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Summary 

An overview of the modelling of quasi-brittle as well as ductile damage is given. The 

multiscale procedure employing the nonlocal continuum theory is described in more detail. 

The softening is introduced at the microlevel in the microstructural volume element and after 

that the homogenization procedure state variables are mapped at the macrolevel material point 

via the scale transition approach. In the case of quasi-brittle softening the C1 continuous finite 

element discretization is applied at both micro- and macrolevel. At the modelling of ductile 

damage response, the macrolevel is also discretized by the C1 finite element formulation, 

while the microscale utilizes quadrilateral mixed finite elements employing the nonlocal 

equivalent plastic strain and gradient-enhanced elastoplasticity. All approaches presented are 

verified in the standard examples. 

Keywords: heterogeneous material; two-scale approach; computational 

homogenization; quasi-brittle damage; ductile damage 

1. Introduction 

The modern structures are characterized by rising complexity, where requirements on 

reliability and efficiency are continuously increasing. To achieve those high requirements, 

materials with optimized heterogeneous microstructure are exploited, where microstructural 

topology governs microstructural mechanisms, such as material softening. Furthermore, 

material microstructure directly influences aging mechanisms, for example, corrosion, and 

fatigue, which consequently may lead to a structural collapse. Therefore, in order to assess 

structural integrity and to predict structural lifetime, an analysis dealing with microstructure is 

necessary. Derivation of an efficient multiscale approach is an important challenge in the 

shipbuilding and related industries [1, 2]. 

The constitutive models assuming material homogeneity are unable to capture the 

microstructural phenomena. As a remedy, the multiscale framework in combination with 

homogenization concepts directly considers the essential microstructural phenomena [3–7]. 

Herein, one of the best suited concepts is the computational homogenization, embedding the 
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microstructure into macroscale boundary value problem (BVP) through an additional BVP, 

representing microscale [8, 9]. The microstructural BVP is represented by the Microstructural 

Volume Element (MVE) and driven by the macroscale strain quantities, which after solving 

the corresponding BVP feeds the macroscale with material constitutive model [10, 11].  

Employment of the computational homogenization in a standard manner in modelling of 

the softening is unfortunately not possible. The issues which arise are questionable MVE 

representativeness [12, 13], ill-posedness of the macrolevel BVP [14] and violation of the 

scale separation principle [15, 16]. An approach which copes with the aforementioned 

difficulties is the homogenization of interfacial volumes [17]. In continuous-to-discontinuous 

approaches, material properties in the microscale localization zone are upscaled into the 

macroscale fracture modelled as a weak discontinuity [18] or a strong discontinuity [19, 20]. 

As a possibility, the coupled volume method [14] can be also used. An extension of the 

methodology proposed in [20] is derived in [21, 22], relying again on the averaging 

throughout failure zone. In [23, 24] a consistent method incorporating the modified boundary 

conditions is proposed, resolving the quasi-brittle damage in heterogeneous materials.  

For multiscale modelling of ductile damage, in [25] a strong coupling methodology with 

implicit integration is derived. In [26], a 3D multiscale methodology for damage modelling in 

polycrystalline materials is proposed, where objectivity is ensured through the application of 

nonlocal strain terms. Furthermore, in [27], ductile softening of hyperelastic materials 

adopting large strain assumption is investigated by means of the mean field homogenization 

and the multiplicative decomposition of deformation gradient. In [28], the mean field 

approach is extended by utilization of the incremental micromechanics scheme along with 

isotropization, and it is applied for modelling of damage in composites. In [29], the model 

parameters of Gurson-Tvergaard-Needleman (GTN) porous plasticity have been calibrated by 

the homogenization on the MVE discretized by an enriched Voronoi cell. A methodology 

mentioned in [23] is extended to the consideration of ductile damage in [30]. Furthermore, the 

full-field homogenization has been performed on the MVE obtained from the microscopic 

images as presented in [31]. A detailed overview of the state of the art is given in [32–34]. In 

spite of many possible solutions, neither of them offers an efficient way for consistent 

multiscale modelling of heterogeneous materials during softening. 

The authors have proposed a first-order micro-macro scheme dealing with ductile 

softening in [35]. The homogenization is conducted on the two MVEs, the first without 

damage, considering elastoplastic behaviour, and the second with the ductile damage 

included. To obtain the macroscale constitutive operator, the additional microstructural BVPs 

are solved providing the relation of damage variable and macrostrain components. The mesh 

objectivity at the MVE exhibiting formation of the localization zone is ensured by the 

discretization with mixed finite element enriched by the nonlocal equivalent plastic strain. 

Although the derived framework gives physically meaningful results, the homogenization 

employing multiple MVEs is complex and time consuming.  

In this manuscript, a micro-macro algorithm for modelling of quasi-brittle damage is 

shown, where the macrolevel and microlevel are described by the nonlocal theory. Hence, 

discretization is performed using the C1 continuity finite element already derived in [7] for 

linear elasticity. Since the nonlocal phenomena are embedded into the numerical model, the 

difficulties, such as mesh objectivity or spurious damage growth are expected to be alleviated 

and regularized. 

 Second part of this paper deals with a conventional second-order micro-macro 

framework for ductile damage modelling. Herein, the macroscale is described by the nonlocal 

theory and discretized by the triangular C1 finite element. The constitutive behaviour is 

upscaled from the microlevel in a standard way from a single MVE, compared to [35], where 
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five MVEs are applied. Discretization of the microscale is again provided by the quadrilateral 

mixed finite formulation employing an additional degree of freedom (DOF), i.e., nonlocal 

equivalent plastic strain. The von Mises gradient-enhanced elastoplasticity is employed for 

the consideration of plastic yielding and softening. The solutions of the benchmark problems 

demonstrate physically realistic softening responses.  

 The paper is organized as follows. After an overview of the state of the art in the 

numerical modelling of multiscale softening responses given in this Section, the modelling of 

quasi-brittle damage evolution is presented in Section 2. Therein the finite element 

formulation employing damage variable is described. Furthermore, the nonlocal multiscale 

scheme with the basic relations of the macro-micro transition is displayed. The numerical 

example demonstrating the efficiency is given at the end of the Section. Section 3 is 

concerned with the ductile damage modelling and it starts with the macrolevel finite element 

formulation. Thereafter the ductile damage model and the homogenization procedure are 

presented, and the scale transition scheme is briefly described. The Section ends with the two 

numerical examples. The paper concluding remarks are given in Section 4. 

2. Modelling of quasi-brittle damage evolution 

2.1 Finite element formulation for modelling of quasi-brittle damage evolution 

The finite element presented in Fig. 1 has three nodes with 12 DOF in each node. The 

displacement field within the element is approximated by the condensed fifth order 

polynomial. The nodal unknowns are two displacements and all their first- and second-order 

derivatives. The element satisfies C1 continuity with the assumption of plane strain. 

 

Fig. 1 C1 continuity triangular finite element 

The finite element equation is derived from the virtual work principle which is here expressed 

in terms of the strain gradients as  

( ) ( ) ( )

( ) ( )

1 1 2 2: δ d δ d δ d

δ d : δ d .

x x x x

A A A

s s

A A A

s s

+ + =

 +   

  

 

σ ε μ ε μ ε

t u T u
 (1) 

Herein σ  and ε  are the stress and strain variables, respectively. The higher-order variables 

1xε and 2xε are the strain gradients expressed in the following form  
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x 







 
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 
 

ε B v  , (3) 

where 1B  and 2B  contain the gradients of the strain-displacement matrix B , while v is the 

DOF vector. The matrix B  contains appropriate first derivatives of the interpolation 

polynomials expressed by the matrix N . The displacement field u is approximated by the 

standard expression,  

=u Nv . (4) 

The strain tensor ε  

11

22
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






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 

= =
 
  

ε B v , (5) 

is work conjugated to Cauchy stress tensor 

  =σ C B v , (6) 

where C  is the elasticity matrix. The double stress tensors are written as 

111
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



 
 

= =
 
  

μ C B v . (8) 

In Eq. (1) s and A represent the outside boundary and the surface of the element. t is the 

traction and T is the double traction, which are work conjugated to the displacement and the 

displacement gradient, respectively. Additionally, the boundary condition ( ) u n  should 

be satisfied to solve the corresponding BVP. As the measure of nonlocality, an additional 

material parameter representing the size of the microstructure 2l  is introduced in Eqs. (7) and 

(8).  

Using the discretization performed by Eqs. (2) - (5) and the incrementation procedure 

according to the consideration of nonlinear problems, as described in [36], the following 

incremental form of the virtual work principle is derived  

( ) ( )

1 1 2 2

1 1

d d d

grad d d .

T T T
x x

A A A

T T T i T i

s A

A A A

s A

  

 
− −

 +  +  =

+ − +

  

 

B σ B μ B μ

N t N T B σ B μ
  (9) 

The damage constitutive model can be expressed by the relations 

( )1 :D = −σ C ε , (10) 
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( )2
1 11 :x xl D = −  μ C ε , (11) 

( )2
2 21 :x xl D = −  μ C ε . (12) 

After the standard updating procedure as presented in [36], the constitutive damage model 

may be written in the incremental form as 

( )1 11 i iD D 
− − = −  − σ C ε C ε , (13) 

( )2 1 2 1
1 1 11 i i

x x xl D l D 
− − = −  − μ C ε C ε , (14) 

( )2 1 2 1
2 2 21 i i

x x xl D l D 
− − = −  − μ C ε C ε . (15) 

Inserting the constitutive relations (13) - (15) into Eq. (9), gives the finite element 

equation 

( )1 2 e ix x  + +  = −K K K v F F , (16) 

with the particular element stiffness matrices defined as 

( ) ( )
1

1 1 d
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A

D
l D A    

−
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ε
. (19) 

On the right-hand side of Eq. (16), the vectors eF  and iF  stand for the external and internal 

forces, respectively. The derived algorithm is embedded into the FE software ABAQUS [37] 

via user subroutines. 

In the constitutive modelling of softening, the linear and exponential softening laws 

are usually used, as defined in [38]. The linear softening is expressed as 

( )

( )
u 0

0 u
u 0

u

if ,

1 if ,

  
  
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 

 −
 

−= 




D  (20) 

while the exponential softening laws may be described in the following form 

( ) 0
0 01 1 exp ifD


      


 = − − + −   . (21) 

Therein, scalar   is the history parameter, i.e., the highest value of the equivalent strain eq  

in the loading history. u  is the material parameter representing total stiffness loss, while 0  
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is the threshold value for initiation of the softening. The parameter   represents the stress 

decrease rate and   is the damage rate. 

For determination of the equivalent strain eq , the Mazars’ equivalent strain measure 

according to [39] written as 

3
2

eq

1

i

i

 
=

=  , (22) 

is usually used. Here ( )1, 2, 3i i =  represents positive contribution of the principal strains. 

Besides, the following expression  

( ) ( )

2

eq 1 1 22

1 1 1 12

2 1 2 2 1 2 1

k k k
I I J

k k


  

− − 
= + + 

− −  +
, (23) 

based on the modified von Mises’ definition may also be applied. Here, the parameter k is the 

ratio of compressive and tensile strength, while 1I  and 2J  are the first strain tensor invariant 

and the second invariant of strain deviator, respectively [40]. 

2.2 Nonlocal multiscale scheme for quasi-brittle damage analysis 

Here the C1-C1 multiscale scheme given in Fig. 2 is briefly described. The C1 finite 

element presented in Section 2.1 is utilized for discretization at both scales. Starting from the 

global macrolevel BVP expressed by e i = −K V F F , the global DOF vector V  is used for 

the determination of the local DOF vector v  at single element level. Here the nonlocal finite 

element formulation employing only linear elastic material behaviour without damage derived 

in [7] is applied. By computing the macrostrain increment Mε  and increment of the 

macrostrain gradient Mε  in a macroscale material point, the increment of the MVE 

boundary displacements bu  is formulated through boundary conditions. 
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Fig. 2 Scheme of C1-C1 multiscale algorithm [36] 

The microscale BVP is solved afterwards, where through the homogenization scheme 

the macrolevel constitutive response is obtained. For clarity reasons, the macroscopic 

quantities have the subscript “M”, while the micro terms are labelled by the subscript “m”. In 

the most general case, the Cauchy stress tensor Mσ , the double stress tensor Mμ  and the 

constitutive tensor MC  has to be homogenized. Once computed, the homogenized variables 

are upscaled, where they contribute to the formation of macrolevel stiffness and internal 

forces in a single material point. When the homogenized response is obtained throughout 

complete macroscale model, the global equation system is formed, and the updated 

macroscale BVP is defined. The procedure is repeated in the loop up to the convergence of 

the macrolevel BVP. Same routine used in this multiscale computational scheme has already 

been explained in more detail in [7], where the linear-elastic material behaviour without 

softening phenomena has been considered.  

2.3 Basic macro-micro scale transition relations 

The MVE boundary displacement field is expressed in terms of the macrolevel strain 

Mε  and the macrolevel strain gradient strain Mε  by using the Taylor series expansion 

as  

( )b M M

1
,

2
=  +    +  u ε x x ε x r  (24) 
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where x is the local microlevel coordinate, while r represents the microfluctuations [41]. The 

periodic boundary conditions are applied. More details about the micro-macro transition can 

be found in [7]. The scale transition scheme is based on the Hill-Mandel principle, i.e., work 

variation at the MVE corresponds to the work variation at the single macroscale point. 

Accordingly, the homogenized stresses are 

M m

1
d

V

V
V

= σ σ , (25) 

 ( )M m m

1
d

V

V
V

= + μ μ σ x , (26) 

where V represents the MVE volume. 

The following macroscopic constitutive relations are assumed 

1 1 2 2: x x x x   =  +  + σ C ε C ε C ε , (27) 

1 1 1 1 1 1 2 2:x x x x x x x x      =  +  + μ C ε C ε C ε , (28) 

2 2 2 1 1 2 2 2:x x x x x x x x      =  +  + μ C ε C ε C ε . (29)  

These relations contain nine constitutive matrices, giving possibility to capture the 

contributions of heterogeneities and microstructural interactions,  

bb 1 bb 1 2 bb 2

1 1 bb 1 1 1 bb 1 1 2 1 bb 2

2 2 bb 2 1 2 bb 1 2 2 2 bb 2

1 1 1
, , ,

1 1 1
, , ,

1 1 1
, , .

T T T
x x

T T T
x x x x x

T T T
x x x x x

V V V

V V V

V V V

  

     

     

= = =

= = =

= = =

C DK D C DK H C DK H

C H K D C H K H C H K H

C H K D C H K H C H K H

 (30) 

Here D, 1H  and 2H  represent the coordinate matrices, and their detailed derivation can be 

found in [42]. bbK  is the condensed MVE stiffness matrix, as shown in [41], and it is 

obtained here by Eqs. (17) - (19). Since the element stiffness is related to the damage variable 

D, the damage is implicitly included into the condensed MVE stiffness matrix, i.e.  

( )bb bb D=K K . (31) 

Generally, in the homogenization, the macrolevel constitutive operators are derived from the 

condensed microlevel stiffness, 

( )M M bb=C C K . (32) 

From (31) and (32) it is clear that the homogenized constitutive matrix is dependent on the 

microstructural damage. Accordingly, with the localization in the MVE the associated 

macrolevel material point is losing load-carrying capability. The crack forms at this material 

point and the stiffness values are kept close to zero in the numerical model. More on the MVE 

failure condition is discussed in [36]. 
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2.4 Numerical example. Plate subjected to tensile load 

As an example, the plate with an imperfection is loaded along the right edge. The 

computational model is shown in Fig. 3, discretized by 48 triangular finite elements, as 

depicted in Fig. 4. This relatively coarse mesh is used after convergence and mesh sensitivity 

analysis performed in [36].  

 

Fig. 3 Geometry and boundary conditions 

 

Fig. 4 Macrolevel discretization consisting of 48 C1 continuity triangular finite elements 

Mazars’ equivalent strain defined in (22) is used with the linear softening law given in 

(20). The heterogeneous microstructure described by an academic MVE presented in Fig. 5 

has the following material properties: 220000 N/mmE = , 0.25 = , 0 0.0001 = , 

u 0.0125 = . At the right edge, displacement 0.0325u = mm is imposed (Fig. 3). To initiate 

softening, the Young’s modulus is 10% reduced in the middle hatched area. At the left and the 

right edge, the second derivatives 1,11u , 1,22u , 1,12u , 2,12u  and the first derivatives 1,2u  and 

2,1u  are suppressed, yielding straight edges. 

 

Fig. 5 MVE discretization by C1 continuity triangular finite elements 

The length scale parameter is 0.025l =  mm, and the MVE side length is 2.6L =  mm. 

Porosity ratio is e = 0.13 with average hole radius ave 0.559r =  mm. 

The distribution of the longitudinal strain at the stage of softening initiation is shown 

in Fig. 6. Due to relatively coarse mesh discretization, smooth contour visualization is hard to 
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get. But, even with a sparse mesh it is visible that the localization band is forming in a 

physically acceptable way.  

 

Fig. 6 Distribution of strain component 11  at the moment of macromodel softening initiation  

The contour plot of the damage zones at the MVEs appointed to the characteristic 

macrostructural points within and near the localization band is shown in Fig. 7. As can be 

seen, the most intense microstructural softening is found in the material points in the middle 

of the plate. Therefore, it can be concluded that the numerical results can be taken as realistic 

at both scales. 

 

Fig. 7 Distribution of microscale damage at the moment of softening initiation in macromodel [36] 

3. Ductile damage modelling of heterogeneous material 

3.1 Macrolevel finite element formulation 

As in the formulation presented above, the second-order homogenization scheme relies 

on gradient theory application at the macroscale. Hence, the macroscale is discretized by the 

plane strain C1 finite element already presented in Fig. 1. 

The relevant element matrices are derived from the virtual work principle 

( )δ d δ d δ d δ grad dT T T T

A A s s

A A s s+ = +   ε σ η μ u t u T . (33)  

In (33), σ  and ε  represent the stress and strain tensors, while μ  and η  represent the double 

stress and strain tensors. The displacement vector is denoted by u, t is the surface traction, 

while T is the double surface traction, respectively. The integration of the variables is 
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performed over the element surface A and outside boundary s. Through the discretization 

procedure the strains are expressed by DOF as  

1,11111

2,22222
11

1,22221
22

2,11112
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1,21121

2,12212

, .

2
22

22
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u
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
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
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



  
  
   
   

= = = = =   
       
  

      

ε B v η B v  (34) 

B  and B  matrices consist of first- and second shape function derivatives. Since the 

homogenization concept relies on no a priori assumptions on the constitutive behaviour, the 

updates of the stresses are dependent on both the strain and the double strain 

 
,

.

 

 

 =  + 

 =  + 

σ C ε C η

μ C ε C η
 (35) 

 The constitutive operators , ,  C C C  and C  are obtained by the homogenization at the 

MVE. 

By means of (33) – (35), the usual nonlinear FE equation is derived ( )e i = −K v F F . The 

stiffness matrix K consists of 

,   = + + +K K K K K  (36)  

where the stiffness submatrices are 
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A

   
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=
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=









K B C B

K B C B

K B C B

K B C B

 (37)  

The vectors eF  and iF  represent the nodal forces (external and internal) 

( )

( )

e

1 1
i

grad d ,

d .

T T

s

T i T i

A

s

A 
− −

= +

= +





F N t N T

F B σ B μ

 (38) 

The derivation of all the relations presented above are in more detail described in [41]. 
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3.2 Nonlocal ductile damage model and computational homogenization 

The ductile softening model in combination with the computational homogenization is 

employed at the MVE. In contrast to the quasi-brittle damage modelling, here the MVE is 

discretized by mixed quadrilateral finite elements, and the C1-C0 transition procedure is 

applied.  

To capture ductile damage, the gradient-enhanced elastoplasticity employing damage 

evolution law is proposed [43]. The yield function is 

( ) ( ) ( ) ( )p e p, , 1 ,yF D D   = − −σ σ  (39)  

where e  is the von Mises stress, while p  is the standard equivalent plastic strain. The 

damage evolution is described by 

( ) p

p 1 .D e



−

= −  (40) 

Herein   is the material parameter, and p  represents the nonlocal equivalent plastic strain. 

Two differential equations are simultaneously solved, the standard equilibrium equation, 

and the Helmholtz type equation with the microstructural parameter 2l  written as 

2 2
p p pl  −  = . (41)

 
 

The aforementioned equations are embedded into the C0 linear quadrilateral finite element for 

plane strain problems, with p  as an additional nodal variable. As explained in more detail in 

[35], the following FE equation is obtained 

 
p

p

p p p

e i

p
i

u u
uu u

u




   

   − 
   = 

        

K K F Fu

K K F
, (42) 

where uuK , 
p

uK , 
p
uK , 

p p
 K  are the stiffness submatrices. e

u
F  is the displacement-based 

external loading vector, while i
u

F  and p

i


F  are the internal forces due to the displacements and 

nonlocal plastic strains. 

For the homogenization purposes, from the equation system (42), the following relation is 

extracted [7, 44] 

u
uu = K u f , (43) 

which is then partitioned into 

aa ab a a

ba bb b b

      
=     

      

K K u f

K K u f
. (44) 

Here bf  contains the nodal forces at the outside boundary of the MVE, while af  are the 

nodal forces at the interior of the MVE vanishing at convergence. 

From (44), the condensed MVE stiffness matrix can be found  

-1
bb bb ba aa ab= −K K K K K , (45) 
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which is necessary for the macrolevel constitutive relations. The updates of the stress tensors 

can be written as 

( )

( )

M bb M bb M

M bb M bb M

1
,

1
,

 =  + 

 =  + 

T T

T T

V

V

σ DK D ε DK H η

μ HK D ε HK H η

 (46) 

that leads to the macroscale constitutive matrices 

 

bb

bb

bb

bb

1
,

1
,

1
,

1
.









=

=

=

=

T

T

T

T

V

V

V

V

C DK D

C DK H

C HK D

C HK H

 (47) 

Herein, D and H are the MVE coordinate matrices, as described in [42]. Since the condensed 

stiffness bbK  depends on the damage and microstructural scale parameter, ( )bb bb ,D l=K K , 

the damage is upscaled through the homogenized constitutive operators (47). 

The presented formulations and procedures have been embedded into the FE software 

ABAQUS. 

3.3 Scale transition approach 

Analogous to the two-scale computational procedure discussed in the previous sections 

where the quasi-brittle damage is considered, every macrolevel material point has the MVE 

appointed in which the solution of BVP governs the macroscale material response. Analogous 

to the computational scheme shown in Fig. 2, from the displacement increment v , 

displacement gradients Mε  and Mη  are computed and used for the computation of the 

MVE boundary displacement increment bu  

b M M ,T Tu = D ε +H η   (48) 

assuming periodic boundary conditions. As mentioned already, in the conventional 

homogenization the averaging of stresses is performed through entire MVE volume. 

Accordingly, the macrolevel stress tensors are expressed as 

( )

M m

M m m

1
d ,

1
d .

2

V

T T

V

V
V

V
V

=

= +





σ σ

μ σ x x σ

 (49) 

For determination of the homogenized constitutive response, the static condensation 

procedure is conducted, as explained in the previous section. The simple transition scheme is 

graphically depicted in Fig. 8. 
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Fig. 8 Scheme of the scale transition 

As already explained, the averaged microstructural quantities are expressed in 

dependency to damage, providing softening at the macrolevel. In the case of severe softening 

at corresponding macroscale material point, its stiffness is set to small magnitude, preserving 

numerical stability of the macromodel. The softening criterion and determination of the 

microscale localization zone is more discussed in [35, 45]. 

3.4 Numerical examples 

3.4.1 Strip subjected to tensile loading 

As in the previous example, a tensile loaded heterogeneous strip is considered. The 

geometry of the macromodel with boundary conditions remains unchanged as presented in 

Fig 3. The strip is discretized by 42 finite elements, as shown in Fig. 9. 

 

Fig. 9 Strip discretization 

The weakened zone is again placed in the middle area, where the yield stress is kept lower to 

initiate softening. The MVE size is L = 0.2 mm, with 13% of porosity ratio and average void 

radius 0.043 mm. Young’s modulus of the matrix is 210GPa  with Poisson’s ratio 0.3 . Linear 

isotropic strain hardening with the modulus 20000MPah =  is exhibited at the yield stress of 

250MPa . The softening law is expressed in (40), with the microstructural parameter 

0.1mml =  and the softening exponent 200 = . The yield stress in the weakened zone is set 

to 240MPa . The MVE is discretized by 508 finite elements, as shown in Fig. 10. 

 

 

Fig. 10 RVE quadrilateral finite element discretization  
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The distribution of damage contours at both scales at the complete collapse is 

presented in Fig. 11. The collapse has occurred in logical sense within the weakened zone at 

the macroscale, which is also observable through the damage distribution on the MVEs. 

 

Fig. 11 Micro- and macrolevel damage distribution at the structural collapse 

3.4.2 Plate subjected to compressive loading 

The second example dealing with ductile damage is a plate with compressive loading. 

The macrolevel model discretization is presented in Fig. 12. The horizontal edges of the plate 

are modelled as straight lines. The geometry parameter H  is 50mm . The softening is 

initiated in the middle zone of the size 0.1 0.1H H  by setting yield stress to a lower value. 

The MVE and material used are equal as in the previous example. 

 

 

Fig. 12 Plate subjected to compression 

The damage distribution on both scales at the total collapse is displayed in Fig. 13. 
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Fig. 13 Damage distribution at the structural collapse  

 After the weakness initiation, the localization band propagates towards the opposite outside 

edge, which confirms the expected realistic behaviour. The macrolevel response is confirmed 

by the damage contour distribution on the MVEs at points A, B and C. Both examples are 

also considered and discussed in [45]. 

 Finally, it is useful to comment numerical effort and computational time of the 

multiscale schemes presented within this paper. The element formulation at the macroscale 

requires 13 Gauss points, where every material point has a MVE appointed. The 

homogenization procedure of a single MVE takes several seconds, depending on the MVE 

mesh discretization, where the most of computational time is consumed for condensation of 

the MVE stiffness. Since this procedure is repeated at every macrolevel material point, the 

computational time of any problem solved by utilization of multiscale scheme takes several 

hours, even days. This was the case also with the example problems solved in this paper. The 

computational efficiency can be significantly improved by parallelization, where multiple 

MVEs are homogenized at once. However, this is out of scope of this paper. 

 

4. Conclusion 

In the present paper an overview of the multiscale modelling of softening material 

behaviour including quasi-brittle and ductile damage is given. The formulation of the quasi-

brittle softening, employing the C1 triangular finite elements incorporating the nonlocal 

continuum theory at macro and microlevel, is presented. The damage law is embedded into 

the constitutive response over the MVE. According to the multiscale strategy, the macrolevel 

localization is driven by the homogenized microlevel response. 

 The two-scale modelling of ductile softening by means of the second-order 

homogenization is also demonstrated. Therein, the macrolevel is discretized by the C1 

triangular finite element, while the microstructural softening is expressed through the implicit 

gradient-enhanced elastoplasticity embedded into the mixed quadrilateral finite element. 

The numerical examples demonstrate the physical consistency of the softening at both 

scales. Despite the fact that the presented formulations deliver the results which are physically 

correct and realistic, the computations are complex and time demanding. Therefore, the 

computationally more efficient formulations are desirable. Further research is directed to the 
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improving of computational efficiency and stability of computational homogenization in the 

frame of multiscale strategies, where advanced machine learning techniques [46] will be 

developed.  
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