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ABSTRACT

We compare loci types and invariants across Poncelet fam-
ilies interscribed in three distinct concentric Ellipse pairs:
(i) ellipse-incircle, (ii) circumcircle-inellipse, and (iii) ho-
mothetic. Their metric properties are mostly identical to
those of 3 well-studied families: elliptic billiard (confocal
pair), Chapple’s poristic triangles, and the Brocard porism.
We therefore organized them in three related groups.
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Familije: Povezivanje Ponceletovih 3-periodika
po njihovim svojstvima

SAŽETAK

Uspored-ujemo tipove geometrijskih mjesta točaka i inva-
rijanti u Ponceletovim familijama upisanim u tri različita
para koncentričnih elipsi: (i) elipsa - upisana kružnica,
(ii) opisana kružnica - upisana elipsa i (iii) homotetične
elipse. Njihova metrička svojstva su uglavnom identična
svojstvima triju dobro proučavanih familija: eliptični bili-
jar (par sa zajedničkim fokusima), Chappleovi poristični
trokuti i Brocardov porizam. Zbog toga ih organiziramo u
tri povezane grupe.

Ključne riječi: invarijanta, eliptični bilijar, geometrijsko
mjesto točaka

1 Introduction

We have been studying loci and invariants of Poncelet
3-periodics in the confocal ellipse pair (elliptic billiard).
Classic invariants include Joachmisthal’s constant J (all
trajectory segments are tangent to a confocal caustic) and
perimeter L [26].
A few properties detected experimentally [21] and later
proved can be divided into two groups: (i) loci of triangle
centers (we use the Xk notation in [17]), and (ii) invariants.
In terms of loci, the following results have been proved: (i)
the locus of the incenter [9, 23], barycenter [25], circum-
center [7, 9], orthocenter [11] and many others are ellipses;
(ii) a special triangle center known as the Mittenpunkt X9 is
stationary [24].
For invariants we chiefly have (i) the sum of cosines [1, 2],
(ii) the product of outer polygon cosines, and (iii) outer-to-
3-periodic area ratio [4].

We continue our inquiry into loci and invariants by now
considering 3-periodic families three other non-confocal
though concentric ellipse pairs. Referring to Figure 1:

• Family I: outer ellipse and incircle, incenter X1 is
stationary.

• Family II: outer circumcircle and inellipse, circum-
center X3 is stationary

• Family III: an axis aligned pair of homothetic ellipses,
the barycenter X2 is stationary.

One goal is to identify properties of the above common with
previously-studied 3-periodic families, namely, (i) the con-
focal pair (elliptic billiard), (ii) Chapple’s porism [8] and
(iii) the so-called Brocard porism [3, 15]. A quick review
of their geometry appears in Section 2.

3



KoG•25–2021 R. Garcia, D. Reznik: Family Ties: Relating Poncelet 3-Periodics by their Properties

0. Confocal I. Incircle

II. Inellipse III. Homothetic

Figure 1: Poncelet 3-periodic families in the various concentric ellipse pairs studied in the article. Properties and loci
of the confocal pair (elliptic billiard) were studied in [21, 12, 11]. For each family the particular triangle center which is
stationary is indicated.

Main Results. Here are our main results:

• Family I

– It conserves the circumradius, the sum of
cosines, and the sum of sidelengths divided by
their product.

– Its sum of cosines is identical to that of the
confocal pair which is its affine image.

– The family is the image of Chapple’s poristic
family [19] under a variable rigid rotation.

– The poristic family is the image of the confo-
cal family under a variable similarity transform
[10]. Therefore family I retains several all scale-
free invariants identified for the elliptic billiard,
including the sum of cosines.

• Family II

– It conserves the cosine product and the sum of
squared sidelengths.

– Its product of cosines is identical to that of the
excentral triangles in the confocal pair which is
its affine image.

– In the elliptic billiard, the locus of the incen-
ter (resp. symmedian point) is an ellipse (resp.
quartic) [11]. Here the roles swap: the incenter
describes a quartic, and the symmedian is an
ellipse.

– The orthic triangles of this family are the im-
age of the poristic family under a variable rigid
rotation.

• Family III

– It conserves area, sum of sidelengths squared,
sum of cotangents (the latter implies that the
Brocard angle is invariant).

– Again in contradistinction with the elliptic bil-
liard, the locus of the incenter X1 is non-elliptic
while that of X6 is an ellipse.

– The locus of irrational triangle centers Xk,
k =13,14,15,16, i.e., the isodynamic and iso-
gonic points, are circles! In the billiard, they
are non-conic.

– As shown in [20], this family is the image of
Brocard porism triangles [3] under a variable
similarity transform.
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Thus, the following group Poncelet families is proposed
with mostly identical properties: (i) family I: confocal,
poristics; (ii) family II: confocal excentrals, poristic ex-
centrals; (iii) family III: Brocard porism. Table 1 shows
how loci types are shared and/or differ across families, and
Figure 10 gives a bird’s eye view of the kinship across these
families via various transformations.

Related Work. Romaskevich proved the locus of the incen-
ter X1 over the confocal family is an ellipse [23]. Schwartz
and Tabachnikov showed that the locus of barycenter and
area centers of Poncelet trajectories are ellipses though the
locus of the perimeter centroid in general isn’t a conic [25].
For N = 3, the former correspond to X2 and the latter to the
Spieker center X10. Garcia [9] and Fierobe [7] showed that
the locus of the circumcenter of 3-periodics in the elliptic
billiard are ellipses. Indeed, the loci of 29 out of the first
100 triangle centers listed in [17] are ellipses [11]. Tabach-
nikov and Tsukerman [27] and Chavez-Caliz [4] studied
properties and loci of the “circumcenters of mass” of Pon-
celet N-periodics. This is a generalizations of the classical
concept of circumcenter to generic polygons, based on tri-
angulations, etc.

The following invariants for N-periodics in the elliptic bil-
liard have been proved: (i) sum of cosines [1, 2], (ii) product
of cosines of the outer polygons [1, 2], and (iii) area ratios
and products of N-periodics and their polar polygons (ex-
central triangle for N=3); interestingly, these depend on the
parity of N [2, 4]. Result (i) also holds for the Poncelet fam-
ily interscribed between an ellipse and a concentric circle
[1, Corollary 6.4].

Article structure. We start by reviewing the confocal,
Chapple’s, and Brocard porisms in Section 2. We then
describe properties, invariants, and transformations of fam-
ilies I, II, and III in Sections 3, 4, and 5, respectively. We
summarize all results in Section 6. Highlights include (i) a
graph representing affine and/or similarity relations between
the various families (Figure 10), (ii) a table of conserved
quantities which we have found to continue to hold for
N > 3 (proof pending), and (iii) a table with links to videos
illustrating some phenomena herein.

2 Review of Classic Porisms and Proof
Method

Grave’s Theorem affirms that given a confocal pair (E ,E ′′),
the two tangents to E ′′ from a point P on E will be bisected

by the normal of E at P [18]. A consequence is that any
closed Poncelet polygon interscribed in such a pair, if re-
garded as the path of a moving particle bouncing elastically
against the boundary, will be N-periodic. For this reason,
this pair is termed the elliptic billiard; [26] is the semi-
nal work. It is conjectured as the only integrable planar
billiard [16]. One consequence, mentioned above, is that
it conserves perimeter L. An explicit parametrization for
3-periodic vertices appears in Appendix A.1.

Referring to Figure 2, poristic triangles are a one-parameter
Poncelet family with fixed incircle and circumcircle discov-
ered in 1746 by William Chapple. Recently, Odehnal [19]
has studied loci of its triangle centers. showing many of
them are either stationary, ellipses, or circles. Surprisingly,
the poristic family is the image of billiard 3-periodics under
a variable similarity transform [10], and these two families
share many properties and invariants.

Figure 2: The poristic triangle family (blue) [8] has a fixed
incircle (green) and circumcircle (purple). Let r,R denote
their radii. Its excentral triangles (green) are inscribed in
a circle of radius 2R centered on the Bevan point X40 and
circumscribe the MacBeath inconic (dashed orange) [28],
centered on X3 with foci at X1 and X40. A second configura-
tion is also shown (dashed blue and dashed green). Video

Referring to Figure 3, the Brocard porism [3] is a family of
triangles inscribed in a circle and circumscribed to a special
inellipse known as the “Brocard inellipse” [28, Brocard In-
ellipse]. Notably, the family’s Brocard points are stationary
and coincide with the foci of the inellipse. Also remarkable
is the fact that the Brocard angle ω is invariant [15]. In [20]
we showed this family is the image of family III triangles
under a variable similarity transform.
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Figure 3: The Brocard porism [3] is a 1d Poncelet fam-
ily of triangles (blue) inscribed in a circle (black, upper
half shown) and circumscribed about the Brocard inellipse
[28] centered on X39 and with foci at the stationary Bro-
card points Ω1 and Ω2 of the family. The Brocard angle is
invariant [15]. Video

A word about our proof method. We omit some proofs
below as they are obtained from a consistent method used
previously in [11]: (i) depart from symbolic expressions for
the vertices of an isosceles 3-periodic (see Appendix A); (ii)
obtain a symbolic expression for the invariant of interest;
(iii) simplify it assisted by a CAS, arriving at a “candidate”
symbolic expression for the invariant; (iv) verify the latter
holds for any (non-isosceles) N-periodic and/or Poncelet
pair aspect ratios and if it does, declare it as provably invari-
ant.

3 Family I: Outer Ellipse, Inner Circle

Here we study a Poncelet family inscribed in an ellipse
centered on O with semi-axes (a,b) and circumscribes a
concentric circle of radius r, Figure 4 (left). An explicit
parametrization is provided in Appendix A.2.

Cayley’s closure condition [6] assumes a simple form for
3-periodics in a concentric, axis-aligned pair of ellipses
[14]:

Proposition 1 For 3-periodics in an axis-aligned, concen-
tric ellipse pair:

a′

a
+

b′

b
= 1, (1)

where a > b > 0, a′ > 0, and b′ > 0.

Corollary 1 For family I 3-periodics, the radius r of the
fixed incircle is given by:

r =
ab

a+b
·

Proposition 2 In the family I 3-periodics the locus of the
barycenter X2 is an ellipse with axes a2 = a(a−b)/(3a+
3b) and b2 = b(a−b)/(3a+3b) centered on O = X1.

Theorem 1 Family I 3-periodics have invariant circumra-
dius R = (a+b)/2. Furthermore, the locus of the circum-
center X3 is a circle of radius d = R−b = a−R centered
on O = X1.

Proof. Consider the explicit expressions derived for 3-
periodic vertices in Appendix A.2. Let a first vertex
P1 = (x1,y1). From this, we obtain the center X3 of the
orbit’s circumcircle:

X3 =

[
−

x1 (a−b)
(
−x2

1 (a+b)2 +a2b(2a+b)
)

2a
((

a2−b2
)

x2
1 +a2b2

) ,

(a−b)
(

x2
1 (a+b)2−a2b2

)
y1

2b
(
a2x2

1 +b2
(
a2− x2

1
)) ]

,

and radius (a+b)/2. We also obtain that the locus of X3 is
a circle with center (0,0) and radius (a−b)/2. �

Proposition 3 Over family I 3-periodics the locus of the
orthocenter X4 is an ellipse of axes a4 = (a−b)b/(a+b)
and b4 = (a−b)a/(a+b) centered on O = X1.

Proposition 4 Over family I 3-periodics the locus of the
X5 triangle center is a circle of radius d = (a−b)2

4(a+b) centered
on O = X1.

Proposition 5 The power of O with respect to the circum-
circle is invariant and equal to −ab.

Proof. Direct, analogous to [12, Thm.3]. �

Proposition 6 Over family I 3-periodics, the locus of X6 is
a quartic given by the following implicit equation:(

b(b+2a)
(

a2+2ab+3b2
)

x2+a(a+2b)
(

3a2+2ab+b2
)

y2
)2

−a2b2 (a−b)2
(

b2 (b+2a)2 x2 +a2 (a+2b)2 y2
)
= 0

3.1 Connection with the poristic family

Below we show that family I 3-periodics is the image of the
poristic family [19] under a variable rigid rotation about X1.

Recall the poristic family of triangles with fixed, non-
concentric incircle and circumcircle with centers separated
by d =

√
R(R−2r) [8, 19]. Let I be a (moving) reference

frame centered on X1 with one axis oriented toward X3.
Referring to Figure 4 (right):

Theorem 2 With respect to I , family I 3-periodics are the
poristic triangle family (modulo a rigid rotation about X1).
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Figure 4: Family I 3-periodics (left) are identical (up to rotation) to the family of poristic triangles (right) [8], if the former
is observed with respect to a reference system where X1 and X3 are fixed. The fixed incircle (resp. circumcircle) are shown
purple (resp. blue). The original outer ellipse (black on both drawings) becomes the X1-centered circumellipse in the poristic
case. Over the family, this ellipse is known to rigidly rotate about X1 with axes R+d,R−d, where d = |X3−X1| [10]. Video

Proof. This stems from the fact that R, r, and d are constant.
�

As proved in [10, Thm.3]:

Observation 1 The X1-centered circumconic to the poris-
tic family is a rigidly-rotating ellipse with axes R+d and
R−d.

Since this circumellipse is identical (up to rotation) to the
outer ellipse of family I, then R+d = a which is coherent
with Proposition 1.
Furthermore, because poristic triangles are the image of
billiard 3-periodics under a (varying) affine transform [10,
Thm 4], it displays the same scale-free invariants.

Corollary 2 Family I 3-periodics conserve the sum of
cosines, product of half-sines, and all scale-free invariants.

3

∑
i=1

cosθi =
a2 +4ab+b2

(a+b)2 ,
3

∏
i=1

sin
θi

2
=

ab
2(a+b)2 · (2)

Note that invariant sum of cosines for family I N-periodics
was proved for all N in [1, Corollary 6.4]. In fact:

Theorem 3 Let (EI ,E ′′I ) be a confocal pair of ellipses
which is an affine image of a family I pair. Both families
have invariant and identical sums of cosines.

Proof. Let α,β and α′′,β′′ denote the semi-axes of EI and
E ′′I , respectively. For the pair to admit a 3-periodic family,
the latter are given by [9]:

α
′′ =

α(δ−β2)

α2−β2 , β
′′ =

β(α2−δ)

α2−β2 ·

Consider the following affine transformation:

T (x,y) =
(

β′′

α′′
x,y
)
.

This takes EI to an ellipse with semi-axes (a,b), a = α
β′′

α′′

and b = β and the caustic E ′′I to a concentric circle of radius
β′′.
In [12, Thm.1] the following expression was given for in-
variant r/R in the confocal pair:

r
R
=

2(δ−β2)(α2−δ)

(α2−β2)2 , δ =
√

α4−α2β2 +β4· (3)

Recall that for any triangle, ∑
3
i=1 cosθi = 1+ r/R [28, Cir-

cumradius, Eqn. 4]. Plugging a = α
β′′

α′′ and b = β into to
(2) yields (3) plus one. �

It turns out that the proof of [1, Corollary 6.4] implies that
for all N, the cosine sum for family I N-periodics is invari-
ant and identical to the one obtained with its confocal affine
image [1].
A known relation for triangles is that Rr = (s1s2s3)/(4s),
where s1,s2,s3 are sidelengths and s = (s1 + s2 + s3)/2 is
the semiperimeter. Since both R and r are conserved:

Corollary 3 The quantity (s1s2s3)/(4s) is conserved and
is equal to ab/2.
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4 Family II: Outer Circle, Inner Ellipse

This family is inscribed in a circle of radius R centered on
O and circumscribes a concentric ellipse with semi-axes
a,b; see Figure 5. An explicit parametrization appears in
Appendix A.3.
For the N = 3 case, (1) implies R = a+b. By definition X3
is stationary at O and R is the (invariant) circumradius. As
shown in Figure 5:

Proposition 7 Over family II 3-periodics, the loci of the
orthocenter X4 and nine-point center X5 are concentric cir-
cles centered on X3 = O, with radii 2d′ and d′ respectively,
where d′ = (a−b)/2 .

Proof. CAS-assisted algebraic simplification. �

Figure 5: Family II, the N = 3 case: The loci of both
orthocenter X4 (pink) and nine-point center X5 (olive green)
are concentric with the external circle (black), with radii
2d′ and d′, respectively. I.e., |X4−X5|= d′. In contradis-
tinction to the elliptic billiard, the locus of the incenter X1
(dashed brown) is non-elliptic while that of the symmedian
point X6 (dashed blue) is an ellipse. Video

Recall that in the confocal pair the locus of X1 (resp. X6) is
an ellipse (resp. a quartic) [11]; see Appendix C. Interest-
ingly:

Proposition 8 Over family II 3-periodics, the locus of the
symmedian point X6 (resp. the incenter X1) is an ellipse
(resp. the convex component of a quartic – note the other

component corresponds to the locus of the 3 excenters which
can be concave). These are given by:

locus of X6 :

x2

a2
6
+

y2

b2
6
= 1, a6 =

a2−b2

a+2b
, b6 =

a2−b2

2a+b
,

locus of X1 :(
x2 + y2)2−2 (a+3b)(a+b)x2−2 (a+b)(3a+b)y2

+
(
a2−b2)2

= 0.

Proof. CAS-assisted simplification. �

Let si denote the sidelengths of an N-periodic.

Theorem 4 Family II 3-periodics conserve
L2 = ∑

3
i=1 s2

i = 4(a+2b)(2a+b).

Proof. Direct, using the parametrization for vertices in
Appendix A.3. �

Note: the above is true for all N [1, Thm.8, corollary].

4.1 Family II and the poristic family

Below we show that the orthic triangles of Family II 3-
periodics are the image of the poristic family [19] under a
variable rigid rotation about X3.

Lemma 1 Family II 3-periodics conserve the product of
cosines, given by:

3

∏
i=1

cosθi =
ab

2(a+b)2 ·

Proof. CAS-assisted simplification. �

The orthic triangle has vertices at the feet of a triangle’s
altitudes [28]. Let Rh denote its circumradius. A known
property is that Rh = R/2 [28, Orthic Triangle, Eqn. 7].
Therefore, it is invariant over family II 3-periodics. Refer-
ring to Figure 6 (left):

Proposition 9 The inradius rh of family II orthic triangles
is invariant and given by rh = ab/(a+b).

Proof. rh = 2R∏
3
i=1 cosθi [28, Orthic Triangle, Eqn. 5].

Referring to Lemma 1 completes the proof. �

Let (EII ,E ′′II) denote the confocal pair which is an affine
image of a circle-inellipse concentric pair. Let α,β and
α′′,β′′ denote the semi-axes of EII , and E ′′II , respectively.

Theorem 5 The invariant product of cosines for family II
triangles is identical to the one obtained from excentral
triangles of 3-periodics in (EII ,E ′′II).

8
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Figure 6: Left: Family II 3-periodics (blue), and their orthic triangle (red). The latter’s inradius and circumradius are
invariant. The orthic triangle’s incircle and circumcircle (both dashed red) are centered on the 3-periodic’s orthocenter X4
and the nine-point center X5, respectively. Also shown is the rigidly-rotating MacBeath inellipse (dashed green), centered
on X5 with foci at X3 and X4. Right: Family II orthic triangles are identical (up to a variable rotation), to the poristic
triangles (red) [19]. Equivalently, the original family is that of poristic excentral triangles (blue), for which both incircle
and circumcircle (solid red) are stationary. Also stationary is the excentral MacBeath inellipse (green), i.e., it is the caustic
[10], with center X5 and foci X3, and X4, respectively. The original outer circle (black on both images) is also stationary on
the poristic case, however the inner ellipse in the Poncelet pair (purple) becomes a rigidly-rotating X3-centered excentral
inellipse (dashed purple), whose axes are R+d′ and R−d′. Video 1, Video 2

Proof. Excentrals in the confocal pair conserve the prod-
uct of cosines [12, Corollary 2]. Recall that for any triangle:

3

∏
i=1
|cosθ

′
i|=

r
4R

,

where θ′i are the angles of the excentral triangle. Plugging
a = α′′ and b = α

β
β′′ into (1) yields four times the above

identity when r/R is computed as in (3), completing the
proof. �

Lemma 2 Family II 3-periodics are always acute.

Proof. Since X3 is the common center and is internal to the
caustic, it will be interior to Family II 3-periodics, i.e., the
latter are acute. �

Let I ′ be a (moving) reference frame centered on X3 with
one axis oriented toward X5 (or X4 as these 3 are collinear).
Referring to Figure 4 (right):

Theorem 6 With respect to I ′, family II 3-periodics are the
excentral triangles to the poristic family (modulo a rigid
rotation about X3). Equivalently, family II orthics are iden-
tical (up to said variable rotation) to the poristic triangles.

Proof. X5 of a reference triangle is X3 of the orthic triangle
[17]. Since the family is always acute (Lemma 2), X4 of the
reference is X1 of the orthic triangle [5]. By Proposition 7,
d′ = |X5−X3| is invariant, i.e., the distance between X1 and
X3 of the orthic triangle is invariant. The claim follows
from noting X3,X5,X4 are collinear [28] and that the orthic
inradius and circumradius are invariant, Proposition 9. �

Recall from [10, Thm.2]:

Observation 2 The X3-centered inconic to the poristic ex-
central triangles is a rigidly-rotating ellipse with axes R+d′

and R−d′.

Which makes sense when one considers the rotating refer-
ence frame. Also recall from [10, Thm.1] that:

Observation 3 The MacBeath Inconic to the excentrals is
stationary with axes R and

√
R2−d′2.

Therefore its focal length is simply 2d′ = |X4−X3|. Further-
more, because poristic triangles are the image of billiard
3-periodics under a (varying) affine transform [10, Thm.4],
Family II 3-periodics will share all scale-free invariants
with billiard excentrals, such as product of cosines, ratio of
area to its orthic triangle, etc., see [22].

9
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5 Family III: Homothetic

This family is inscribed in an ellipse centered on O with
semi-axes (a,b) and circumscribes an homothetic, axis-
aligned, concentric ellipse with semi-axes (a′′,b′′); see
Figure 7. An explicit parametrization is provided in Ap-
pendix A.4.

Proposition 10 For family III 3-periodics, a′′ = a/2 and
b′′ = b/2, the barycenter X2 is stationary at O and the area
A is invariant and given by:

A =
3
√

3
4

ab·

Proof. Family III is the affine image of a family of equilat-
eral triangles interscribed within two concentric circles. The
inradius of such a family is half its circumradius. Amongst
triangle centers, the barycenter X2 is uniquely invariant
under affine transformations; it lies at the origin for an equi-
lateral. Affine transformations preserve area ratios. A is
the area of an equilateral triangle inscribed in a unit circle
scaled by the Jacobian ab. This completes the proof. �

A known result is that the cotangent of the Brocard angle
cotω of a triangle is equal to the sum of the cotangents
of its three internal angles [28, Brocard Angle, Eqn. 1].
Surprisingly, we have:

Proposition 11 Family III 3-periodics have invariant ω

given by:

cotω =
3

∑
i=1

cotθi =

√
3

2
a2 +b2

ab
·

Proof. Direct calculations using the explicit parametriza-
tion of vertices in Appendix A.4. �

A known relation is cotω = (∑3
i=1 s2

i )/(4A) [28, Brocard
Angle, Eqn. 2]. Therefore, we have:

Corollary 4 The sum of squared sidelengths s2
i is invariant

and given by:

3

∑
i=1

s2
i =

9
2
(
a2 +b2) ·

As mentioned above, in the confocal pair the loci of X1 (resp.
X6) is an ellipse (resp. a quartic) [11]; see Appendix C. In-
terestingly, we have:

Proposition 12 For family III, the locus of the incenter X1
(resp. symmedian point X6) is a quartic (resp. an ellipse).
These are given by:

locus of X1 :

16
(

a2y2 +b2x2
)(

a2x2 +b2y2
)
−8b2

(
a4 +5a2b2 +2b4

)
x2

−8a2
(

2a4 +5a2b2 +b4
)

y2 +a2b2
(

a2−b2
)2

= 0,

locus of X6 :

x2

a2
6
+

y2

b2
6
= 1, a6 =

a(a2−b2)

2(a2 +b2)
, b6 =

b(a2−b2)

2(a2 +b2)
.

Proof. CAS-assisted simplification. �

Figure 7: Family III (homothetic pair) 3-periodics (blue). Also shown are the Brocard points Ω1 and Ω2. Since both area
and sum of squared sidelengths are constant, so is the Brocard angle ω. Video
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5.1 Surprising Circular Loci

The two isodynamic points X13 and X14 as well as the two
isogonic points X15 and X16 have trilinear coordinates which
are irrational on the sidelengths of a triangle [17]. In the
elliptic billiard their loci are non-elliptic. Indeed, in the
elliptic billiard we haven’t yet found any triangle centers
with a conic locus whose trilinears are irrational. Referring
to Figure 8, for family III, this is a surprising fact:

Proposition 13 The loci of of Xk, k =13,14,15,16 are cir-
cles. Their radii are (a−b)/2, (a+b)/2, (a−b)2/z, and
(a+b)2/z, respectively, where z = 2(a+b).

Observation 4 Over all a/b, the radius of X16 is minimum
when a/b = 3.

5.2 Family III and the Brocard Porism

The Brocard porism [3] is a family of triangles inscribed in
a circle and circumscribed about a special inellipse known
as the “Brocard inellipse” [28, Brocard Inellipse]. Its foci
coincide with the stationary Brocard points of the family.
Furthermore, this family conserves the Brocard angle ω.
Referring to Figure 7, we showed that over the homothetic
family, the aspect ratio of the Brocard inellipse is invariant
[20]. This leads to the following result, reproduced from
[20, Theorem 3]:

Theorem 7 The 3-periodic family in a homothetic pair and
that of the Brocard porisms are images of one another under
a variable similarity transform.

As shown in [13], the locus of the center X39 of the Brocard
inellipse is an ellipse (it is stationary in the Brocard porism).

Figure 8: Circular loci of the first and second Fermat points X13 and X14 (red and green) as well as the first and second
isodynamic points X15 and X16 (purple and orange) for two aspect ratios of the homothetic pair: a/b = 3 (left) and a/b = 5
(right). The radius of the X16 locus is minimal at the first case. Video

Figure 9: Family III triangles (blue) are the image of Brocard porism triangles under a variable similarity transform [20].
This stems from the fact that the family’s Brocard inellipse (purple), centered on X39 and with foci on the Brocard points
Ω1,Ω2, has a fixed aspect ratio. Also shown is the elliptic locus of X39. Video
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6 Summary

Table 1 summarizes the types of loci (point, circle, ellipse,
etc.) for several triangle centers for all families mentioned
above. These are organized within three groups A, B, and
C with closely-related loci types. Exceptions are also indi-
cated though we still lack a theory for it.
The first row reveals that out of the 8 families considered
only in the confocal case is the locus of the incenter X1
an ellipse. Additionaly experimentation has suggested an
intriguing conjecture:

Conjecture 1 Given a pair of conics which admits a Pon-
celet 3-periodic family, only when such conics are confocal
will the locus of either the incenter X1 or the excenters be a
non-degenerate conic.

The plethora of circles in the poristic family had already
been shown in [19]. An above-than-expected frequency
of ellipses for the confocal pair was signalled in [11]. As
mentioned above, irrational centers Xk, k ∈ [13,16] sweep
out circles for the homothetic pair. X15 and X16 are known
to be stationary over the Brocard family [3], however the
locus of X13 and X14 are circles! Also noticeable is the fact

that (i) though in the confocal pair the locus of X1 and X6
is an ellipse and a quartic, respectively, in both family II
and family III said locus types are swapped. The reasons
remain mysterious.
It is well-known that there is a projective transformation
that takes any Poncelet family to the confocal pair, [6]. In
this case only projective properties are preserved. If one
restricts the set of possible transformations to either affine
ones or similarities (which include rigid transformations),
one can construct the two-clique graph of interrelations
shown in Figure 10.
As mentioned above, the confocal family is the affine image
of either family I or family II. In the first (resp. second) case
the caustic (resp. outer ellipse) is sent to a circle. Though
the affine group is non-conformal, we showed above that
both families conserve their sum of cosines (Theorem 3).
One way to see this is that there is an alternate, confor-
mal path which takes family I triangles to the confocal
ones, namely a rigid rotation (yielding poristic triangles),
followed by a variable similarity (yielding the confocal
family).

Group A Group B Group C

Conf. F.I Por.
Conf.
Exc F.II

Por.
Exc. F.III Broc.

X1 E P P X X X 4 X
X2 E E C E C P P C
X3 E C P E P P E P
X4 E E C E C P E C
X5 E C C E C P E C
X6 4 4 E P E C E P
X7 E E C X X X X X
X8 E E C X X X X X
X9 P E C X X X X X
X10 E E C X X X X X
X11 E′′ C′′ C′′ X X C5 X X
X12 E C C X X X X X
X13 X X X X X X C C
X14 X X X X X X C C
X15 X X X X X X C P
X16 X X X X X X C P
X99 X X C′ X C′ C′ E′ C′

X100 E′ E′ C′ X C′ C′ X C′

X110 X X C′ E′ C′ C′ X C′

Table 1: Types of loci for several triangle centers over several Poncelet triangle families, divided in 3 groups A,B,C with
closely-related metric phenomena: (i) confocal, fam. I, poristics; (ii) confocal excentral, fam. II, poristic excentral triangles;
(iii) fam. III and Brocard porism. Symbols P, C, E, and X indicate point, circle, ellipse, and non-elliptic (degree not yet
derived) loci, respectively. A number refers to the degree of the non-elliptic implicit, e.g., ’4’ for quartic. A singly (resp.
doubly) primed letter indicates a perfect match with the outer (resp. inner) conic in the pair. The symbol C5 refers to the
nine-point circle. The boldface entries indicate a discrepancy in the group (see text). Note: Xn for the confocal and poristic
excentral triangles refer to triangle centers of the family itself (not of their reference triangles).
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A similar argument is valid for family II triangles: there
is an affine path (non-conformal) to the confocal fam-
ily though both conserve the product of cosines (Theo-
rem 5). Notice an alternate conformal composition of ro-
tation (yielding poristic excentral triangles) and a variable
similarity (yielding confocal excentral triangles). All in this
path conserve the product of cosines.

Finally, family III and Brocard porism triangles form an
isolated clique. As mentioned in [20], these are variable
similarity images of one another but cannot be mappable to
the other families via similarities nor affinely.
Table 2 summarizes some properties of 3-periodics men-
tioned herein. The last column reveals that many of the
invariants continue to hold for N>3. Animations illustrat-
ing some focus-inversive phenomena are listed in Table 3.

Figure 10: Diagram of transformations that take one 3-periodic family into another. The families are specified in each box
while the transformations label the arrows. The second (resp. third) line in each box lists the stationary point(s) (resp. main
invariants) in the family.

fam. pair N=3
outer conic

N=3
inner conic

N=3
invariants

N>3

billiard ellipse (a,b) confocal caustic L,J,r/R,∑cos L,J,∑cos
I inner circle ellipse (a,b) circle r = ab

a+b R,r/R,∑cos ∑cos
II outer circle R = (a+b) ellipse (a,b) ∑s2

i ,∏cos ∑s2
i ,∏cos

III homothetic ellipse (a,b) ellipse (a/2,b/2) A,∑s2
i ,ω,∑cot A,∑s2

i ,∑cot

Table 2: Summary of properties across different concentric Poncelet families. The last column shows some invariants which
continue to hold for N>3.
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id family N Title youtu.be/...
01 all 3 Concentric Poncelet families 8hkeksAsx0E

02 por. 3 Chapple’s poristic family & excentral triangles DS4ryndDK6Qo

03 por. 3 Poristics are image of billiard 3-periodics NvjrX6XKSFw

04 I 3 Side-by-side w/ the poristic family ML AZoX736w

05 I 3,5 Circular loci of X3 & Steiner’s curvature centroid 601OfxuSDGc

06 I 3,5 Invariant ratio of sidelength product to sum 7Jg2nRkkUhQ

07 II 3 Family is image of poristic excentrals wUu2iMesv3U

08 II 3 Side-by-side w/the poristic family xM1SAZO9bDc

09 II 3,5 Circular locus of generalized orthocenter 3f6YBohQCFg

10 III 3 Stationary X2 and invariant Brocard angle 2fvGd8wioZY

11 III 3 Loci of Xk, k =13,14,15,16 are all circles! ZwTfwaJJitE

12 III 3 Family is image of Brocard porism h3GZz7pcJp0

13 I,II 5,6 Locus of generalized circum- and orthocenter ZfQEDujbirQ

14 I,II 5 Locus of generalized circumcenter RP18B827l5I

15 I,II 5 Generalized circumcenter (Steiner’s curv. centroid) RP18B827l5I

16 dual 3 The dual pair: stationary orthocenter fpd Zot5cKk

17 dual 3–8 Generalized stationary orthocenter ttKjzWeG5B8

18 dual 5,7 Generalized stationary orthocenter gNHiZvBhKF8

Table 3: Videos illustrating some phenomena mentioned herein. The last column is clickable and provides the YouTube
code.
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Appendix A. Explicit 3-Periodic Vertices

A.1. Pair 0: Confocal

Let (a,b) be the semi-axes of the external ellipse. Let Pi = (xi,yi)/qi, i = 1,2,3, denote the 3-periodic vertices, given by [9]:

q1 = 1,

x2 =−b4 ((a2 +b2)k1−a2)x3
1−2a4b2k2x2

1y1

+a4 ((a2−3b2)k1 +b2)x1 y2
1−2a6k2y3

1,

y2 = 2b6k2x3
1 +b4 ((b2−3a2)k1 +a2)x2

1y1

+2a2b4k2x1y2
1−a4 ((a2 +b2)k1−b2)y3

1,

q2 = b4 (a2− c2k1
)

x2
1 +a4 (b2 + c2k1

)
y2

1−2a2b2c2k2x1 y1,

x3 = b4 (a2−
(
b2 +a2))k1x3

1 +2a4b2k2x2
1y1

+a4 (k1
(
a2−3b2)+b2)x1 y2

1 +2a6k2y3
1,

y3 =−2b6k2x3
1 +b4 (a2 +

(
b2−3a2)k1

)
x1

2y1

−2a2b4k2x1y2
1 +a4 (b2−

(
b2 +a2)k1

)
y3

1,

q3 = b4 (a2− c2k1
)

x2
1 +a4 (b2 + c2k1

)
y2

1 +2a2b2c2k2 x1 y1,

where:

k1 =
d2

1δ2
1

d2
= cos2

α, k2 =
δ1d2

1
d2

√
d2−d4

1δ2
1 = sinαcosα,

c2 = a2−b2, d1 = (ab/c)2, d2 = b4x2
1 +a4y2

1,

δ =
√

a4 +b4−a2b2, δ1 =
√

2δ−a2−b2,

where α, though not used here, is the angle of segment P1P2 (and P1P3) with respect to the normal at P1.

A.2. Pair I: Incircle

3-periodics are given by P1(t) = (x1,y1) = (acos t,bsin t). Then, the Pi = (xi,yi), i = 2,3 are:

x2 =2a2b2 (−a2bx1 + k y1
)
/q2, y2 =−2ab3 (a2by1 + k x1

)
/q2,

x3 =−2a2b2 (a2bx1 + k y1
)
/q3, y3 = 2b3a

(
−a2by1 + k x1

)
/q3,

k =
√

a3 (a+2b)x2
1 +a2b(2a+b)y2

1,

q2 =2b2(a+b)((a2−b2)x2
1 +a2b2),

q3 =
(
b2a4− y2

1a4 +2a2b4 +a2b2x2
1−2x2

1b4)(a+b) ·

A.3. Pair II: Inellipse

3-periodics are given by P1(t) = (x1,y1) = R(cos t,sin t) with R = a+b. Then the Pi = (xi,yi), i = 2,3 are given by:

x2 =
(
−b2x1 + y1 sx

)
kx, y2 =−

(
y1 a2 + x1 sy

)
ky,

x3 =−
(
b2x1 + y1 sx

)
kx, y3 =

(
−y1 a2 + x1 sy

)
ky,

sx =
√

a3(a+2b)− (a2−b2)x2
1, sy =

√
(a2−b2)y2

1 +b3(2a+b),

kx =
a

(−a+b)x2
1 +a2 (a+b)

, ky =
b

(a−b)y2
1 +b2 (a+b)

·
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A.4. Pair III: Homothetic

3-periodics are given by P1(t) = (x1,y1) = (acos t,bsin t). Then Pi = (xi,yi), i = 2,3 are:

(x2,y2) =

(√
3 ay1−bx1

2b
,
−
√

3 bx1−ay1

2a

)
,

(x3,y3) =

(
−
√

3 ay1−bx1

2b
,

√
3 bx1−ay1

2a

)
·

Appendix B. Elliptic Loci
Below we list triangle centers amongst Xk, k = 1, . . . ,200 for each of the Poncelet pairs mentioned in this article, whose loci
are either ellipses or circles.
• 0. Confocal pair (stationary X9)

– Ellipses: 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 20, 21, 35, 36, 40, 46, 55, 56, 57, 63, 65, 72, 78, 79, 80, 84, 88, 90, 100,
104, 119, 140, 142, 144, 145, 149, 153, 162, 165, 190, 191, 200. Note: the first 29 in the list were proved in [11].

– Circles: n/a

• I. Incircle: (stationary X1)

– Ellipses: 2, 4, 7, 8, 9, 10, 20, 21, 63, 72, 78, 79, 84, 90, 100, 104, 140, 142, 144, 145, 149, 153, 191, 200.
– Circles: 3, 5, 11, 12, 35, 36, 40, 46, 55, 56, 57, 65, 80, 119, 165.

• II. Inellipse (w/ circumcircle): (stationary X3)

– Ellipses: 6, 49, 51, 52, 54, 64, 66, 67, 68, 69, 70, 113, 125, 141, 143, 146, 154, 155, 159, 161, 182, 184, 185,
193, 195.

– Circles: 2, 4, 5, 20, 22, 23, 24, 25, 26, 74, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 140, 156, 186.

• III. Homothetic: (stationary X2)

– Ellipses: 3, 4, 5, 6, 17, 20, 32, 39, 62, 69, 76, 83, 98, 99, 114, 115, 140, 141, 147, 148, 182, 187, 190, 193, 194.
– Circles: 13, 14, 15, 16.

Semi-axes lengths for the elliptic loci of many triangle centers are available in [13].

Appendix C. Loci of Incenter and Symmedian in the Elliptic Billiard

Over 3-periodics in the elliptic billiard, the locus of the incenter X1 is an origin centered ellipse with axes a1, b1 given by [9]:

a1 =
δ−b2

a
, b1 =

a2−δ

b
·

Over the same family, the locus of X6 is a convex quartic given by [11, Theorem 2]:

locus X6 : c1x4 + c2y4 + c3x2y2 + c4x2 + c5y2 = 0,

where:

c1 =b4(5δ
2−4(a2−b2)δ−a2b2), c2 =a4(5δ

2 +4(a2−b2)δ−a2b2),

c3 =2a2b2(a2b2 +3δ
2), c4 =a2b4(3b4 +2(2a2−b2)δ−5δ

2),

c5 =a4b2(3a4 +2(2b2−a2)δ−5δ
2), δ =

√
a4−a2b2 +b4·

Note: this curve has an isolated point at the origin whose geometric meaning is not yet understood.
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Appendix D. Table of Symbols

symbol meaning note
O center of concentric pair

a,b ellipse semi-axes
si,s sidelength and semiperimeter i = 1, . . .N
θi internal angle
L perimeter ∑i si
L2 sum of squared sidelengths ∑i s2

i
K Steiner’s Curvature Centroid ∑i wiPi/∑i wi

wi = sin(2θi)
r,R inradius, circumradius
d′ |X4−X5|

rh,Rh inradius, circumradius of ortic
ω Brocard angle tan(ω) = 4A/L2
X1 incenter
X2 barycenter
X3 circumcenter
X4 orthocenter
X5 center of 9-point circle

Table 4: Symbols used.
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