos θ,R sin θ),

where ω = (0, L)× (0, 2π), and R > 0, thus:

Γ = {(z,R cos θ,R sin θ) : z ∈ (0, L), θ ∈ (0, 2π)}.

Under loading, the Koiter shell is displaced from its reference configu-
ration Γ by a displacement η = η(t, z, θ) = (ηz , ηr, ηθ), where ηz, ηr, and ηθ
denote the tangential, radial and azimuthal components of displacement. The
end points of the shell will be assumed to be clamped, whereas the boundary
conditions at θ = 0, 2π, will be periodic. For the details, see [12].
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Let VK denote the following function space:

VK = {η = (ηz , ηr, ηθ) ∈ H1(ω)×H2(ω)×H1(ω) :

η(t, z, θ) = ∂zηr(t, z, θ) = 0, z ∈ {0, L}, θ ∈ (0, 2π),

η(t, z, 0) = η(t, z, 2π), ∂θηr(t, z, 0) = ∂θηr(t, z, 2π), z ∈ (0, L)},

(2.3)

equipped with the corresponding norm:

‖η‖2k = ‖ηz‖
2
H1(ω) + ‖ηr‖

2
H2(ω) + ‖ηθ‖

2
H1(ω).

We are interested in weak solutions η = (ηz , ηr, ηθ) ∈ VK satisfying the fol-
lowing elastodynamics problem for a cylindrical Koiter shell (see [21, 34]):
find η = (ηz, ηr, ηθ) ∈ VK such that

(2.4) ρKh

∫

ω

∂2
t η ·ψR+ 〈Lη,ψ〉 =

∫

ω

f · ψR, ∀ψ ∈ VK ,

where ρK is the shell density, f is the outside loading, and L is the linear
operator associated with the Koiter elastic energy:

〈Lη,ψ〉 = h

∫

ω

Aγ(η) : γ(ψ)R+
h3

12

∫

ω

A̺(η) : ̺(ψ)R,

where A is the shell elasticity tensor, γ is the linearized change of metric
tensor and ̺ is the linearized change of curvature tensor:

(2.5) γ(η) =

(

∂zηz
1
2 (∂θηz +R∂zηθ)

1
2 (∂θηz +R∂zηθ) R∂θηθ +Rηr

)

,

(2.6) ̺(η) =

(

−∂zzηr −∂zθηr + ∂zηθ
−∂zθηr + ∂zηθ −∂θθηr + 2∂θηθ + ηr

)

.

We emphasize that from Theorem 2.6-4 in [20], we get the coercivity of the
operator L, i.e.

〈Lη,η〉 ≥ c‖η‖2k, ∀η ∈ VK .

The differential form of the cylindrical Koiter shell elastodynamics problem
on (0, T )× ω is then given by:

(2.7) ρKh∂2
t ηR+ Lη = fR.

2.3. The elastic mesh. An elastic mesh is a three-dimensional elastic body
defined as a union of three-dimensional slender components called struts
[14, 46]. Since struts are slender or ”thin”, meaning that the ratio between
the thickness of each strut versus its length is small, 1D (reduced) models
can be used to approximate their elastodynamic properties. In particular,
we will be using a 1D curved rod model to approximate the elastodynamic
properties of slender mesh struts. The one space dimension corresponds to
the parameterization of the middle line of curved rod. For the i-th curved
rod, the middle line is parameterized via

Pi : [0, li] → ϕ(ω), i = 1, . . . , nE,
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where nE denotes the number of curved rods in a mesh. By using s ∈ (0, li)
to denote the location along the middle line, and di(t, s) to denote the dis-
placement of the middle line from its reference configuration, wi(t, s) the in-
finitesimal rotation of cross-sections, qi(t, s) the contact moment, and pi(t, s)
the contact force, the following system of equations will be used to model the
elastodynamics of 1D curved rods:

(2.8)

ρSAi∂
2
t di = ∂spi + fi,

ρSMi∂
2
twi = ∂sqi + ti × pi,

0 = ∂swi −QiH
−1
i QT

i qi,

0 = ∂sdi + ti ×wi.

Here, ρS is the strut’s material density, Ai is the cross-sectional area of the
i-th rod, Mi is the matrix related to the moments of inertia of the cross-
sections, fi is the line force density acting on the i-th rod, and ti is the
unit tangent on the middle line of the i-th rod. Matrix Hi is a positive
definite matrix which describes the elastic properties and the geometry of
the cross section, while matrix Qi ∈ SO(3) represents the local basis at each
point of the middle line of the i-th rod (see [1] for more details). The first
two equations describe the linear impulse-momentum law and the angular
impulse-momentum law, respectively, while the last two equations describe a
constitutive relation for a curved, linearly elastic rod, and the condition of
inextensibility and unshearability, respectively.

System (2.8) is defined on a graph domain, determined by the geometry
and topology of the mesh structure. The graph consists of a set of vertices V
(points where the middle lines meet), and a set of edges E (pairing of vertices).
The ordered pair N = (V , E) defines the mesh net topology.

To define the weak solution space, we first introduce a function space
consisting of all the H1-functions (d,w) defined on the entire net N , such
that they satisfy the kinematic coupling conditions at each vertex V ∈ V :

H1(N ;R6) = {(d,w) = ((d1,w1), . . . , (dnE ,wnE )) ∈
nE
∏

i=1

H1(0, li;R
6) :

di(P
−1
i (V )) = dj(P

−1
j (V )),wi(P

−1
i (V )) = wj(P

−1
j (V )),

∀V ∈ V , V = ei ∩ ej , i, j = 1, . . . , nE}.

The solution space is defined to contain the conditions of inextensibility and
unshearability as follows:

(2.9) VS = {(d,w) ∈ H1(N ;R6) : ∂sdi + ti ×wi = 0, i = 1, . . . , nE}.
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For a function (d,w) ∈ VS , we consider the following norms on H1(N ;R3):

‖d‖2H1(N ;R3) :=

nE
∑

i=1

‖di‖
2
H1(0,li;R3), ‖w‖2H1(N ;R3) :=

nE
∑

i=1

‖wi‖
2
H1(0,li;R3),

and the following norms on L2(N ;R3):

‖d‖2L2(N ;R3) :=

nE
∑

i=1

‖di‖
2
L2(0,li;R3), ‖w‖2L2(N ;R3) :=

nE
∑

i=1

‖wi‖
2
L2(0,li;R3).

The weak formulation for the mesh net problem is obtained by summing
up all the weak formulations for each local mesh component (i.e. curved rod,
or strut) and it reads: find (d,w) ∈ VS such that

(2.10)

ρS

nE
∑

i=1

Ai

∫ li

0

∂2
t di · ξi + ρS

nE
∑

i=1

∫ li

0

Mi∂
2
twi · ζi

+

nE
∑

i=1

∫ li

0

QiHiQ
T
i ∂swi · ∂sζi =

nE
∑

i=1

∫ li

0

fi · ξi,

for all test functions (ξ, ζ) = ((ξ1, ζ1), . . . , (ξnE
, ζnE

)) ∈ VS .

Remark 2.1. We will be assuming that the elastic mesh is always confined
to the shell surface so that the following holds:

nE
⋃

i=1

Pi([0, li]) ⊂ Γ = ϕ(ω).

Since ϕ is injective on ω, functions πi, denoting the reparameterizations of
the stent struts:

πi = ϕ
−1 ◦Pi : [0, li] → ω, i = 1, . . . , nE ,

are well defined. The reference configuration of the mesh defined on ω will be
denoted by

ωS =

nE
⋃

i=1

πi([0, li]),

and of the mesh defined on Γ will be denoted by

ΓS =

nE
⋃

i=1

Pi([0, li]).

See Figure 2.
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Figure 2. Parameterization of the mesh struts

2.4. The fluid-composite structure coupling. By imposing the kinematic
and dynamic coupling conditions, which describe the continuity of velocity
and the balance of contact forces respectively, at the fluid-structure interface,
the fluid-composite structure interaction problem reads:

Problem 1. Find (u, p,η,d,w) such that:

(2.11)
ρF∂tu = ∇ · σ
∇ · u = 0

}

in (0, T )× Ω,

(2.12)
∂tη = u ◦ϕ

ρKh∂2
t ηR+ Lη +

nE
∑

i=1

fi ◦ π
−1
i

||π′
i ◦ π

−1
i ||

δJi = −J(σ ◦ϕ)(n ◦ϕ)











on (0, T )×ω,

(2.13)

ρSAi∂
2
t di = ∂spi + fi

ρSMi∂
2
twi = ∂sqi + ti × pi

0 = ∂swi −QiH
−1
i QT

i qi

0 = ∂sdi + ti ×wi















on (0, T )× (0, li).
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Problem (2.11)-(2.13) is supplemented with the following set of boundary and
initial conditions:

(2.14)































p = Pin/out(t), on (0, T )× Γin/out,

u× ez = 0, on (0, T )× Γin/out,

η(t, 0, θ) = η(t, L, θ) = 0, on (0, T )× (0, 2π),
∂zηr(t, 0, θ) = ∂zηr(t, L, θ) = 0, on (0, T )× (0, 2π),
η(t, z, 0) = η(t, z, 2π), on (0, T )× (0, L),

∂θηr(t, z, 0) = ∂θηr(t, z, 2π), on (0, T )× (0, L),

(2.15)
u(0) = u0, η(0) = η0, ∂tη(0) = v0,

di(0) = d0i, ∂tdi(0) = k0i, wi(0) = w0i, ∂twi(0) = z0i,

where we introduced the following notation for the Koiter shell velocity, the
mesh velocity and the rotation velocity, respectively:

(2.16) v = ∂tη, k = ∂td, z = ∂tw.

3. Existence of a weak solution

We define the following evolution spaces associated with the fluid prob-
lem, the Koiter shell problem, the mesh problem and the coupled mesh-shell
problem:

• VF (0, T ) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VF ),
where VF is defined by (2.2),

• VK(0, T ) = W 1,∞(0, T ;L2(R;ω)) ∩ L∞(0, T ;VK),
where VK is defined by (2.3),

• VS(0, T ) = W 1,∞(0, T ;L2(N )) ∩ L∞(0, T ;VS),
where VS is defined by (2.9),

• VKS(0, T )={(η,d,w)∈VK(0, T )×VS(0, T ) : η|ωS◦π = d on
nE
∏

i=1

(0, li)}.

The solution space for the coupled fluid-mesh-shell interaction problem in-
volves the kinematic coupling condition:

V(0, T ) = {(u,η,d,w) ∈ VF (0, T )× VKS(0, T ) : u|Γ ◦ϕ = ∂tη on ω}.

The associated test space is given by:

Q(0, T ) = {(υ,ψ, ξ, ζ) ∈ C1
c ([0, T );VF × VKS) : υ|Γ ◦ϕ = ψ on ω},

where VKS = {(η,d,w) ∈ VK × VS : η|ωS ◦ π = d on
∏nE

i=1(0, li)}.
We now state a definition of weak solutions of our fluid-mesh-shell inter-

action problem, with the fluid flow in Ω.

Definition 3.1. We say that (u,η,d,w) ∈ V(0, T ) is a weak solution of

Problem 1 if for all test functions (υ,ψ, ξ, ζ) ∈ Q(0, T ) the following equality
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holds:

− ρF

∫ T

0

∫

Ω

u · ∂tυ + 2µF

∫ T

0

∫

Ω

D(u) : D(υ)− ρKh

∫ T

0

∫

ω

∂tη · ∂tψR

+

∫ T

0

aK(η,ψ)− ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂tdi · ∂tξi − ρS

nE
∑

i=1

∫ T

0

∫ li

0

Mi∂twi · ∂tζi

+

∫ T

0

aS(w, ζ) =

∫ T

0

〈F (t),υ〉Γin/out
+ ρF

∫

Ω

u0 · υ(0) + ρKh

∫

ω

v0 · ψ(0)R

+ ρS

nE
∑

i=1

Ai

∫ li

0

k0i · ξi(0) + ρS

nE
∑

i=1

∫ li

0

Miz0i · ζi(0),

where

aK(η,ψ) = 〈Lη,ψ〉,

aS(w, ζ) =

nE
∑

i=1

∫ li

0

QiHiQ
T
i ∂swi · ∂sζi,

and

〈F (t),υ〉Γin/out
= Pin(t)

∫

Γin

υz − Pout(t)

∫

Γout

υz.

As we already mentioned, the authors in [12] showed the existence of such
a weak solution. For the sake of completeness, we state here the existence
theorem.

Theorem 3.2 ([12]). Let u0 ∈ L2(Ω), η0 ∈ H1(ω), v0 ∈ L2(R;ω),
(d0,w0) ∈ VS , (k0, z0) ∈ L2(N ;R6) be such that

∇ · u0 = 0, (u0|Γ ◦ϕ) · er = (v0)r, u0|Γin/out
× ez = 0, η0 ◦ π = d0.

Furthermore, let all the physical constants be positive: ρK , ρS , ρF , λ, µ, µF > 0
and Ai > 0, ∀i = 1, . . . , nE , and let Pin/out ∈ L2

loc(0,∞). Then for every

T > 0 there exists a weak solution to Problem 1 in the sense of Definition 3.1.

The proof method is based on a semi-discretization approach, where the
coupled problem is discretized in time, and at the same time split into a
fluid and a structure subproblem using the so called Lie operator splitting
strategies. The constructed weak solutions are shown to satisfy an energy
inequality, uniform estimates are obtained and existence of weak and weak∗

convergent subsequences established. Since the problem is linear, weak and
weak∗ convergent subsequences are then shown to satisfy the weak formulation
of the coupled continuous FSI problem.

We also mention that one could use a slightly different definition of a
weak solution which is equivalent to Definition 3.1.



REGULARITY OF A WEAK SOLUTION TO A LINEAR FSI PROBLEM 417

Definition 3.3. We say that (u,η,d,w) ∈ V(0, T ) is a weak solution of

Problem 1 if for all test functions (υ,ψ, ξ, ζ) ∈ V(0, T ) the following equality

holds:
∫ T

0

〈(∂tu, ∂ttη, ∂ttd, ∂ttw), (υ,ψ, ξ, ζ)〉+ 2µF

∫ T

0

∫

Ω

D(u) : D(υ)

+

∫ T

0

aK(η,ψ) +

∫ T

0

aS(w, ζ) =

∫ T

0

〈F (t),υ〉Γin/out
,

where 〈·, ·〉 denotes the dual product on space V :

V =
{

(u,η,d,w) ∈ VF × VK × VS : u|Γ ◦ϕ = ∂tη on ω,

η|ωS ◦ π = d on

nE
∏

i=1

(0, li)
}

.

We use the previous definition to obtain the regularity of the time deriva-
tives in the dual space V ∗. More precisely,

‖(∂tu, ∂ttη, ∂ttd, ∂ttw)‖L2(0,T ;V ∗)

= sup
(υ,ψ,ξ,ζ)∈L2(0,T ;V )

‖(υ,ψ,ξ,ζ)‖=1

∣

∣

∣

∣

∣

ρF

∫ T

0

∫

Ω

∂tu · υ + ρKh

∫ T

0

∫

ω

∂ttη ·ψ

+ρS

∫ T

0

nE
∑

i=1

Ai

∫ li

0

∂ttdi · ξi + ρS

∫ T

0

nE
∑

i=1

∫ li

0

Mi∂ttwi · ζi

∣

∣

∣

∣

∣

= sup
(υ,ψ,ξ,ζ)∈L2(0,T ;V )

‖(υ,ψ,ξ,ζ)‖=1

∣

∣

∣

∣

∣

∫ T

0

Pin(t)

∫

Γin

υz −

∫ T

0

Pout(t)

∫

Γout

υz

−2µF

∫ T

0

∫

Ω

D(u) : D(υ)−

∫ T

0

aK(η,ψ)−

∫ T

0

aS(w, ζ)

∣

∣

∣

∣

∣

≤ sup
(υ,ψ,ξ,ζ)∈L2(0,T ;V )

‖(υ,ψ,ξ,ζ)‖=1

(

‖Pin/out‖L2(0,T )‖υ‖L2(0,T ;H1(Ω))

+2µF‖D(u)‖L2(0,T ;L2(Ω))‖D(υ)‖L2(0,T ;L2(Ω))

+‖η‖L2(0,T ;H1(ω))‖ψ‖L2(0,T ;H1(ω))

+‖w‖L2(0,T ;H1(N ))‖ζ‖L2(0,T ;H1(N ))

)

.

Since the right-hand side is bounded, we see that

(∂tu, ∂ttη, ∂ttd, ∂ttw) ∈ L2(0, T ;V ∗)

which implies

(u, ∂tη, ∂td, ∂tw) ∈ H1(0, T ;V ∗).
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Remark 3.4. In particular, by taking (u, 0, 0, 0), where u ∈ H1
0 (Ω) as a

test function, one easily obtains that ∂tu ∈ L2(0, T ;H−1(Ω)).

Proposition 3.5. A weak solution to Problem 1, whose existence is guar-

anteed by Theorem 3.2, is unique.

Remark 3.6. We omit the uniqueness proof and emphasize that one could
easily prove it by using the regularization techniques (mollifying the functions
in the time variable) which was done in Theorem 4.2. in [28] for the Navier-
Stokes equations, and in [43, 45] for FSI problems between incompressible,
viscous fluid and rigid body/elastic plate, respectively. For the related result
in the context of FSI with compressible fluid see [48]. All the mentioned
papers, however, encounter certain difficulties connected with the fact that the
fluid domain boundary is moving, and, due to the presence of the convective
term in the Navier-Stokes equations, they could only prove a weak-strong
uniqueness result. The uniqueness proof in our case is straightforward since
we do not have to deal with any of the mentioned difficulties.

4. Main regularity result

After short introduction of the problem, we are now ready to address
the question whether a weak solution to problem (2.11)-(2.15) is in fact more

regular provided the initial and boundary data are so. The following main
theorem of this manuscript gives the answer to the raised question.

Theorem 4.1. Let Pin/out ∈ H1
loc(0,∞) and let initial conditions

u0 ∈ H2(Ω), η0 ∈ H2(ω), v0 ∈ VK , (d0,w0) ∈ H2(N ;R6), (k0, z0) ∈ VS ,

be such that

∇ · u0 = 0, (u0|Γ ◦ϕ) · er = (∂tη0)r, u0|Γin/out
× ez = 0, η0 ◦ π = d0.

Furthermore, let all the physical constants be positive: ρK , ρS , ρF , λ, µ, µF > 0
and Ai > 0, ∀i = 1, . . . , nE .

• The weak solution to Problem 1, whose existence is guaranteed by The-

orem 3.2, belongs to the following function spaces:

u ∈ W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;VF ),

η ∈ W 2,∞(0, T ;L2(R;ω)) ∩W 1,∞(0, T ;VK),

(d,w) ∈ W 2,∞(0, T ;L2(N )) ∩W 1,∞(0, T ;VS).

• For each i = 1, . . . , nE , fix any open set Ii ⊂⊂ (0, li) and choose an

open set Ji such that Ii ⊂⊂ Ji ⊂⊂ (0, li). Then select a smooth cut-off

function χi which satisfies 0 ≤ χi ≤ 1 and
{

χi = 1 on Ii,

χi = 0 on R\Ji.
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Set χ :=
∏nE

i=1 χi and let χ̄ be the extension of χ ◦ π−1 in the interior

of the shell domain ω such that χ̄ = 0 on ∂ω and let χ̃ be the extension

of χ̄ ◦ ϕ−1 in the interior of the fluid domain Ω such that χ̃ = 0 on

Γin/out. Then the weak solution to Problem 1, provided by Theorem 3.2,

possesses an additional regularity in s-direction, where s ∈ (0, li), i =
1, . . . , nE, in the following sense:

χ̃∂ssu ∈ L2(0, T ;L2(Ω)), χ̄∂sη ∈ L∞(0, T ;VK),

χ∂ssd ∈ L∞(0, T ;L2(N )), χ∂ssw ∈ L∞(0, T ;L2(N )),

where ∂ssu and ∂sη are given by (6.11) and (6.12), respectively.
• Fix any open set ω0 ⊂⊂ ω\(∂ω ∪ ωS) and choose an open set ω1 such

that ω0 ⊂⊂ ω1 ⊂⊂ ω\(∂ω ∪ ωS). Then select a smooth function χ

satisfying 0 ≤ χ ≤ 1 and
{

χ = 1 on ω0,

χ = 0 on R
2\ω1.

Next, let χ̃ be the extension of χ ◦ ϕ−1 in the interior of the fluid

domain and such that χ̃ = 0 on Γin/out. Then the fluid velocity as well

as the shell displacement have an additional regularity in all directions:

χ̃∆u ∈ L2(0, T ;L2(Ω)),

χ∇η ∈ L∞(0, T ;VK).

The following sections are dedicated to proving this theorem. First we
deal with the time regularity, and after that with the space regularity.

5. Time regularity

5.1. Motivation and formal estimates. Formal energy estimates show that
taking (u, ∂tη, ∂td, ∂tw) as a test function in the full, coupled problem, leads
to the following regularity of the solution:

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VF ),

η ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;VK),

(d,w) ∈ W 1,∞(0, T ;L2(N )) ∩ L∞(0, T ;H1(N )).

To obtain an additional time regularity, the natural step would be to take
(∂tu, ∂ttη, ∂ttd, ∂ttw) as a test function. For the fluid, we have the unsteady
Stokes equations for the incompressible viscous fluid:

{

ρF∂tu− µ∆u+∇p = 0,
∇ · u = 0.

Multiplying the first equation by ∂tu and integrating over Ω, we obtain esti-
mates on ‖∂tu‖2L2(Ω) and on 1

2
d
dt‖∇u‖2L2(Ω). Notice that we are not considering
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boundary terms (which arise after integration by parts). Next, take ∂ttη as a
test function in the shell equation

ρKh∂ttη + Lη = f

and integrate over ω. From the first term, we get the estimate on ‖∂ttη‖2L2(R;ω),

while from the second term on the left-hand side we obtain:
∫

ω

Lη · ∂ttη = −

∫

ω

L∂tη · ∂tη = −〈L∂tη, ∂tη〉 ≤ −‖∂tη‖k,

where in the last inequality we used the coercivity of the operator L.
The problem we encounter here is the ”wrong sign” in front of the elastic

term so we can not get the bound on ‖∂tη‖k. This mismatch arises due to
parabolic-hyperbolic nature of the fluid and the shell coupling, namely, even
though the pair (∂tu, ∂ttη) is an admissible test function, it is not appropriate
to get the wanted estimates. Analogously, due to the hyperbolic nature of
the mesh equations, we can not get the right bounds on ‖∂td‖H1(N ) and
‖∂tw‖H1(N ).

In order to justify the following calculations, we assume that our solution
is smooth enough, and first differentiate the fluid, the shell and the mesh equa-
tions with respect to t,multiply the obtained equations by ∂tu, ∂ttη, ∂ttd, ∂ttw

and integrate over Ω, ω and (0, li), i = 1, . . . , nE , respectively. Integrating by
parts, and enforcing the kinematic and dynamic boundary conditions on ω,

we obtain:

ρF

2

d

dt
‖∂tu‖

2
L2(Ω) + 2µF ‖D(∂tu)‖

2
L2(Ω) +

ρKh

2

d

dt
‖∂ttη‖

2
L2(R;ω)

+
1

2

d

dt
〈L∂tη, ∂tη〉+

ρS

2

d

dt

nE
∑

i=1

Ai‖∂ttdi‖
2
L2(0,li)

+
ρS

2

d

dt

nE
∑

i=1

‖∂ttwi‖
2
m

+
d

dt

nE
∑

i=1

‖∂twi‖
2
r =

∫

Γin

∂tp ∂tuz −

∫

Γout

∂tp ∂tuz,

(5.1)

where ‖w‖m and ‖w‖r denote the following norms associated with the elastic
energy of the elastic mesh:

‖w‖2m :=

nE
∑

i=1

‖wi‖
2
m =

nE
∑

i=1

∫ li

0

Miwi ·wi,

‖w‖2r :=

nE
∑

i=1

‖wi‖
2
r =

nE
∑

i=1

∫ li

0

QiHiQ
T
i ∂swi · ∂swi,

and ‖η‖L2(R;ω) denotes the weighted L2-norm on ω, with the weight R asso-
ciated with the geometry of the Koiter shell (Jacobian):

‖η‖2L2(R;ω) :=

∫

ω

|η|2R dω.
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We can estimate the right-hand side of (5.1) by using the trace theorem,
Korn’s inequality and Cauchy inequality with ε, and then integrate from 0
to T to see that the left-hand side is bounded by the norms of initial data
and inlet/outlet pressure. Provided that initial and boundary data have the
needed regularity, we conclude that our solution indeed possesses an additional
regularity in time variable:

u ∈ W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;VF ),

η ∈ W 2,∞(0, T ;L2(R;ω)) ∩W 1,∞(0, T ;VK),

(d,w) ∈ W 2,∞(0, T ;L2(N )) ∩W 1,∞(0, T ;H1(N )).

Previous formal calculations do not really constitute a proof since our solution
is not smooth enough to be used as a test function, but they suggest that the
weak solution may indeed be more regular provided initial and boundary data
are so. Next section is devoted to rigorous justification of those estimates.

5.2. Estimates by difference quotients. We begin by recalling the defini-
tion of the difference quotients. Let u : U → R be locally summable function
and V ⊂⊂ U.

Definition 5.1 ([27]). The i-th difference quotient of size h is

Dh
i u(x) =

u(x+ hei)− u(x)

h
, i = 1, . . . , n,

for x ∈ V and h ∈ R, 0 < |h| < dist(V, ∂U). We set Dhu := (Dh
1u, . . . , D

h
nu).

Theorem 5.2 ([27]). (i) Suppose 1 ≤ p < ∞ and u ∈ W 1,p(U). Then
for each V ⊂⊂ U

‖Dhu‖Lp(V ) ≤ C‖∇u‖Lp(U)

for some constant C and all 0 < |h| < 1
2dist(V, ∂U).

(ii) Assume 1 < p < ∞, u ∈ Lp(V ) and there exists a constant C such that

‖Dhu‖Lp(V ) ≤ C

for all 0 < |h| < 1
2dist(V, ∂U). Then

u ∈ W 1,p(V ), with ‖∇u‖Lp(V ) ≤ C.

It is also useful to state some properties of the difference quotients which will
be used frequently throughout the rest of the manuscript:

(i)

∫

U

uD−h
k v dx = −

∫

U

(Dh
ku)v dx, where v ∈ C∞

c (U),(5.2)

(ii) Dh
k (uv) = uhDh

kv + vDh
ku, where uh(x) = u(x+ hek).(5.3)
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In this section we are dealing with the time regularity of our weak solution so
we define the time difference quotients in the following way:

(5.4) D∆tu(t,x) =
u(t+∆t,x)− u(t,x)

∆t
,

where ∆t > 0. Having (5.4) in mind, we define the test functions for our
fluid-composite structure interaction problem as follows:

υ = −D−∆t(D∆tu), ψ = −D−∆t(D∆t∂tη),

ξ = −D−∆t(D∆t∂td), ζ = −D−∆t(D∆t∂tw),
(5.5)

where (u,η,d,w) is a weak solution to Problem 1.

Remark 5.3. Unfortunately, ∂tη, ∂td and ∂tw are not regular enough to
be used as test functions. For that reason, we follow the artificial viscoelas-

ticity approach to justify the formal estimates. Namely, we add viscoelastic
terms ε∆∂tη, ε∂ss∂td and ε∂ss∂tw in the shell and mesh equations, with ε

being a regularization parameter. From the energy estimates we then obtain
that ∂tηε ∈ L2(0, T ;VK) and (∂tdε, ∂twε) ∈ L2(0, T ;VS) so the finite differ-
ences involving these solutions can be used as test functions. The obtained
regularity estimates are uniform in the viscoelasticity parameter and therefore
are also valid for the limiting solution. Finally, from the uniqueness (Proposi-
tion 3.5), we can conclude that regularity estimates hold for the weak solution
to the original problem.

We multiply the fluid equation by υ defined above, and integrate over Ω
and (0, T ) to see that:

ρF

∫ T

0

∫

Ω

∂tu · υ = −ρF

∫ T

0

∫

Ω

∂tu ·D−∆t(D∆tu)

= ρF

∫ T

0

∫

Ω

D∆t∂tu ·D∆tu = ρF

∫ T

0

∫

Ω

1

2

d

dt
|D∆tu|2

=
ρF

2

∫ T

0

d

dt
‖D∆tu‖2L2(Ω),

2µF

∫ T

0

∫

Ω

D(u) : D(υ) = −2µF

∫ T

0

∫

Ω

D(u) : D(D−∆t(D∆tu))

= 2µF

∫ T

0

∫

Ω

D∆tD(u) : D∆tD(u)

= 2µF

∫ T

0

‖D∆tD(u)‖2L2(Ω),
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where we have used

D∆t∂tu(t,x) = ∂tD
∆tu(t,x),

D∆tD(u(t,x)) = D(D∆tu(t,x)).

Recall that D(u) = 1
2 (∇u+∇Tu) is the symmetrized gradient of u.

We next multiply the shell equation by ψ defined in (5.5), and integrate
over ω and (0, T ) to see that:

ρKh

∫ T

0

∫

ω

∂ttη ·ψR = −ρKh

∫ T

0

∫

ω

∂ttη ·D−∆t(D∆t∂tη)R

= ρKh

∫ T

0

∫

ω

∂tD
∆t∂tη ·D∆t∂tηR

=
ρKh

2

∫ T

0

d

dt
‖D∆t∂tη‖

2
L2(R;ω),

∫ T

0

aK(η,ψ) =

∫ T

0

〈Lη,ψ〉 =

∫ T

0

〈Lη,−D−∆t(D∆t∂tη)〉

=

∫ T

0

〈L(D∆tη), ∂t(D
∆tη)〉 =

1

2

∫ T

0

d

dt
〈L(D∆tη), D∆tη〉.

Remark 5.4. The coercivity of the operator L will enable us to get a
bound on ‖D∆tη‖k.

Next, we deal with the inertial term involving mesh displacement:

ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂ttdi · ξi = −ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂ttdi ·D
−∆t(D∆t∂tdi)

= ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂t(D
∆t∂tdi) ·D

∆t∂tdi

=
ρS

2

nE
∑

i=1

Ai

∫ T

0

d

dt
‖D∆t∂tdi‖

2
L2(0,li)

,

as well as the inertial term involving infinitesimal rotation:

ρS

nE
∑

i=1

∫ T

0

∫ li

0

Mi∂ttwi · ζi =
ρS

2

nE
∑

i=1

∫ T

0

d

dt
‖D∆t∂twi‖

2
m.
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Finally, the elastic part of the mesh equations can be rewritten as follows:

∫ T

0

aS(w, ζ) =

nE
∑

i=1

∫ T

0

∫ li

0

QiHiQ
T
i ∂swi · ∂sζi

= −
nE
∑

i=1

∫ T

0

∫ li

0

QiHiQ
T
i ∂swi · ∂sD

−∆t(D∆t∂twi)

=

nE
∑

i=1

∫ T

0

∫ li

0

QiHiQ
T
i D

∆t∂swi · ∂t(D
∆t∂swi)

=
1

2

nE
∑

i=1

∫ T

0

d

dt
‖D∆twi‖

2
r.

By enforcing the kinematic and dynamic boundary conditions on Γ (the details
can be found in [12]), one obtains the following equality:

ρF

2

∫ T

0

d

dt
‖D∆tu‖2L2(Ω) + 2µF

∫ T

0

‖D∆tD(u)‖2L2(Ω)

+
ρKh

2

∫ T

0

d

dt
‖D∆t∂tη‖

2
L2(R;ω) +

1

2

∫ T

0

d

dt
〈L(D∆tη), D∆tη〉

+
ρS

2

nE
∑

i=1

Ai

∫ T

0

d

dt
‖D∆t∂tdi‖

2
L2(0,li)

+
ρS

2

nE
∑

i=1

∫ T

0

d

dt
‖D∆t∂twi‖

2
m

+
1

2

nE
∑

i=1

∫ T

0

d

dt
‖D∆twi‖

2
r =

∫ T

0

∫

Γin

D∆tpD∆tuz −

∫ T

0

∫

Γout

D∆tpD∆tuz.

The right-hand side is equal to:

∫ T

0

∫

Γin

D∆tPin(t)D
∆tuz −

∫ T

0

∫

Γout

D∆tPout(t)D
∆tuz,

which we estimate using the trace theorem, Korn’s inequality (Theorem 6.3-4
in [19]) and Cauchy inequality:

∣

∣

∣

∣

∣

∫

Γin/out

D∆tPin/outD
∆tuz

∣

∣

∣

∣

∣

≤ C
∣

∣D∆tPin/out

∣

∣ ‖D∆tu‖H1(Ω)

≤ C|∂tPin/out|‖D(D∆tu)‖L2(Ω)

≤
C

2ε
|∂tPin/out|

2 +
Cε

2
‖D∆tD(u)‖2L2(Ω).
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Evaluating all the integrals in time and using the above estimate for the right-
hand side, one obtains:

ρF ‖D
∆tu‖L∞(0,T ;L2(Ω)) + 4µF‖D

∆tD(u)‖L2(0,T ;L2(Ω))

+ ρKh‖D∆t∂tη‖L∞(0,T ;L2(R;ω)) + ‖D∆tη‖L∞(0,T ;VK)

+ ρS‖D
∆t∂td‖L∞(0,T ;L2(N )) + ρS‖D

∆t∂tw‖L∞(0,T ;L2(N ))

+ ‖D∆t∂sw‖L∞(0,T ;L2(N ))

≤ ρF ‖D
∆tu0‖

2
L2(Ω) + ρKh‖D∆tv0‖

2
L2(R;ω) + ‖D∆tη0‖

2
k

+ ρS‖D
∆tk0‖

2
L2(N ) + ρS‖D

∆tz0‖
2
L2(N ) + ‖D∆t∂sw0‖

2
L2(N )

+
C

ε
‖Pin/out‖

2
H1(0,T ) + Cε‖D∆tD(u)‖2L2(0,T ;L2(Ω)).

By choosing ε such that Cε ≤ 4µF , the symmetrized gradient term can be
absorbed into the left-hand side. Using the property (ii) of difference quotients
stated in Theorem 5.2, we obtain:

‖D∆tu‖L∞(0,T ;L2(Ω)) ≤ C =⇒ ‖∂tu‖L∞(0,T ;L2(Ω)) ≤ C,

‖D∆tD(u)‖L2(0,T ;L2(Ω)) ≤ C =⇒ ‖∂tD(u)‖L2(0,T ;L2(Ω)) ≤ C,

‖D∆t∂tη‖L∞(0,T ;L2(R;ω)) ≤ C =⇒ ‖∂ttη‖L∞(0,T ;L2(R;ω)) ≤ C,

‖D∆tη‖L∞(0,T ;VK) ≤ C =⇒ ‖∂tη‖L∞(0,T ;VK) ≤ C,

‖D∆t∂td‖L∞(0,T ;L2(N )) ≤ C =⇒ ‖∂ttd‖L∞(0,T ;L2(N )) ≤ C,

‖D∆t∂tw‖L∞(0,T ;L2(N )) ≤ C =⇒ ‖∂ttw‖L∞(0,T ;L2(N )) ≤ C,

‖D∆t∂sw‖L∞(0,T ;L2(N )) ≤ C =⇒ ‖∂t∂sw‖L∞(0,T ;L2(N )) ≤ C,

(5.6)

provided that initial data satisfy the following:

u0 ∈ H2(Ω), η0 ∈ VK , v0 ∈ VK , (d0,w0) ∈ VS , (k0, z0) ∈ VS

together with the compatibility conditions:

∇ · u0 = 0, (u0|Γ ◦ϕ) · er = (v0)r, u0|Γin/out
× ez = 0, η0 ◦ π = d0.

For the inlet and outlet pressure we demand Pin/out ∈ H1
loc(0,∞). Notice how

we did not obtain the estimate on ∂t∂sd. In order to achieve that, we use the
condition of inextensibility and unshearability:

‖∂t∂sd‖L2(N ) = ‖ − ∂t(t×w)‖L2(N ) ≤ C(‖w‖L2(N ) + ‖∂tw‖L2(N )).

We now summarize the time regularity results obtained in this section:

u ∈ W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;VF ),

η ∈ W 2,∞(0, T ;L2(R;ω)) ∩W 1,∞(0, T ;VK),

(d,w) ∈ W 2,∞(0, T ;L2(N )) ∩W 1,∞(0, T ;VS).

(5.7)
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6. Spatial regularity

6.1. Formal estimates.

Remark 6.1. For the simplicity of notation, from now on, u will represent
the fluid velocity function written in cylindrical coordinates (z, r, θ).

Just like in the previous section, we begin by derivation of formal es-
timates. One could naively take (−∆u,−∆∂tη,−∆∂td,−∆∂tw) as a test
function, where

∆u(z, r, θ) = (∆uz(z, r, θ),∆ur(z, r, θ),∆uθ(z, r, θ))

= (∂zzuz + ∂rruz + ∂θθuz, ∂zzur + ∂rrur + ∂θθur,

∂zzuθ + ∂rruθ + ∂θθuθ)

and

∆∂tη(z, θ) = (∆∂tηz(z, θ),∆∂tηr(z, θ),∆∂tηθ(z, θ))

= (∂zz∂tηz + ∂θθ∂tηz , ∂zz∂tηr + ∂θθ∂tηr, ∂zz∂tηθ + ∂θθ∂tηθ).

The problem that we encounter here is non-compatibility of the test func-
tions, i.e. ∆u 6= ∆∂tη on Γ. In what follows, we develop ideas to overcome
those difficulties, which will then be justified by rigorous calculations using
difference quotients.

Step 1: Fluid interior regularity

For the fluid test function we take −χ∆u, where χ is a smooth cut-off function
which has support in the interior of the fluid domain. Its purpose is to restrict
all expressions to the subset Ω0 ⊆ Ω which has a positive distance from
∂Ω. Taking (−χ∆u, 0, 0, 0) as a test function for the full, coupled problem,
meaning that in this first step we exclude the elastic, composite structure
which coincides with the fluid domain boundary, and integrating over Ω and
(0, T ) we obtain the estimates on

‖∇u‖L∞(0,T ;L2(Ω0)) and ‖∆u‖L2(0,T ;L2(Ω0)),

i.e. we get, provided that u0 ∈ H1(Ω), an additional interior regularity for
the fluid velocity

u ∈ L∞(0, T ;H1(Ω0)) ∩ L2(0, T ;H2(Ω0)).

Step 2: Shell interior regularity

Recall that ωS denotes the reference configuration of the mesh defined on ω,

namely ωS =
⋃nE

i=1 πi([0, li]). Following the ideas from the first step, we now
exclude the mesh from calculations by taking ψ = −χ∆∂tη, where χ is a
smooth cut-off function which has support in ω\(∂ω ∪ ωS), as a test function
in the shell equation, and −χ̃∆u, where χ̃ is the extension of χ ◦ϕ−1 in the
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interior of the fluid domain, as a test function in the fluid equations. As we
already noticed these two test functions are non-compatible, since the shell
displacement does not depend on r. For that reason, we have to take slightly
modified test function for the fluid part, namely:

υ = χ̃(−∂zzuzz − ∂θθuzz,−∂zzurr − ∂θθurr,−∂zzuθθ − ∂θθuθθ).

Notice how this test function will give us an additional fluid regularity only
in the tangential and azimuthal direction; for the radial direction we will get
no information.

Finally, taking (υ,ψ, 0, 0) as a test function in the full coupled problem,
we obtain the following:

• from the inertial term in the Koiter shell equations we get the estimate
on ‖∇∂tη‖L∞(0,T ;L2(ω0)), i.e. η ∈ W 1,∞(0, T ;H1(ω0)), where ω0 ⊂⊂
ω;

• the elastic term can be rewritten as

aK(η,−∆∂tη) = aK(∇η, ∂t∇η) =
d

dt
aK(∇η,∇η) =

d

dt
〈L∇η,∇η〉

so by using the coercivity of the elastic operator L one easily obtains
that

η ∈ L∞(0, T ;H2(ω0));

• for the fluid velocity, we obtain an additional regularity in z-direction
and in θ-direction;

• an additional regularity of the fluid velocity in radial direction is ob-
tained by using the Stokes equation.

Notice how we tacitly used the additional regularity of the initial data, namely,
none of these estimates would hold if we had no the following assumptions:

u0 ∈ H1(Ω), η0 ∈ H2(ω), v0 ∈ VK .

Step 3: Mesh interior regularity

In this step we calculate the mesh interior regularity (by excluding the mesh
vertices), i.e. we calculate the coupled fluid-shell problem up to the boundary,
i.e. up to the mesh vertices. As before, we do not have the compatibility of
the test functions. The mesh consists of nE struts, and on each strut we have
the pairs of the test functions

(−∆∂tdi,−∆∂twi) = (−∂ss∂tdi,−∂ss∂twi), i = 1, . . . , nE .

Since on
∏nE

i=1(0, li) the shell displacement is equal to the mesh displace-
ment, i.e. η|ωS ◦ πi = di, it follows that the corresponding test function for
the shell problem should be −∂ss∂tη, which we can explicitly calculate:

∂ss∂tη = ∂ss∂tη(t, z, θ) = ∂ss∂tη(t,πi(s)) = ∂ss∂tη · (π′
i)

2 + ∂s∂tη · π′′
i

= ∆∂tη · (π′
i ◦ π

−1
i )2 +∇∂tη · (π′′

i ◦ π−1
i ).
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Similarly, by using the kinematic coupling condition at the fluid-shell interface
u|Γ ◦ϕ = ∂tη, we can calculate the fluid test function −∂ssu :

∂ssu = ∂ssu(t, z, r, θ) = ∂ss∂tη(t,ϕ(z, θ)) = ∂ss∂tη(t,ϕ(πi(s)))

= ∆u · ((ϕ(πi))
′ ◦ π−1

i (ϕ−1))2 +∇u · ((ϕ(πi))
′′ ◦ π−1

i (ϕ−1)).

Just like in Step 1 and Step 2, we have to move away from the boundary,
i.e. mesh vertices, so we multiply the test functions with appropriate smooth
cut-off functions (details will be presented in the next section).

Finally, by using (υ,ψ, ξ, ζ), where

υ = −χ̃∂ssu, ψ = −χ̄∂ss∂tη, ξ = −χ∂ss∂td, ζ = −χ∂ss∂tw.

as a test function in the full, coupled problem, we obtain:

• an additional fluid velocity regularity in s-direction;
• an additional shell displacement regularity in s-direction;
• di ∈ L∞(0, T ;H2(Ii)), wi ∈ L∞(0, T ;H2(Ii)), where Ii ⊂⊂ (0, li),
i = 1, . . . , nE .

The ideas we presented here as well as the formal estimates we obtained do
not really constitute a proof since they have to be rigorously justified.

6.2. Estimates by difference quotients.

Step 1: Fluid interior regularity

Fix any open set Ω0 ⊂⊂ Ω and choose an open set Ω1 such that Ω0 ⊂⊂
Ω1 ⊂⊂ Ω. Then select a smooth function χ satisfying 0 ≤ χ ≤ 1 and

{

χ = 1 on Ω0,

χ = 0 on R
3\Ω1.

The purpose of a cut-off function χ is to restrict all expressions to the subset
Ω1 which is a positive distance away from ∂Ω. Let |h| > 0 be small and set

υ = −D−h
k (χ2Dh

ku),

where k ∈ {z, r, θ} and

Dh
ku(t,x) =

u(t,x+ hek)− u(t,x)

h
,

where x = (z, r, θ) and ek are the basis vectors in cylindrical coordinates. The
test function for the full, coupled problem is then

(υ,ψ, ξ, ζ) = (−D−h
k (χ2Dh

ku), 0, 0, 0).

In this step, we treat all three directions simultaneously since we are away
from the boundary (which will not be the case in other two steps). The
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problem is that our fluid test function is not divergence-free. Namely,

∇ · υ = ∇ · (−D−h
k (χ2Dh

ku)) = −D−h
k ∇ · (χ2Dh

ku)

= −D−h
k (∇χ2)Dh

ku = −(∇χ2)D−h
k Dh

ku,

where in the third equality we used the fact that ∇ · u = 0.
In order to be able to use υ as a test function, we need to look for its

correction. The correction is designed by using Lemma III.3.1. from [30],

which deals with the problem of finding a vector field v ∈ W
1,p
0 (U) such that

(6.1) ∇ · v = f in U,

where f ∈ Lp(U) satisfies

(6.2)

∫

U

f = 0.

We look for the velocity ”correction” υc which will ensure the solenoidality
of the corrected test function υ + υc, namely we need to find a function υc

such that ∇ · (υ + υc) = 0, i.e.

(6.3) ∇ · υc = −∇ · υ = (∇χ2)D−h
k Dh

ku.

The compatibility condition (6.2) in this case reads
∫

Ω
∇ · υ =

∫

∂Ω
υ · n = 0

and it is automatically satisfied since υ is, by definition, zero on ∂Ω. Our
domain is star-shaped with respect to every point of the domain, so we can
use Lemma III.3.1. from [30] to see that there exists υc which satisfies (6.3)
and the following estimate holds

(6.4) ‖υc‖H1(Ω) ≤ c‖∇ · υ‖L2(Ω).

Now we take (υ + υc, 0, 0, 0) as a test function in the full, coupled problem
and estimate each side of the equality separately. The left-hand side is equal
to:

ρF

∫ T

0

∫

Ω

∂tu · (υ + υc) + 2µF

∫ T

0

∫

Ω

D(u) : D(υ + υc)

= ρF

∫ T

0

∫

Ω

∂tu · υ + 2µF

∫ T

0

∫

Ω

D(u) : D(υ)

+ ρF

∫ T

0

∫

Ω

∂tu · υc + 2µF

∫ T

0

∫

Ω

D(u) : D(υc)

=: I1 + I2 + I3 + I4.

From the first integral

I1 = −ρF

∫ T

0

∫

Ω

∂tu · (D−h
k (χ2Dh

ku))

= ρF

∫ T

0

∫

Ω

∂tD
h
ku · χ2Dh

ku =
ρF

2

∫ T

0

d

dt

∫

Ω

|χ(Dh
ku)|

2
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we see that we will not get any new information regarding regularity of the
fluid velocity. This is why we focus on the dissipative term:

I2 = −2µF

∫ T

0

∫

Ω

D(u) : D(D−h
k (χ2Dh

ku))

= 2µF

∫ T

0

∫

Ω

Dh
k (D(u)) : D(χ2Dh

ku)

= 2µF

∫ T

0

∫

Ω

Dh
k (D(u)) : (2D(χ)χDh

ku+ χ2D(Dh
ku))

= 2µF

∫ T

0

∫

Ω

Dh
k (D(u)) : 2D(χ)χDh

ku+ 2µF

∫ T

0

∫

Ω

Dh
kD(u) : χ2Dh

kD(u)

= 2µF

∫ T

0

∫

Ω

Dh
k (D(u)) : 2D(χ)χDh

ku+ 2µF

∫ T

0

∫

Ω

|χDh
kD(u)|2.

Notice that there are no boundary terms since υ = 0 on ∂Ω. The first integral
in I2 is estimated by using Cauchy inequality with ε

∫

Ω

Dh
k (D(u)) : 2D(χ)χDh

ku ≤ C‖Dh
k (D(u))‖L2(Ω)χ‖D

h
ku‖L2(Ω)

≤
C

ε
‖∇u‖2L2(Ω) + Cεχ2‖Dh

kD(u)‖2L2(Ω).

Furthermore, the integral I3, which involves the correction term υc, is esti-
mated as follows:

∣

∣

∣

∣

∫

Ω

∂tu · υc

∣

∣

∣

∣

≤ ‖∂tu · υc‖L1(Ω) ≤ C‖∂tu‖L2(Ω)‖υ
c‖L2(Ω)

≤ C‖∂tu‖L2(Ω)‖υ
c‖H1(Ω) ≤ C‖∂tu‖L2(Ω)‖∇ · υ‖L2(Ω)

= C‖∂tu‖L2(Ω)‖D
−h
k (χ2Dh

ku)‖L2(Ω)

≤ C‖∂tu‖L2(Ω)‖∇(χ2Dh
ku)‖L2(Ω)

≤ C‖∂tu‖L2(Ω)

(

‖2(∇χ)χDh
ku‖L2(Ω) + ‖χ2∇(Dh

ku)‖L2(Ω)

)

≤ C‖∂tu‖L2(Ω)

(

χ‖Dh
ku‖L2(Ω) + χ‖∇Dh

ku‖L2(Ω)

)

≤ Cχ‖∂tu‖L2(Ω)‖∇u‖L2(Ω) +
C

ε
‖∂tu‖

2
L2(Ω)

+ Cεχ2‖∇(Dh
ku)‖

2
L2(Ω),

where we used the equality (6.3), the estimate (6.4) as well as Cauchy in-
equality with ε. The integral I4 is estimated in a similar way:
∣

∣

∣

∣

∫

Ω

D(u) : D(υc)

∣

∣

∣

∣

≤ ‖D(u) : D(υc)‖L1(Ω) ≤ C‖D(u)‖L2(Ω)‖D(υc)‖L2(Ω)

≤ C‖D(u)‖L2(Ω)‖υ
c‖H1(Ω) ≤ C‖D(u)‖L2(Ω)‖∇ · υ‖L2(Ω)

= ‖D(u)‖L2(Ω)‖D
−h
k (χ2Dh

ku)‖L2(Ω)
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≤ C‖D(u)‖L2(Ω)‖∇(χ2Dh
ku)‖L2(Ω)

≤ C‖D(u)‖L2(Ω)

(

‖2(∇χ)χDh
ku‖L2(Ω)+‖χ2∇(Dh

ku)‖L2(Ω)

)

≤ C‖D(u)‖L2(Ω)

(

χ‖Dh
ku‖L2(Ω) + χ‖∇(Dh

ku)‖L2(Ω)

)

≤ Cχ‖∇u‖2L2(Ω) +
C

ε
‖D(u)‖2L2(Ω) + Cεχ2‖∇(Dh

ku)‖
2
L2(Ω).

Since υ = 0 on ∂Ω, the right-hand side in the weak formulation is equal to
zero so, by summing up all the previous calculations, we obtain the following
inequality:

ρF

2

∫ T

0

d

dt
‖χ(Dh

ku)‖
2
L2(Ω) + 2µF

∫ T

0

‖χDh
kD(u)‖2L2(Ω)

≤
C

ε

∫ T

0

‖∇u‖2L2(Ω) + Cε

∫ T

0

χ2‖Dh
kD(u)‖2L2(Ω)

+ C

∫ T

0

χ‖∂tu‖L2(Ω)‖∇u‖L2(Ω)

+
C

ε

∫ T

0

‖∂tu‖
2
L2(Ω) + Cε

∫ T

0

χ2‖∇(Dh
ku)‖

2
L2(Ω)

+ C

∫ T

0

χ‖∇u‖2L2(Ω) +
C

ε

∫ T

0

‖D(u)‖2L2(Ω) + Cε

∫ T

0

χ2‖∇(Dh
ku)‖

2
L2(Ω).

Since u ∈ H1(Ω), we have the boundedness of the terms involving ‖∇u‖L2(Ω)

and ‖D(u)‖L2(Ω) while the time regularity of the fluid velocity obtained in
the previous section (see (5.7)) provides that ‖∂tu‖L2(Ω) ≤ C. Furthermore,
since

‖∇(Dh
ku)‖L2(Ω) ≤ C‖D(Dh

ku)‖L2(Ω) = C‖Dh
k (D(u))‖L2(Ω),

we can absorb terms involving ‖Dh
k (D(u))‖L2(Ω) into the left-hand side by

choosing ε such that Cε ≤ 2µF . Finally, we see that, provided u0 ∈ H1(Ω),
the following estimate holds true:

χDh
kD(u) ∈ L2(0, T ;L2(Ω)).

Lemma 6.2. Let u ∈ L2(Ω;R3) and let χ be a smooth cut-off function

such that 0 ≤ χ ≤ 1 and
{

χ = 1 on Ω0,

χ = 0 on R
3\Ω1,

where Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. Then,

(6.5) χDh
ku ∈ L2(Ω) =⇒ χ∇u ∈ L2(Ω).

Proof. It is clear that we can rewrite Dh
ku as follows:

Dh
k (χu) = Dh

k (χ)u+ χDh
ku.



432 M. GALIĆ

Since χDh
ku ∈ L2(Ω) and χ is a smooth function, we see that Dh

k (χu) ∈
L2(Ω). From Theorem 5.2 (ii), it follows that ∇(χu) ∈ L2(Ω) which implies
χ∇u ∈ L2(Ω).

By using Lemma 6.2, we conclude that

χ∆u ∈ L2(0, T ;L2(Ω)).

To sum up, in this step we obtained an additional regularity of the fluid
velocity only in the interior of the fluid domain. In the next two steps, we
will investigate what happens on the fluid domain boundary, which coincides
with the fluid-structure interface.

Step 2: Shell interior regularity

In this step we restrict ourselves to the fluid equations coupled with the Koiter
shell equations (without the mesh). To do so, we need to construct special test
functions which do not see the mesh and which satisfy the coupling conditions
at the boundary. Fix any open set ω0 ⊂⊂ ω\(∂ω ∪ ωS) and choose an open
set ω1 such that ω0 ⊂⊂ ω1 ⊂⊂ ω\(∂ω ∪ ωS). Recall that

ωS =

nE
⋃

i=1

πi([0, li])

is the reference configuration of the mesh defined on ω. Then select a smooth
function χ satisfying 0 ≤ χ ≤ 1 and

{

χ = 1 on ω0,

χ = 0 on R
2\ω1.

The purpose of a cut-off function χ is to restrict all expressions defined on the
shell domain ω to a subset ω0 which is a positive distance away from ∂ω and
ωS , i.e. we ”move away” from the shell boundary as well as from the area
occupied by the mesh. Next, let χ̃ be the extension of χ ◦ϕ−1 in the interior
of the fluid domain and such that χ̃ = 0 on Γin/out.

As we already announced, we prove the spatial shell regularity separately
for each direction.

Regularity in tangential direction. First we deal with the regu-
larity in tangential direction. For the shell equation, take

ψ = −D−h
z (χ2Dh

z ∂tη)

as a test function, and for the fluid part take

υ = −D−h
z (χ̃2Dh

zu).

It is clear that we have υ = ψ on ω, i.e. kinematic coupling condition is
satisfied.
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Unfortunately, we again encounter the same problem as in Step 1, namely
υ is not divergence-free. We have to look for the fluid velocity ”correction”
which consists of two parts: υ1 and υ2, so that the velocity υ, corrected by
υ1 + υ2 is divergence-free, and has all the desired properties. Finally, we
test the coupled problem with (υ + υ1 + υ2,ψ, 0, 0) and provided initial and
boundary data are smooth enough, we get the additional regularity of the
fluid velocity, as well as the shell displacement, in the tangential direction.

Let us now carry out this procedure in details. The part υ2 is introduced
so that condition (6.2) can be satisfied when (6.1) is solved for υ1, where υ1

is such that

(6.6) ∇ · υ1 = −∇ · (υ + υ2).

The resulting corrected fluid velocity υ + υ1 + υ2 is divergence-free. More
precisely, we want to construct υ2 such that it does not change the trace of
the fluid velocity on the boundary Γ, such that condition (6.2) is satisfied
for f = −∇ · (υ + υ2) and such that the H1-norm of υ2 is controlled by the
H1-norm of υ :

1. υ2|Γ = 0,
2.

∫

Γ(υ + υ2) · n = 0,

3. ‖υ2‖H1(Ω) ≤ C‖υ‖H1(Ω).

The first condition will ensure that (υ+υ2)|Γ = υ while the second condition
is the compatibility condition corresponding to the fact that the integral of
the right-hand side of problem (6.6) has to be zero. To satisfy the second
condition, we can for example take:

υ2 := −αg, where α =

∫

Γ

υ · n, and

∫

Γ

g · n = 1.

To obtain the desired H1-estimate from the third condition, we can choose g
independent of υ and n.

The existence of correction υ1 follows directly from Lemma III.3.1. in
[30], namely, there exists υ1 such that

∇ · υ1 = −∇ · (υ + υ2)

with

‖υ1‖H1(Ω) ≤ C‖υ + υ2‖H1(Ω).

Therefore, we have ”corrected” the test function for the fluid velocity,
and now we can use (υ + υ1 + υ2,ψ, 0, 0) as a test function in the weak
formulation of our fluid-mesh-shell interaction problem and take care of each
term separately. In the fluid part, the only difference with the previous step is
that we now have additional correction υ2 of the test function, but we know
how to estimate it since ‖υ2‖H1(Ω) ≤ C‖υ‖H1(Ω). That is the reason why we
omit the calculations of the terms involving fluid velocity since they can be
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estimated analogously as in Step 1. We now focus on the inertial and elastic
term in shell equations:

ρKh

∫ T

0

∫

ω

∂ttη ·ψR = −ρKh

∫ T

0

∫

ω

∂ttη ·D−h
z (χ2Dh

z ∂tη)R

= ρKh

∫ T

0

∫

ω

Dh
z ∂ttη · (χ2Dh

z ∂tη)R

=
ρKh

2

∫ T

0

d

dt
‖χDh

z∂tη‖
2
L2(R;ω),

∫ T

0

aK(η,ψ) = −

∫ T

0

aK(η, D−h
z (χ2Dh

z ∂tη))

=

∫ T

0

aK(Dh
zη, χ

2Dh
z ∂tη) =

∫ T

0

d

dt
aK(χDh

zη, χD
h
zη).

Recall that we chose cut-off function χ̃ such that it satisfies χ̃ = 0 on Γin/out.

For that reason, the right-hand side of the weak formulation is equal to zero.
Having in mind that we can estimate the correction terms from the fluid
velocity test functions just like in Step 1, we easily obtain that the following
holds true:

χ̃Dh
zD(u) ∈ L2(0, T ;L2(Ω)),

χDh
z ∂tη ∈ L∞(0, T ;L2(R;ω)),

χDh
zη ∈ L∞(0, T ;VK),

(6.7)

which implies (see Lemma 6.2):

χ̃∂zD(u) ∈ L2(0, T ;L2(Ω)),

χ∂z∂tη ∈ L∞(0, T ;L2(R;ω)),

χ∂zη ∈ L∞(0, T ;VK).

(6.8)

Regularity in azimuthal direction. In the azimuthal direction,
namely θ-direction, we apply the same procedure as we did in tangential
direction and obtain that:

χ̃∂θD(u) ∈ L2(0, T ;L2(Ω)),

χ∂θ∂tη ∈ L∞(0, T ;L2(R;ω)),

χ∂θη ∈ L∞(0, T ;VK).

(6.9)

Regularity in radial direction. To obtain an additional regularity
of the fluid velocity in the radial direction, we go back to the Stokes equation
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(omitting the constants which are positive)

∂tu−∆u+∇p = 0

which can be rewritten as

−∆u+∇p = −∂tu.

Since ∂tu ∈ L2(Ω), from the regularity theory for the Stokes equation (see
[47]) we know that ∇p ∈ L2(Ω). Next, we write

∂rru = ∂tu− ∂zzu− ∂θθu+∇p.

Since χ̃∂zzu, χ̃∂θθu ∈ L2(0, T ;L2(Ω)), we get χ̃∂rru ∈ L2(0, T ;L2(Ω)).
Results obtained in this step are summarized here:

χ̃∆u ∈ L2(0, T ;L2(Ω)),

χ∇η ∈ L∞(0, T ;VK),
(6.10)

namely, we obtained an additional fluid velocity regularity up to the fluid-
structure interface (but excluding mesh) as well as an additional shell dis-
placement regularity up to the mesh provided that

u0 ∈ H1(Ω), η0 ∈ H2(ω), v0 ∈ VK .

Step 3: Mesh interior regularity

In this step we calculate the mesh interior regularity. To do so, we need
to construct special test functions which ”do not see” the mesh vertices and
which satisfy the coupling conditions on ω which is an interface between the
fluid and shell, and on

∏nE

i=1(0, li) which is an interface between the shell
and mesh. For each i = 1, . . . , nE, fix any open set Ii ⊂⊂ (0, li) and choose
an open set Ji such that Ii ⊂⊂ Ji ⊂⊂ (0, li). Then select a smooth cut-off
function χi which satisfies 0 ≤ χi ≤ 1 and

{

χi = 1 on Ii,

χi = 0 on R\Ji.

Set

χ :=

nE
∏

i=1

χi

and let χ̄ be the extension of χ ◦ π−1 in the interior of the shell domain ω

such that χ̄ = 0 on ∂ω and let χ̃ be the extension of χ̄ ◦ϕ−1 in the interior of
the fluid domain Ω such that χ̃ = 0 on Γin/out.

As we already mentioned, we have a mismatch between the variables, the
mesh displacement and infinitesimal rotation are functions in variable s, the
shell displacement is a function of (z, θ) while the fluid velocity is a function
of (z, r, θ). For that reason, we will have to adapt the test functions belonging
to the fluid and shell part.
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First, for the mesh test function, we take the pair

(ξ, ζ) = −(D−h
s (χ2Dh

s ∂td), D
−h
s (χ2Dh

s ∂tw)).

It is then clear that for the shell test function we should take

ψ = −D−h
s (χ̄2Dh

s ∂tη)

and for the fluid test function

υ = −D−h
s (χ̃2Dh

su).

Finally, take (υ,ψ, ξ, ζ) as a test function in the weak formulation of
the full, coupled problem. In the previous two steps, we have shown how
to estimate the terms coming from the fluid and shell equations. The only
difference here is that we now obtain the same results as before but in s-
direction, s ∈ (0, li), i = 1, . . . , nE . What is left is to see what we get from the
mesh part:

ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂ttdi · ξi = −ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

∂ttdi ·D
−h
s (χ2

iD
h
s ∂tdi)

= ρS

nE
∑

i=1

Ai

∫ T

0

∫ li

0

Dh
s ∂ttdi · χ

2
iD

h
s ∂tdi

=
ρS

2

∫ T

0

d

dt
‖χDh

s ∂td‖
2
L2(N ),

ρS

nE
∑

i=1

∫ T

0

∫ li

0

Mi∂ttwi · ζi = −ρS

nE
∑

i=1

∫ T

0

∫ li

0

Mi∂ttwi ·D
−h
s (χ2

iD
h
s ∂twi)

= ρS

nE
∑

i=1

∫ T

0

∫ li

0

MiD
h
s ∂ttwi · χ

2
iD

h
s ∂twi

=
ρS

2

d

dt

∫ T

0

‖χDh
s ∂tw‖2m,

∫ T

0

aS(w, ζ) =

∫ T

0

nE
∑

i=1

∫ li

0

QiHiQ
T
i ∂swi · ∂sζi

= −

∫ T

0

nE
∑

i=1

∫ li

0

QiHiQ
T
i ∂swi · ∂s(D

−h
s (χ2

iD
h
s ∂twi))

=

∫ T

0

d

dt

nE
∑

i=1

∫ li

0

QiHiQ
T
i D

h
s ∂swi · ∂s(χ

2
iD

h
swi)

=

∫ T

0

d

dt

nE
∑

i=1

∫ li

0

QiHiQ
T
i D

h
s ∂swi · 2χiχ

′
iD

h
swi
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+

∫ T

0

d

dt

nE
∑

i=1

∫ li

0

QiHiQ
T
i D

h
s ∂swi · χ

2
iD

h
s ∂swi.

The first term from the right-hand side is easily estimated, and since again
we do not have any boundary data due to the choice of a cut-off function χ̃,

we see that:

χ∂ssw ∈ L∞(0, T ;L2(N )).

Notice that we did not get the corresponding bound on the mesh displacement
so we use the condition of inextensibility and unshearability:

‖χ∂ssd‖L2(N ) = ‖χ∂s(−t×w)‖L2(N ) ≤ C
(

‖χw‖L2(N ) + ‖χ∂sw‖L2(N )

)

,

to see that

χ∂ssd ∈ L∞(0, T ;L2(N )).

For the fluid and the shell we obtained:

χ̃∂ssu ∈ L2(0, T ;L2(Ω)), χ̄∂sη ∈ L∞(0, T ;VK),

where

(6.11) ∂ssu = ∆u · ((ϕ(πi))
′ ◦ π−1

i (ϕ−1))2 +∇u · ((ϕ(πi))
′′ ◦ π−1

i (ϕ−1))

and

(6.12) ∂sη = ∇η · (π′
i ◦ π

−1
i ).

This is all true provided that the initial data satisfy:

u0 ∈ H2(Ω), η0 ∈ H2(ω), v0 ∈ VK , (d0,w0) ∈ H2(N ;R6), (k0, z0) ∈ VS .

The proof of Theorem 4.1 is now completed.

7. Conclusion

In this manuscript, we proved that a weak solution of the fluid-composite
structure interaction problem, introduced in [12], enjoys an additional regular-
ity property for initial and boundary data satisfying the appropriate regularity
as well as compatibility conditions imposed on the interface. The regularity
result is valid up to the boundary, i.e. up to mesh vertices. Even though the
techniques we used for proving regularity are standard tool in analysis of par-
tial differential equations, due to multi-physics background of the considered
problem, the undertaken procedure is quite challenging. Namely, the fluid
equations are of parabolic type, while the shell and mesh equations, which
constitute the composite structure, are of hyperbolic type. For that reason,
we have a mismatch between the parabolic and hyperbolic regularity on the
fluid-composite structure interface. One of the aims of our future work is to
address the question of regularity of a weak solution in the case of nonlinear,
moving boundary fluid-composite structure interaction, introduced in [13], lo-
cally in time, and in case of small initial data. Moreover, future research in
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the direction of pressure reconstruction (which was extricated from the weak
formulation by using the divergence-free test functions) is underway.
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Department of Mathematics, Faculty of Science
University of Zagreb
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