
KoG•25–2021 B. Odehnal: A Rarity in Geometry: a Septic Curve

https://doi.org/10.31896/k.25.3
Original scientific paper
Accepted 18. 10. 2021.

BORIS ODEHNAL

A Rarity in Geometry: a Septic Curve

A Rarity in Geometry: a Septic Curve

ABSTRACT

We study the locus C of all points in the plane whose pedal
points on the six sides of a complete quadrangle lie on a
conic. In the Euclidean plane, it turns out that C is an al-
gebraic curve of degree 7 and genus 5 and not of degree 12
as it could be expected. Septic curves occur rather seldom
in geometry which motivates a detailed study of this par-
ticular curve. We look at its singularities, focal points, and
those points on C whose pedal conics degenerate. Then,
we show that the septic curve occurs as the locus curve for
a more general question. Further, we describe those cases
where C degenerates or is of degree less than 7 depending
on the shape of the initial quadrilateral.
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SAŽETAK

U radu se proučava geometrijsko mjesto C točaka ravnine
čija nožǐsta na šest strana potpunog četverovrha leže na
jednoj konici. Pokazuje se da je u euklidskoj ravnini C
algebarska krivulja 7. reda i roda 5, a ne 12. reda kao
što bi se očekivalo. Septike se u geometriji rijetko po-
javljuju pa je ta činjenica potaknula detaljnije proučavanje
ove krivulje. Promatraju se njezini singulariteti, žarǐsta
i one točke krivulje C čije su nožǐsne konike raspadnute.
Zatim se pokazuje da se septika pojavljuje kao geometrij-
sko mjesto točaka u jednom općenitijem slučaju. Nadalje,
opisuju se oni slučajevi kad se C raspada ili kad je reda
manjeg od 7 u ovisnosti o obliku polaznog četverostrana.

Ključne riječi: četverostran, potpuni četverovrh, nožǐste,
konika, šest konkoničnih točaka, septika, Simsonov pravac,
Miquelova točka

1 Introduction

1.1 Septic curves and curves related to a quadrilateral

Algebraic curves of degree two, three, and four (conics,
cubics, and quartics) appear frequently in many geometri-
cal problems (see, e.g., [9, 11, 14, 15, 17, 18, 23]). This
is caused by the fact that many problems in geometry in-
volve distances between points or angles between lines and
a quadratic form is responsible for measuring distances
and angles in the Euclidean plane. Curves of odd degrees
proved useful in Computer Aided Geometric Design: Cu-
bic, quintic, and even septic curves (in plane and in space)
are well suited for solving interpolation tasks with tangent
or curvature continuity [6, 7, 13, 19, 21] and are also help-
ful in spaces of geometric objects, such as lines and spheres
[20].
Planar curves of odd degree may be the images of alge-
braic curves under certain Cremona transformations: Lin-
ear components of the image curve will split off if the ini-

tial curve passes through base points of the transformation
[4, 5, 8] as is the case with many but not all cubic curves
and most of the algebraic curves which are related to the
geometry of a triangle, see the list on B. GIBERT’s page
[10].

Figure 1: Triangle related septics: The curves Q001, Q008,
Q009 are labeled according to Gibert’s list [10].
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On GIBERT’s page [10], we find, among many other
curves, 12 septic curves related to the geometry of the tri-
angle. Three of these septics are shown in Figure 1. For
example, the Darboux septic Q001 is the locus of all 4th

pedal points of a point P on the circumconics of a triangle
∆ = ABC such that the circumconic’s normals at A, B, C
concur in P. This curve was derived and described in [12].
The septic Q008 is the isogonal image of a circular octic
which collects the perspectors of pedal and projection tri-
angles of a triangle ∆, while Q009 is related to orthologic
triangles.

However, the rational septic also related to a geometric
question about triangles found by É. LEMOINE (cf. [16])
does not show up in [10]. Compared to the huge amount
of special conics, cubics, and quartics related to many ge-
ometric questions, these 13 septics are a rather poor aggre-
gation. It seems that K. FLADT [8] may be right when he
stated that ”there could hardly be some curves of degree 7
that could be of interest and of geometrical relevance”, al-
though the space of septic plane curves is 35-dimensional
(including even degenerate ones) since the implicit equa-
tion of a septic involves 36 coefficients where only the ratio
matters.

Cubic curves related to triangles can be characterized by
geometric properties [9]. While no vertex of a triangle
is distinguished and the ordering of the vertices does not
matter, this is not the case with a quadruple of points, say
A, B, C, D. There are three different orderings of four
points (up to cyclic and reverse rearrangements), and so,
they define three different quadrilaterals. Asking for the
locus of all points P in the plane of the quadruple with
concyclic pedal points on four side lines of one particu-
lar quadrilateral defined on the point quadruple results in
a certain cubic. Since there are three different orderings,
the four points actually define three cubics one of which
passes through the quadrilateral’s respective Miquel point
(see [3] and cf. Figure 2).

It seems that asking for the locus C for only one ordering
of points may not deliver the complete picture.

In the following, we assume that we are given a pla-
nar quadrilateral Q = ABCD with vertices A, B, C, D,
no two of which may coincide and no three shall be
collinear. (Later, we shall discuss the case where three of
these points are collinear as the only acceptable degener-
ate case.) Clearly, these four points define six lines [A,B],
[A,C], [A,D], [B,C], [B,D], [C,D], i.e., the joins of all six
pairs out of the four points. The union of the four points
and the six lines is called a complete quadrangle.

Figure 2: The loci CABCD, CACDB, CADBC of points with four
concyclic pedal points on the sides of the three
quadrilaterals on four points A, B, C, D.

Figure 3: The characteristic property of the points on C :
The six pedal points P·· of the point X lie on a
single conic p.

Now, we raise the following question (cf. Figure 3): What
is the locus C of points X in the quadrilateral’s plane such
that the pedal points of X on the six lines of the complete
quadrilateral are conconic, i.e., they are located on a sin-
gle conic?
In order to answer this question, the remainder of this sec-
tion collects necessary notations and provides some basic
results. In Section 2, we shall derive the equation of C
for a generic quadrilateral and study C ’s algebraic proper-
ties. However, the equation of C is given in the Appendix
A in full length because of its complexity (2318 terms).
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A rather intricate computation will show that beside the
diagonal points and three Miquel points there are only 4
further real points on C that deliver singular pedal conics.
Subsequently, Section 3 will show that the curve C is the
locus curve for a more general formulation of the initial
problem. Then, Section 4 deals with those quadrilaterals
and complete quadrangles where the degree of the curve
C drops. In all these cases, C becomes a sextic either of
genus 1 or 3 and carries no real point off the real (isolated)
singularities. We also show that the degree of C is always
larger than 5.

1.2 Prerequisites, notations, and basic results

Although we are mostly dealing with Euclidean geome-
try, we shall describe points by homogeneous coordinates
whenever this is favorable. The Cartesian coordinates
(x,y) of a point X can easily made homogeneous by writing
X = 1 : x : y. On the contrary, from the homogeneous coor-
dinates x0 : x1 : x2 of a point, we can change to its Cartesian
coordinates by setting x = x1x−1

0 and y = x2x−1
0 , provided

that x0 6= 0. In this way, we have performed the projective
closure of the Euclidean plane and x0 = 0 is the equation
of the ideal line (line at infinity). On this line, we find the
absolute points of Euclidean geometry 0 : 1 :±i which are
henceforth denoted by I and J = I.
The condition on six points to lie on a single conic can be
written in form of a vanishing determinant of a 6× 6 ma-
trix whose rows (or columns likewise) are the quadratic
Veronese images of the six points in question see [11].
For a point X with homogeneous coordinates x0 : x1 : x2,
the quadratic Veronese image has the homogeneous coor-
dinates

v(x0,x1,x2) = x2
0 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2. (1)

Each conic c in the plane has a homogeneous equation of
the form

2

∑
i, j=0

ai jxix j = 0

(with aik ∈ R not simultaneously vanishing). The conic
c is regular/singular if, and only if, the symmetric matrix
(ai j) ∈ R2×2 is regular/singular. Each point incident with
the conic corresponds to a hyperplane in the space P5 of
all Veronese images. Six linearly dependent hyperplanes
in P5 correspond to six conconic points, and hence, the
6× 6 matrix of the respective Veronese images is of rank
less than 6. A less algebraic and more geometric condition
on six points to lie on a conic is given by PAPPUS’s theo-
rem [11]. However, the algebraic formulation of PAPPUS’s
theorem is equivalent to (1).
Now, it is natural to conjecture that the locus C is a curve of
degree twelve: The computation/construction of the pedal
points of the normals from X to the sides of the complete

quadrangle is linear. Algebraically speaking, the coordi-
nates of the six pedal points can be expressed linearly in
terms of the coordinates of X .
Therefore, the entries of the 6× 6 matrix are quadratic in
the coordinates of the pedal points, and thus, quadratic in
the coordinates of X . Finally, the determinant of the 6×6
matrix is a polynomial of degree twelve which, set equal to
zero, is the equation of an algebraic curve of degree twelve.
Whatever the locus C may be, the following can be shown
without any computation:

Theorem 1 The vertices A, B, C, D and the diagonal
points P = [A,B]∩ [C,D], Q = [A,C]∩ [B,D], R = [A,D]∩
[B,C] are located on C .

Proof. If X coincides with one diagonal point, say P, then
the pedal points on [A,B] and [C,D] coincide and equal
P. So, there are only five different pedal points naturally
having a unique circumconic. The same holds true for the
other diagonal points.
If X equals a vertex of Q , say A, then even three pedal
points fall in one point, i.e., the pedal points of A on [A,B],
[A,C], and [A,D] (the three side lines through A). There-
fore, the four vertices of Q are located on C and are singu-
lar points on C . �

We shall also verify that A, B, C, and D are double points
on C by computation in Thm. 3.

Remark 1 The pedal conic of a vertex of Q , say A, is not
uniquely determined. It passes through the three pedal
points on [B,C], [C,D], [D,B], and A. These four points
will, in general, serve as the base points of a pencil of
pedal conics (cf. [11]).

2 The equation of C

2.1 The generic quadrilateral

In order to give an equation of C , we attach a Cartesian co-
ordinate system to the given quadrilateral. It means no loss
of generality, if we assume that the vertices of the quadri-
lateral are given by the homogenized Cartesian coordinates

A = 1 : 0 : 0, B = 1 : a : 0,
C = 1 : b : c, D = 1 : d : e.

We could simplify the coordinates of these four points a
little bit more by setting a = 1. Regarding the question we
are trying to answer, this is admissible, since it would only
scale the quadrilateral and the problem of conconic pedal
points is invariant under equiform transformations in gen-
eral. However, we do not set a = 1 in order to keep the co-
efficients of C homogeneous (polynomials in a,b,c,d,e).
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Later, some quadratic functions in terms of a,b,c,d,e shall
occur frequently and in order to simplify many expres-
sions, we label the squares of the six Euclidean lengths
between the given points by

l1 :=AB=a2,

l2 :=AC=b2 + c2,

l3 :=AD=d2 + e2,

l4 :=BC=(b−a)2+c2,

l5 :=BD=(d−a)2+e2,

l6 :=CD=(d−b)2+(e−c)2.

(2)

For the same reason, we denote the areas of the four sub-
triangles of Q by

FD :=area(ABC)= 1
2 ac,

FC :=area(ABD)= 1
2 ae,

FB :=area(ACD)= 1
2 (be−cd),

FA :=area(BCD)= 1
2 (ac−ae+be−cd),

(3)

where, for example, FA is the area of the triangle BCD (i.e.,
the area is labeled by the point that does not contribute).

Now, let X = (x,y) (or likewise 1 : x : y) be a point in the
plane of Q . It is elementary to compute the six pedal points
from X to the sides of the complete quadrilateral. Then, we
replace the Cartesian coordinates of X by homogeneous
coordinates according to x→ x1x−1

0 and y→ x2x−1
0 . For

example, the pedal point PAC on the side line [A,C] has the
homogeneous coordinates

PAC = l2x0 : b(bx1 + cx2) : c(bx1 + cx2).

Subsequently, we apply the Veronese mapping (1) and
compute the determinant of the 6×6 matrix

V := (v(PAB),v(PAC),v(PAD),

v(PBC),v(PBD),v(PCD)) .
(4)

This results in a homogeneous polynomial of degree 12
in the variable homogeneous coordinates x0 : x1 : x2 of X .
Surprisingly, detV factors and we have

detV =−28l−1
1 F2

A F2
B F2

C F2
D · x5

0 ·P7, (5)

where P7 =
7
∑

k=0
qkxk

0 is a degree 7 form in x0 : x1 : x2 with

q7 = q6 = 0,

q5 = 24l1l2FAFBFCFD(x2
1 + x2

2),

q4 = . . . , q3 = . . . ,

q2 = (. . .)(x2
1 + x2

2), q1 = (. . .)(x2
1 + x2

2)
2,

q0 = 4(al1)−1(4(FC−FD)(l1FB(FB−FC)·
·(FB+FD)+l2F2

C (FC−FB)−l3F2
D·

·(FB +FD))x1 +(l2
1F2

B (FB−FC−FD)−
−l2

2F2
C FD−2l2

3F3
D+l1l2FC((4FB−5FC)·

·(FB−FC)+(FB−FC)FD)+

+l1l3FD(4F2
B −4FBFC−F2

C+

+3FD(FB−FC +FD))+ l3l4F2
C FD+

+l2l3FCFD(FC+2FD)−l2l4F2
C (2FC−FD)−

−16FBFCFD((FB−FC)·
·(FC +FD)+F2

D))x2)(x2
1 + x2

2)
3.

(6)

The polynomial P7 is given in full length in the Appendix
A in term of inhomogeneous (Cartesian) coordinates.
Now, we have:

Theorem 2 The locus C of points X in the Euclidean
plane with conconic pedal points on the six lines of a com-
plete quadrangle is, in general, a tricyclic algebraic curve
of degree 7 with the equation P7 = 0 having one real point
at infinity.

We have added the phrase in general since we shall soon
see that for some special configurations of the four points
A, B, C, D the degree will drop.
Proof. By virtue of (5), we can see that the (in general)
non-degenerate factor of detV is a polynomial P7 of de-
gree 7. Obviously, the factor x5

0 splits off from detV , and
thus, the line at infinity is a component with multiplicity 5.
However, this component does not matter, since one cannot
draw normals from ideal points to proper lines. Therefore,
the affine part of C is only of degree 7. (An example is
shown in Figure 4.)
In the projective closure and the complex extension of the
Euclidean plane, the term q0 of degree 7 (given in (6))
consists of a linear factor corresponding to the one and
only real point at infinity and the term (x2

1 + x2
2)

3 = (x1 +
ix2)

3(x1 − ix2)
3 whose solutions are the absolute points

(circle points) of Euclidean geometry each with multiplic-
ity 3. �

Later, we shall have a look at all types of quadrilaterals
including those with symmetry. In some cases the degree
of the curve C will drop. For some special quadrilaterals,
the curve C will consist of a finite number of isolated real
points and complex branches without any real point.
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Figure 4: The septic locus C of points whose six pedal
points on the sides of a complete quadrilateral
Q = ABCD lie on a conic.

Remark 2 The equations of the cubics showing up in [3]
as the loci of points with four concyclic pedal points on
the four sides of a quadrilateral are also the irreducible
parts of polynomials of degree 8. The concyclicity of the
four pedal points is equivalent to the vanishing of the de-
terminant of the 4× 4 matrix whose rows (columns) are
Veronese images

(p2
1 + p2

2, p0 p1, p0 p2, p2
0)

(cf. [11, p. 241]) of the four homogenized pedal points.
Surprisingly, from this degree 8 polynomial the factor x5

0
(the ideal line) also splits off with multiplicity 5.

We can state and prove:

Theorem 3 The vertices of the quadrilateral Q = ABCD
are isolated double points on the septic C . The four ver-
tices are focal points of C . The curve C is of class 22 and
genus 5.

Proof. From (6), we see that q7 and q6 are equal to zero,
and therefore, A is a double point on C . The coefficient
q5 6= 0 (cf. (6)) tells us that the point A is a double point on
C . The linear factors of q5 are the equations of C ’s tangents
at the double point. Since

x2
1 + x2

2 = (x1 + ix2)(x1− ix2) = 0,

we see that the tangents at A are isotropic lines and A is an
isolated double point.
We recall VON STAUDT’s definition of focal points on al-
gebraic curves: A point F is a focal point of an algebraic
curve if the curve’s tangents at F are isotropic lines (cf.
[1, 5]). According to this, A is a focal point since the tan-
gents of the curve at A are isotropic lines.
The other vertices B, C, D are of the like kind. This can
be shown by applying translations to Q and to the septic
curve C such that each vertex of Q coincides with the ori-
gin of the coordinate system (three different translations).

This does not change the algebraic and geometric proper-
ties of C and the linear factors of q0 are the equations of the
tangents at the origin. In all three cases, q0 will turn out to
be a scalar multiple of x2

1 + x2
2 (since this quadratic form is

invariant under Euclidean transformations). Consequently,
all four vertices of C are isolated double points and focal
points of C .
There are no further singularities on C (different from A,
B, C, D, I, J). This can be shown either with a CAS (like
Maple) or by considering the following: At a singular point
of C at least three pedal points have to coincide which is
not possible for any other point (different from the already
known singularities).
With the Plücker formulae for planar algebraic curves (cf.
[2, 4, 5, 8, 14]), we find the genus g and the class m of C :

g = 1
2 (7−1) · (6−1)−1 ·4−3 ·2 = 5,

m = 7 · (7−1)−2 ·4−6 ·2 = 22

since there are 4 ordinary double points and 2 ordinary
triple points on C . �

Figure 5 shows that the curve C can have up to six real sep-
arated components as is to be expected for a curve of genus
5. These six components occur if one vertex lies close to
one side.

Figure 5: If one vertex (here D) comes close to one side
line (here [A,B]), then the curve C consists of 6
separated real components.

Remark 3 The well-known Plücker formulae (cf. [2, 4, 5,
8, 14, 23]) for the genus and class of a planar algebraic
curve have to be adapted if the degree d is larger than or
equal to 4 since curves of sufficiently high degree may have
singularities of multiplicity larger than 2. In the present
case with d = 7 and ordinary triple points, the formulae
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for the class m, the number w of inflection points, and the
genus g read

m = d(d−1)−2d−3s−6t,

w = 3d(d−2)−6d−8s−18t,

g = 1
2 (d−1)(d−2)−∑δi.

Herein, d, s, t, δi are the numbers of (ordinary) double
points, cusps (of the first kind), (ordinary) triple points,
and the δ-invariants of all singularities. The δ-invariant
can be computed with Maple’s function singularities

provided by the algcurves package.

It is rather technical to show that each (ordinary) triple
point has to be weighted with the factors 6 and 18 in the
class and inflection point formula.

This allows us to conjecture that

w = 3 ·7 · (7−2)−6 ·4−18 ·2 = 45.

is an upper bound for the number of real inflection points
on C .

2.2 Miquel points determine singular pedal conics

Figure 6: The Miquel point MRP lies on the septic C , for
its six pedals with respect to the lines of a com-
plete quadrilateral form a degenerate conic m =
sABR∪n.

Each quadrilateral Q = ABCD defines three Miquel points
each of which is common to four circles on two pairs of op-
posite vertices and the respective diagonal points of Q (cf.
[22]). We shall denote the Miquel points by MPQ, MQR,
MRP pointing to the diagonal points involved. It is well-
known that the Miquel points are located on the following
circles (cf. [22]):

MPQ ∈ kACP, kBDP, kABQ, kCDQ,
MQR ∈ kADQ, kBCQ, kACR, kBDR,
MRP ∈ kABR, kCDR, kADP, kBCP,

where kXY Z denotes the circle on the three (pairwise dif-
ferent) points X , Y , and Z. We are able to show that these
points play an outstanding role:

Theorem 4 The three Miquel points MPQ, MQR, MRP are
located on the septic C . The three pedal conics defined by
the six pedal points of each Miquel point are degenerate
and split into pairs of lines.

Proof. It is sufficient to show the validity of the above the-
orem for one particular Miquel point, say MRP. For the
remaining two the proof uses the same arguments for dif-
ferent subtriangles.

The Miquel point MRP is the common point of the circum-
circles kABR, kCDR, kADP, kBCP of the respective subtrian-
gles.

Since MRP ∈ kABR, the three pedal points of MRP’s normals
to [A,B], [B,R], [R,A] are collinear: They lie on the Simson
line of the triangle ABR. The triangles ABR and CDR share
two side lines: [A,R] = [D,R] and [B,R] = [C,R]. Thus, two
by two pedal points coincide: PMRP,[A,R] = PMRP,[D,R] and
PMRP,[B,R] = PMRP,[C,R]. So, the two triangles ABR and CDR
share the Simson line sABR = sCDR on which also the pedal
points PMRP,[A,B] and PMRP,[C,D] have to lie. This makes in
total four collinear pedal points.

The remaining two pedal points PMRP,[A,C] and PMRP,[B,D]

span a second line n. The union of sABR and n is the singu-
lar conic m. Since m is a (singular) conic, MRP has to lie
on C by the very definition. �

Figure 7 shows the three Miquel points of the complete
quadrangle Q together with the three singular pedal con-
ics. Each point and line displayed in Figure 7 can be con-
structed only with a ruler (linearly): Each Miquel point is
a common point of two circles sharing an already known
point. The singular pedal conics of the Miquel points are
Simson lines which require only linear constructions.

Figure 7: The three Miquel points and their singular pedal
conics.
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It is noteworthy that the triangle built by the centers of the
singular conics is perspective to the diagonal triangle PQR
of Q :

PQR∧=CQRCRPCPQ

(with CQR denoting the center of the singular pedal conic
of MQR. Further, the triangle formed by the three Miquel
points is also perspective to the diagonal triangle, i.e.,

PQR∧=MQRMRPMPQ.

Remark 4 Theorem 4 can also be verified by means of
computation. For that purpose, only the coordinates

MRP = 2(l1−l2+l3+l4−l5+l6) :
: a(l1− l2 +2l3− l5 + l6) :
: 4a(FC−FB),

MPQ = 2(l1 + l2− l3− l4 + l5 + l6) :
: a(l1 +2l2− l3− l4 + l6) :
: 4a(FB +FD),

MQR = 4a(l1− l2− l3− l4− l5 + l6) :
: l1(l1− l2− l3− l4− l5)+
+(l4−3l2)l3+
+(l2 + l4)l5−16FCFD :

: 8(l1(FC−FB)−FDl3− l4FC),

of the three Miquel points (with the abbreviations given in
(2) and (3)) have to be inserted into (5).

We are able to show that the Miquel points are not the only
points whose six pedal points lie on a singular conic:

Theorem 5 In the Euclidean plane of a generic quadrilat-
eral Q there exist, in general, 4 real points (different from
the Miquel point, the diagonal points, and the vertices of
Q ) whose pedal conics are singular.

Proof. Unfortunately, this proof requires some computa-
tion. We assume that W = 1 : ξ : η is a point on C , and thus,
its coordinates annihilate P7 from (5) and (6). By the very
definition of C , the six pedal points of W lie on a conic.
We can use (4) to determine the equation of the conic cCD
on the pedals PAB, PAC, PAD, PBC, PBD of W (note that PCD
is missing). The determinant of the coefficient matrix MCD
has to vanish in order to make cCD singular. Surprisingly,
detMCD splits into quadratic factors:

detMCD = ιA · ιB · kC · kD·
·kABR · kABQ · kBCQ · kADQ · kACR · kBDR.

Figure 8: The cycle L consists of 16 circles and 8 isotropic
lines. It intersects C in possible candidates of
points with degenerate pedal conics.

The factors in the latter product are the equations of some
circles and pairs of isotropic lines. For example, ιA =
ξ2+η2 is the equation of the pair of isotropic lines through
A, kA is the (equation of the) circumcircle kA of BCD, and
kABR is the (equation of the) circumcircle of ABR (with P,
Q, and R still being Q ’s diagonal points as defined in Thm.
1).

So far, it seems that the pedal point PCD does not play a
role. In order not to miss a single pedal point, we compute
the least common multiple L of all determinants detMkl
(with k 6= l and (k, l) ∈ {A,B,C,D}) and find

L = ιA · ιB · ιC · ιD︸ ︷︷ ︸
isotropic lines

through vertices

·kA · kB · kC · kD︸ ︷︷ ︸
circumcircles

of subtriangles

·

·kABR · kCDR · kADP · kBCP︸ ︷︷ ︸
circles through

the Miquel point MRP

·

·kACP · kBDP · kABQ · kCDQ︸ ︷︷ ︸
circles through

the Miquel point MPQ

·

·kADQ · kBCQ · kACR · kBDR︸ ︷︷ ︸
circles through

the Miquel point MQR

.

The points on C with degenerate conics through their pedal
points are found as the intersection of the curve C : P7 = 0
and the cycle L : L = 0 of degree 40. The cycle L consists
of 16 circles and the 8 isotropic lines passing through the
four vertices of Q , cf. Figure 8. According to BÉZOUT’s
theorem, we have to expect up to 280 common points of C
and L . As we shall see, many of them are not real and a
huge amount of them coincides with already known points.

In order to get rid of solutions that we already now and,
further, in order to simplify the computation we have to
discuss the intersection of the components of L with C .
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The four pairs of isotropic lines can be cut out immedi-
ately: The pair described by ιA = 0 intersects C in 14 points
6 of which coincide with A (since A is an ordinary double
point on ιA and C and both (isotropic) components of ιA
are tangents to C at A). Three intersection points each are
located at I and J (since they are ordinary triple points on
C (cf. Thm. 2) and regular points on ιA). The two remain-
ing points cannot be real since ιA does not contain any real
point different from A. The same arguments hold for the
other pairs. Therefore, we can cut out the cycle of degree
8 given by the equation ιA · ιB · ιC · ιD = 0.

The circumcircles can also be canceled: For example, the
circle kA (passing through B, C, D) intersects C at B, C,
D with multiplicity 2 at each point (since they are double
points on C , cf. Thm. 1 and Thm. 3). At both absolute
points I and J, the intersection multiplicity of kA and C
equals 3. Further, kA and C have a pair of complex conju-
gate proper points in common. These two points are never
real since the discriminant ∆A of the respective quadratic
equations is a full square with a minus ahead:

∆A =−4l−1
1 (l1FB + l3FD− l2FC)

2·
·(l1(l3− l2− l4 + l5)+ad(l2− l3 + l6)−4FBFC)2.

Hence, kA does not lead to new real points on C with sin-
gular pedal conics, as is the case with kB, kC, kD for the
same reasons. Therefore, the cycle kA · kB · kC · kD = 0 of
degree eight being the union of the circumcircles of the
four subtriangles can also be cut out.

Finally, we have to study the last three quadruples of cir-
cles passing through their respective Miquel point: At first,
we shall have a look at the four circles passing through
one particular Miquel point. For example the circles kABR,
kCDR, kADP, kBCP share only the points A, B, C, D, R, P,
MRP, I, and J with C (with multiplicities 4, 4, 4, 4, 2, 2, 4,
16, 16). Which is similarily true for the other quadruples
of circles passing through the Miquel points MPQ and MQR
and does not deliver new points.

Surprisingly, the following combinations of circles yield
real points on C

kACP∩ kBDR = {R1,R2},
kACR∩ kBDP = {R3,R4}

while all other combinations of circles lead to intersections
which are either already known or not on C , or, if on C , two
points which can never be real. �

Table 1 lists the intersection points of L and C with their
respective multiplicities, and thus, it summarizes the proof
of Thm. 5.

A B C D P Q R MPQ MQR MRP I J

24 24 24 24 4 4 4 4 4 4 60 60

R1 R2 R3 R4 compl. pts. ∑

2 2 2 2 32 280

Table 1: The common points of L and C algebraically
counted.

Remark 5 The cycle L is of degree 40 and it is the union
of 16 circles and 8 isotropic lines. It has four 11-fold points
at A, B, C, D; six 4-fold points at P, Q, R, MPQ, MQR, MRP;
and the absolute points I, J are 20-fold points. Further it
has 128 ordinary double points (among them R1, . . . , R4).

2.3 Degenerate quadrilaterals

Quadrilaterals may degenerate in many ways. Until now,
we have assumed that none of the four vertices falls into
a line spanned by two others, i.e., Q = ABCD is a proper
quadrilateral. If we exclude cases where two or more ver-
tices coincide, the only possible degenerate quadrilaterals
are those where one vertex, say C, lies on the side line
[A,B]. In any other case, we can relabel the points. In this
rather special case, we can state:

Theorem 6 Assume that all vertices of Q are pairwise dif-
ferent, but, for example, C ∈ [A,B]. Then, the septic curve
C becomes the septic cycle consisting of the line [A,B] and
the circumcircles of the three non-degenerate subtriangles
ABD, ACD, and BCD.

The line [A,B] serves as the degenerate circumcircle of the
improper triangle ABC.

Proof. If C lies on [A,B], then C = 1 : b : 0, i.e., c = 0.
Inserting this into P7, yields

P7 = (a−b)2b2 · x2 · (e(x2
1+x2

2)−bex0x1+

+(bd−d2−e2)x0x2)·
·(e(x2

1+x2
2)−aex0x1+(ad−d2−e2)x0x2)·
·(e(x2

1+x2
2)−(a+b)ex0x1+

+((a+d)(d−b)−e2)x0x2+abex2
0).

The linear factor is the equation of [A,B], the quadratic fac-
tors are the equations of the circumcircles kC, kB, kA of
ABD, ACD, BCD. �

The points on the septic cycle described in Theorem 6 de-
fine only degenerate conics: Let X be some point on the
circumcircle of ∆C = ABD. The pedal points PAB, PAD,
PBD of X on the sides of ∆C are collinear and lie on the
Simson line sABD. Since C ∈ [A,B], [A,B] = [A,C] = [B,C],
and thus, PAB = PAC = PBC. Therefore, the conic on the six
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pedals is the union of two lines, the Simson line sABD and
the line [PCD,PAB].

Here, we have only four different pedal points, and four
points always lie on at least one conic, indeed, they form
the basis of a pencil of conics.

3 A more general point of view

We have drawn the normals from some point X to the
lines of a complete quadrilateral and determined the pedal
points. However, these six pedal points are very special
points on the six normals through P.

Let again Pkl denote the pedal point of X on the line [k, l]
(with k 6= l and (k, l) ∈ {A,B,C,D}) and let further denote
Pω

kl the ideal point of the normal of [k, l] through X . Then,
we shall determine the points Pδ

kl on the normal such that
the crossratio of Pkl , Pω

kl , X , and Pδ

kl equals δ ∈ R\{0}.

Now, we can ask for the set C δ of all points X such that
the six points Pδ

kl lie on a single conic. We can show the
astonishing result:

Theorem 7 Let Q = ABCD be a quadrilateral in the pro-
jectively extended Euclidean plane. Then, define six per-
spective collineations κδ

kl whose axes are the six lines [k, l]
(k 6= l, k, l ∈ {A,B,C,D}) of the complete quadrangle de-
termined by Q , their centers Pδ

kl being the ideal points of
the normals of [k, l], and δ ∈ R \ {0} be their (common)
characteristic crossratio.

Then, the set C δ of all points X whose images Pδ

kl under the
six perspective collineations κδ

kl lie on a single conic form
the septic curve C described in Theorem 2 independent of
the choice of δ 6= 0.

Proof. With the Cartesian coordinates of X and Pkl and
the characteristic cross ratio δ ∈ R, the points Pδ

kl can be
written as a linear combination of X and and the respective
pedal point Pkl

Pδ

kl = (1−δ)X +δPkl

(where δ 6= 0, (k, l) ∈ {A,B,C,D}, and k 6= l) since Pω

kl is
a point at infinity. Again, the determinant of the matrix (4)
factors and equals

detV =−28l−1
1 F2

A F2
B F2

C F2
D ·δ

8 · x5
0 ·P7

with the same polynomial P7 of degree 7 as we know from
(5) and (6) which is independent of δ. Hence P7 = 0 is the
equation of C δ = C . �

Theorem 7 contains a very special case: If δ=−1, then the
collinear images of X are the reflections of X in the six side

lines of the complete quadrilateral. Obviously, these points
are conconic if X lies on the septic C . Figure 9 shows the
septic together with some point X ∈ C and the conics on
the six pedal points Pkl and the six reflections Rkl .

Figure 9: The conics p and r collect the pedal points and
reflections of P ∈ C . Here, the conic r is the im-
age of p under the central similarity with center
P and similarity factor 2.

It is clear that the conics corresponding to two different
characteristic cross ratios δ1,δ2 6= 0 are related by a cen-
tral similarity with center X and similarity factor δ1δ

−1
2 (or

its reciprocal).

4 Exceptional quadrilaterals, degree reduc-
tion

4.1 Special configurations

In the case of the locus curve described in [3], the cubic
may degenerate, i.e., it splits into lower degree parts, de-
pending on the shape of the quadrilateral. From Thm. 6,
we know that C becomes the union of three circles and a
straight line if three points out of {A,B,C,D} are collinear
(while still being pairwise different). This seems to be the
only case (as is indicated by a detailed study of the curve
C for all possible types of quadrilaterals – up to Euclidean
transformations).

Now, we shall ask under what circumstances the degree of
C is less than 7. We have the following:

Theorem 8 Let Q = ABCD be a proper quadrilateral
such that, for example, the point D is the orthocenter of
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ABC. The curve C associated with the complete quadran-
gle on Q is of degree 6 and genus 1, has 9 (isolated) double
points and no further singularities. It is of class 12 and has
no real branch.

Proof. The contents of this theorem can be verified by set-
ting

A = 1 : 0 : 0, B = 1 : a : 0, C = 1 : b : c,

and since D has to be the orthocenter of ABC, we have

D = c : bc : b(a−b).

With (4), we find the (homogeneous) equation of C as

C : c2(x2
1 + x2

2)
3−

−2c((a+b)cx3
1 +3bcx1x2

2 +(ab−b2+c2)x3
2)·

·(x2
1 + x2

2 +abx2
0)x0 +(c2(a2 +4ab+b2)x4

1+
+6(a+b)bc2x2

1x2
2 ++4bc(ab−b2 + c2)x1x3

2+
+(a2b2−2ab3+4abc2+b4−b2c2+c4)x4

2)x
2
0+

+a2b2c2(x2
1 + x2

2)x
4
0 = 0

(7)

which is obviously of degree 6 and allows us to locate the
singularities (isolated double points) at the three diagonal
points of Q . (According to Thm. 3, the vertices of Q are
singular points on C in any case.) Although the leading
term in (7) is (x2

1 + y2
2)

3, the absolute points I and J are
only double points. (This can be shown at hand or the
ranks of the tensors of the partial derivatives of order 3
of (7) with respect to the three variables xi or using the
singularities command in Maple’s algcurves pack-
age.) Besides A, B, C, D, P, Q, R, I, J there are no further
singularities.

With the Plücker formulae (cf. [2, 4, 5, 8, 14]), we find

g = 1
2 (6−1) · (6−2)−9 ·1 = 1,

m = 6 · (6−1)−2 ·9 = 12

for the genus and the class of C . �

Symmetries of the initial quadrilateral may not necessarily
cause a reduction of the degree of C . However, if two di-
agonal points of Q move to the line at infinity, then their
join splits off from C . This yields to the following result:

Theorem 9 Let Q = ABCD be a parallelogram. The
curve C associated with the complete quadrangle on Q
is of degree 6 and genus 3, has 7 (isolated) double points,
is of class 16 and has no real branch.

Proof. We proceed in a similar way as in the proof of Thm.
8 with

A = 1 : 0 : 0, B = 1 : a : 0,
C = 1 : a+u : c, D = 1 : u : c.

It is not necessary to write down the rather lengthy equa-
tion of C . (The reader may convince her-/himself by using
a CAS that it is of degree 6.)

Now, the singularities are still the vertices of Q (according
to Thm. 3), the absolute points I, J are double points, and
the diagonal point Q = [A,B]∩ [C,D] is the seventh (iso-
lated) double point. Since there are no further singularities,
the genus equals 3 and the class equals 16. �

We shall make explicit the fact that Thm. 9 contains the
cases of rhombi, rectangles, and squares.

For trapezoids, in general, (no matter if they are symmet-
ric, cyclic, tangential, or bicentric, equipped with right an-
gles, or three equally long sides (as long as they are none
of the above) the degree of C equals 7.

Kites (different from rhombi), cyclic, tangential, and bi-
centric quadrilaterals (as long as they do not fall into one
of the above mentioned classes of quadrilaterals) always
defined a septic C as the locus of points with six conconic
pedal points on the complete quadrangle’s sides.

4.2 Degree less than 6?

Finally, we want to show that the degree of C cannot be less
than 6: Prior to Thm. 9, we have pointed out that a parallel-
ogram has two diagonal points on the line ω at infinity, and
thus, ω splits off from C once and degC = 6. In a classical
projective plane, the diagonal points of a quadrilateral are
never collinear. Therefore, the ideal line will never splits
off with multiplicity 3.

However, by virtue of (6), we see that the greatest com-
mon divisor of coefficients qi of P7 for i ∈ {0,1,2,5,6,7}
equals x2

1 + x2
2 = Ω. The degree of P7 would reduce about

2 if gcd(q3,q4) = Ω. In this case the resultant

r3 := res(q3,Ω,xi), r4 := res(q4,Ω,xi)

for any variable xi (i ∈ {0,1,2}) have to be equal to zero.
We build the resultants with respect to x1 (and would find
the same results if we would eliminate x2):

r3 = x8
2 · l2

2 l2
3 l4 l5 l6 · (l2

1 l4− l1l2l5−2l1l3l4+

+ l1l3l5 + l2
2 l5− l2l3l5 + l2

3 l4),

r4 = x6
2 · l1 l2

2 l2
3 l4 l5 l6 · (2aFB− el2 + cl3)2 .

By assumption, li 6= 0 for all i ∈ {1, . . . ,6}, hence r4 = 0
yields

a =
e l2− c l3

2FB
,

and after inserting into r3, we find

r4 = x8
2 · l4

2 l4
3 l6

6 F4
C F4

D F−8
B .
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None of the (squares of the) lengths li and none of the ar-
eas of the subtriangles are allowed to vanish, otherwise Q
would degenerate. Therefore, neither r3 nor r4 can vanish,
and thus, Ω is a common divisor of q3 and q4. Since there
are no other (non-constant) factors of q5, Ω cannot split off
from P7 and degC cannot be equal to 5.
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Appendix A. Equation of C
For the sake of completeness, we add the equation of C in terms of inhomogeneous coordinates.

C : (x2 +y2)3·
· (4c(c2FBl3−2c2FCl3 + c2FDl3− ceFBl3 + ceFBl5 + ceFCl3− e2FBl5+

+ e2FBl6−4F3
B +4F2

B FC−4F2
B FD)x+(c3l2l3 + c3l3l4−2c3l3l5−2c3l3l6+

+16c2eF2
B −16c2eFBFC−2c2el2l3 + c2el2

3 + c2el3l5−2c2el3l6−16ce2F2
B+

+16ce2FBFC−32aF3
B +16aF2

B FC−24aF2
B FD +24aFBFCFD−4cF2

B l2+
+4cF2

B l3−4cF2
B l4+12cF2

B l5+8cF2
B l6+8cFBFCl2−12cFBFCl3−12cFBFCl5+

+24cFBFDl3−12cF2
C l2−4cFCFDl3 +16cF2

Dl3 +8eF2
B l2)y)+

+2(x2 +y2)2·
·((c4l2l3− c4l2

3 − c4l3l6 +16c3eF2
B −16c3eFBFC− c3el2l3 + c3el2

3 −2c3el3l6−
−16c2e2F2

B +16c2e2FBFC−4c2F2
B l2−4c2F2

B l3 +8c2F2
B l5 +4c2F2

B l6+
+4c2FBFCl2+20c2FBFCl3−12c2FBFCl5−8c2FBFDl3−4c2F2

C l2−12c2F2
C l3+

+24c2FCFDl3−8c2F2
Dl3 +8ceF2

B l2 +12ceF2
B l3−8ceF2

B l6−12ceFBFCl3+
+8ceFBFCl5−32F3

B FD+16FBFCF2
D)x2+(2c3dl3l6−8c3eFBl5+8c2e2FBl5+

−8c2e2FBl6−96c2F2
B FC +64c2FBF2

C −32c2FBFCFD +10c2FBl2l3+
+4c2FBl2l5−2c2FBl2

3−10c2FBl3l4+6c2FBl3l5+4c2FBl3l6−8c2FCl2l3+2c2FCl2
3+

+12c2FCl3l4−6c2FCl3l5 +2c2FDl2l3 +4c2FDl2
3 −6c2FDl3l4 +32ceF3

B
−32ceFBF2

C −2ceFBl2
2 −6ceFBl2l3 +2ceFBl2l6−16F3

B l1−56F3
B l2+

+40F3
B l4 +8F2

B FCl1 +96F2
B FCl2−16F2

B FDl1−40F2
B FDl2−48F2

B FDl3+
+24F2

B FDl4−8FBF2
C l2 +32FBFCFDl2 +64FBFCFDl3−16FBF2

Dl2−
−24FBF2

Dl3−24F3
C l2+24F2

C FDl2)xy+(−c4l2l3+c4l2
3+c4l3l6−16c3eF2

B+
+16c3eFBFC+c3el2l3−c3el2

3+2c3el3l6+16c2e2F2
B−16c2e2FBFC+4c2F2

B l2+
+12c2F2

B l3−16c2F2
B l5−4c2F2

B l6−12c2FBFCl2−12c2FBFCl3+12c2FBFCl5+
+16c2FBFDl3+12c2F2

C l2+12c2F2
C l3−24c2FCFDl3−2c2l2l2

3−c2l2l3l4+2c2l3
3+

+c2l2l3l5+c2l2l3l6+c2l2
3 l4−c2l2

3 l5−c2l2
3 l6−8ceF2

B l2+4ceF2
B l3−4ceFBFCl3+

+2cel2
2 l3−2cel2l2

3−cel2l3l6+64F3
B FD−32F2

B FCFD+64F2
B F2

D−4F2
B l1l2+

+4F2
B l1l3−12F2

B l2l3+4F2
B l2l4+4F2

B l2l5−4F2
B l2l6−48FBFCF2

D+4FBFCl2
2+

+20FBFCl2l3+4FBFCl2l5+8FBFDl1l3−36FBFDl2l3+12FBFDl2
3−4FBFDl3l4−

−12F2
C l2l3+4F2

C l2l4−4F2
C l2l5−4FCFDl1l3+20FCFDl2l3+4FCFDl3l4+4F2

Dl1l3−
−12F2

Dl2l3+4F2
Dl2

3−4F2
Dl3l4)y2)+

+(x2 +y2)·
·((128c3FBF2

C−128c3F2
B FC+12c3FBl2l3−12c3FBl2

3−8c3FBl3l4+12c3FCl2
3+

+24c3FBl3l5−4c3FBl3l6+12c3FCl2l3−24c3FDl2
3+64c2eF3

B +64c2eF2
B FC−

−128c2eFBF2
C−12c2eFBl2l3−4c2eFBl3l5+4c2eFBl3l6−64aF3

B FD−32aF2
B F2

D+
+96aF2

B FCFD+32aFBFCF2
D−48cF3

B l2−96cF3
B l3+32cF3

B l4+48cF3
B l5+16cF3

B l6+
+80cF2

B FCl2+48cF2
B FCl3−48cF2

B FCl5−192cF2
B FDl3+48cFBF2

C l3−16cFBF2
C l5−

−32cFBFCFDl2+64cFBFCFDl3−112cFBF2
Dl3−48cF3

C l2+32cF2
C FDl2+16cF3

Dl3+
+48cF2

C FDl3−48cFCF2
Dl3)x3+(112c3F2

B l3−96c3F2
B l5−288c3FBFCl3−2c3l2

2 l3+
+64c3FBFCl5+96c3FBFDl3+7c3l2l2

3+7c3l2l3l5+2c3l2l3l6−5c3l3
3−14c3l2

3 l4+
+7c3l2

3 l5−48c2eF2
B l2−80c2eF2

B l3 +48c2eF2
B l5 +16c2eF2

B l6 +80c2eFBFCl3−
−64c2eFBFCl5 +4c2el2

2 l3−4c2el2l2
3 +2c2el2l3l6 +16aF3

B l1 +120aF3
B l2−

−88aF3
B l4−8aF2

B FCl1−272aF2
B FCl2−8aF2

B FDl1−24aF2
B FDl2−120aF2

B FDl3+
+104aFBF2

C l2 +112aFBFCFDl2 +32aFBFCFDl3−48aFBF2
Dl3 +24aF3

C l2−
−96aF2

C FDl2−72aF2
C FDl3+120aFCF2

Dl3+24aF3
Dl3−64cF4

B−192cF3
B FC+

+384cF3
B FD+192cF2

B F2
C +192cF2

B FCFD+384cF2
B F2

D+8cF2
B l2

2−68cF2
B l2l3+

+12cF2
B l2l5−8cF2

B l2l6+56cF2
B l3l4+64cFBF3

C−320cFBF2
C FD−320cFBFCF2

D+
−24cF2

C l2l3−140cFBFDl2l3−72cFBFDl2
3+44cFBFDl3l4−4cF2

C l2
2+36cF2

C l3l4−
+168cFBFCl2l3+36cF2

C l2l4+40cFCFDl2l3+32cFCFDl2
3− 72cFCFDl3l4−

28cF2
Dl2l3−16cF2

Dl2
3+8eF2

B l2
2)x

2y+(384c3F2
B FC−128c3FBF2

C−36c3FBl2l3+
+52c3FBl2

3 +24c3FBl3l4−40c3FBl3l5−4c3FBl3l6−20c3FCl2l3 +4c2dl2l2
3−
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−20c3FCl2
3 +40c3FDl2

3 −2c2dl2
2 l3−2c2dl3

3 −2c2dl2l3l6 +2c2dl2
3 l6 +64c2eF3

B−
−192c2eF2

B FC+128c2eFBF2
C−8c2eFBl2

3+16c2eFBl2
2−4c2eFBl2l3 +32aF2

B l2
2−

−16c2eFBl2l6−4c2eFBl3l5+4c2eFBl3l6+192aF3
B FD−32aF2

B FCFD+8aF2
B l2l6−

−32aF2
B F2

D +40aF2
B l1l2−24aF2

B l1l3−8aF2
B l2l3−32aF2

B l2l4 +8aFBFDl2
2−

−32aF2
B l2l5 +32aFBFCF2

D−16aFBFCl1l2−72aFBFCl2
2 −40aFBFCl2l3+

+8aFBFCl2l5+32aFBFDl2l3 +16aFBFDl2
3 +24aF2

C l2
2 −8aF2

C l2l4 +8aF2
C l2l5−

−8aFBFDl3l4 +48aF2
C l2l3 +8aFCFDl1l3−104aFCFDl2l3−32aFCFDl2

3−
−8aFCFDl3l4−8aF2

Dl1l3+16aF2
Dl2l3+48aF2

Dl2
3−16cF3

B l5+16cF3
B l6+8aF2

Dl3l4+
+144cF3

B l2−32cF3
B l3−96cF3

B l4−240cF2
B FCl2−16cF2

B FCl3 +16cF2
B FCl5+

+192cF2
B FDl3−192cFBF2

C l2+48cFBF2
C l3−16cFBF2

C l5−4cFBl2
2 l3−4cFBl2

2 l5+
+224cFBFCFDl2−64cFBFCFDl3+80cFBF2

Dl3−32cFBl2l2
3−4cFBl2l3l6−4cFBl2

3 l4+
+4cFBl2l3l4+32cFBl2l3l5+144cF3

C l2−160cF2
C FDl2−144cF2

C FDl3+144cFCF2
Dl3+

+44cFCl2
2 l3+12cFCl2l2

3−16cFCl2l3l4+16cFCl2
3 l4+4cFDl3

3−16cFDl2
3 l4−4eFBl3

2+
+16cF3

Dl3−12cFDl2
2 l3−48cFDl2l2

3+16cFDl2l3l4+12eFBl2
2 l3+4eFBl2

2 l6)xy2+
(32c3F2

B l5−16c3F2
B l3+32c3FBFCl3−32c3FBFDl3+2c3l2

2 l3−c3l2l2
3−c3l2l3l5+

+16c2eF2
B l2−2c3l2l3l6−c3l3

3+2c3l2
3 l4−c3l2

3 l5−16c2eF2
B l3−16c2eF2

B l5−16aF3
B l1−

+16c2eF2
B l6 +16c2eFBFCl3−4c2el2

2 l3 +4c2el2l2
3 −2c2el2l3l6−40aF3

B l2+
+40aF3

B l4−8aF2
B FCl1+112aF2

B FCl2−8aF2
B FDl1+8aF2

B FDl2+8aF2
B FDl3+

−24aFBF2
C l2 +16aFBFCFDl2−64aFBFCFDl3 +16aFBF2

Dl3−2aFBl2
1 l2+

+2aFBl2
1 l3 +2aFBl1l2

2 −12aFBl1l2l3 +2aFBl1l2l5−2aFBl1l2
3 −2aFBl1l3l4−

−2aFBl3
2 +12aFBl2

2 l3−2aFBl2
2 l5 +2aFBl2

2 l6−10aFBl2l2
3 −88cFBFCl2l3+

+8aFBl2l3l4−8aFBl2l3l5−8aFBl2l3l6 +2aFBl2
3 l4−8aF3

C l2 +32aF2
C FDl2+

+24aF2
C FDl3−40aFCF2

Dl3 +2aFCl1l2
2 +4aFCl1l2l3−2aFCl2

2 l3−2aFCl2
2 l5+

+8aFCl2l2
3 −12aFCl2l3l4 +8aFCl2l3l5−8aF3

Dl3−8aFDl1l2l3 +2aFDl1l2
3−

−4aFDl2l2
3+8aFDl2l3l4−2aFDl3

3−2aFDl2
3 l4−64cF4

B +64cF3
B FC−128cF3

B FD−
−64cF2

B F2
C −320cF2

B FCFD−128cF2
B F2

D−8cF2
B l2

2 +12cF2
B l2l3−4cF2

B l2l5+
+8cF2

B l2l6−8cF2
B l3l4+64cFBF3

C +192cFBF2
C FD−64cFBFCF2

D+16cFBFCl2
2−

+36cFBFDl2l3+8cFBFDl2
3−20cFBFDl3l4−20cF2

C l2
2+24cF2

C l2l3−12cF2
C l2l4−

−12cF2
C l3l4+8cFCFDl2l3−32cFCFDl2

3+24cFCFDl3l4+ 4cF2
Dl2l3−cl3

2 l3+
+16cF2

Dl2
3+7cl2

2 l2
3+cl2

2 l3l4+3cl2
2 l3l5−6cl2l3

3−8cl2l2
3 l4+3cl2l2

3 l5+4cl2l2
3 l6+

+ cl3
3 l4−8eF2

B l2
2 −2el3

2 l3 +2el2
2 l2

3 +4el2
2 l3l6)y3)+

+(128c2F2
B F2

C −256c2F3
B FC +128c2F2

B FCFD +16c2F2
B l2l3 +8c2F2

B l2
3−

−16c2F2
B l3l4−8c2F2

B l3l5 +128c2FBF3
C −128c2FBF2

C FD +8c2FBFCl2l3−
−16c2FBFCl2

3+16c2FBFCl3l5−8c2FBFDl2l3−8c2FBFDl2
3+8c2FBFDl3l4+

+48c2F2
C l2l3−24c2FCFDl2l3−24c2FCFDl2

3+8ceF2
B l2l3−64F4

B l1−64F4
B l2−

+64F4
B l4+64F3

B FCl1+128F3
B FCl2−32F3

B FDl1+32F3
B FDl2+96F3

B FDl3+
−32F3

B FDl4 +32F2
B FCFDl1−128F2

B FCFDl2−96F2
B FCFDl3 +96F2

B F2
Dl3+

−64FBF3
C l2+64FBF2

C FDl2−32FBF2
C FDl3+32FBFCF2

Dl2−128FBFCF2
Dl3−

+32FBF3
Dl3 +32F3

C FDl2−32F2
C F2

Dl2−32F2
C F2

Dl3 +32FCF3
Dl3)x4+

+(64c2F3
B l3−64c2F3

B l5+128c2F2
B FCl2+64c2F2

B FCl3+64c2F2
B FDl3−8c2FDl3

3−
−192c2FBF2

C l2−128c2FBF2
C l3+64c2FBF2

C l5+512c2FBFCFDl3+8c2FBl2l3l4−
−8c2FBl2

2 l3+8c2FBl2l2
3−8c2FBl2l3l5+64c2F3

C l2−64c2FCF2
Dl3+8c2FCl2

2 l3+
+24c2FCl2l2

3−16c2FCl2l3l4−16c2FCl2
3 l4−24c2FDl2l2

3+32c2FDl2
3 l4−32F3

B l1l2+
+256F4

B FD+256F3
B F2

D−32F3
B l2

1+32F3
B l2

2−32F3
B l2l4−256F2

B F2
C FD+32F2

B FCl1l2+
−96F2

B FCl2
2 +160F2

B FDl1l3 +160F2
B FDl2l3−128F2

B FDl3l4−768FBF2
C F2

D+
+128FBF2

C l1l2 +96FBF2
C l2

2 −32FBFCFDl1l2−32FBFCFDl1l3−64F3
C l1l2−

−384FBFCFDl2l3 +64FBF2
Dl1l3 +64FBF2

Dl2l3−32FBF2
Dl2

3 +32F2
C FDl1l2+

+32F2
C FDl1l3−64F3

C l2
2+64F3

C l2l4+64F2
C FDl2l3−32F2

C FDl2l4−32F2
C FDl3l4−

+96FCF2
Dl2l3 +32FCF2

Dl2
3 −128F3

Dl2
3)x

3y+

+(256c2F2
B F2

C−256c2F3
B FC−1024c2F2

B FCFD−48c2F2
B l2l3+64c2F2

B l2l5−
−16c2F2

B l3l4+80c2FBFCl2l3−16c2FBFCl2
3 +16c2FBFCl3l5−16c2FBFDl2

3−
−64c2FBFDl3l4−96c2F2

C l2l3+48c2FCFDl2l3+48c2FCFDl2
3+2c2l2

2 l2
3−2c2l2l3

3−
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−4c2l2
2 l3l5 +4c2l2l2

3 l4 +4c2l2l2
3 l5−4c2l3

3 l4 +16ceF2
B l2l3−2cel3

2 l3 +2cel2
2 l2

3+
+2cel2

2 l3l6−64F4
B l1−64F4

B l2+64F4
B l4+64F3

B FCl1+128F3
B FCl2+16F2

B l2
1 l2−

−320F3
B FDl1−512F3

B FDl2+64F3
B FDl3+256F3

B FDl4+64F2
B FCFDl1−24F2

Dl1l2l3+
+768F2

B FCFDl2−64F2
B FCFDl3−256F2

B F2
Dl2+64F2

B F2
Dl3−16F2

C l1l2
2−32F2

C l1l2l3+
+16F2

B l2
1 l3+16F2

B l1l2
2+24F2

B l2
2 l3−16F2

B l2
2 l5−16F2

B l2l3l4+32F2
Dl2l2

3 +8F2
Dl3

3−
−64FBF3

C l2−64FBF2
C FDl2−64FBF2

C FDl3 +64FBFCF2
Dl2 +16FBFCl2

1 l2−
−48FBFCl1l2

2 +8FBFCl1l2l3−16FBFCl1l2l5−72FBFCl2
2 l3 +16FBFCl2

2 l5+
+320FBF3

Dl3−16FBFDl2
1 l3 +8FBFDl1l2l3 +16FBFDl1l3l4 +64FBFDl2

2 l3+
+8FBFDl2l2

3 −16FBFDl2
3 l4−192F3

C FDl2 +192F2
C F2

Dl2 +192F2
C F2

Dl3+
+16F2

C l3
2 +56F2

C l2
2 l3−24F2

C l2
2 l4 +16F2

C l2
2 l5 +8F2

C l2l3l4−192FCF3
Dl3+

+88FCFDl1l2l3 +24FCFDl1l2
3 −80FCFDl2

2 l3−48FCFDl2l2
3 −24FCFDl2

3 l4
+8FCFDl2l3l4−40F2

Dl1l2
3 +16F2

Dl2
2 l3 +16F2

Dl2
3 l4)x2y2+

(64c2F3
B l3−64c2F3

B l5−128c2F2
B FCl2+64c2F2

B FCl3+64c2F2
B FDl3+64c2FBF2

C l2
−128c2FBF2

C l3+64c2FBF2
C l5+8c2FBl2

2 l3−8c2FBl2l2
3−8c2FBl2l3l4+8c2FBl2l3l5+

+64c2F3
C l2−64c2FCF2

Dl3+8c2FCl2
2 l3−8c2FCl2l2

3−8c2FDl2l2
3+8c2FDl3

3+2cdl3
2 l3−

−4cdl2
2 l2

3−2cdl2
2 l3l6+2cdl2l3

3−2cdl2l2
3 l6−8ceFBl2

2 l3+8ceFBl2l2
3+256F4

B FD−64F3
Dl2

3+
+256F3

B F2
D+32F3

B l2
1−32F3

B l1l2−32F3
B l2

2+32F3
B l2l4−256F2

B F2
C FD−128FBF2

C l1l2+
+32F2

B FCl1l2+96F2
B FCl2

2+32F2
B FDl1l3−32F2

B FDl2l3+256FBF2
C F2

D−32FBF2
C l2

2+
+32FBFCFDl1l2+32FBFCFDl1l3−64FBF2

Dl1l3+32FBF2
Dl2

3−8FBl2
1 l2

2+16FBl2
1 l2l3+

+8FBl2
1 l2

3−16FBl1l2
2 l3+8FBl1l2

2 l5−8FBl1l2l2
3+4FBl1l2l3l4−4FBl1l2l3l5−4FDl1l2

3 l4−
−8FBl1l2

3 l4+4FBl3
2 l3−4FBl2

2 l2
3−4FBl2

2 l3l5−4FBl2
2 l3l6+4FBl2l2

3 l4−12FDl2l3
3+

+64F3
C l1l2−64F3

C l2l4−32F2
C FDl1l2−32F2

C FDl1l3+64F2
C FDl2

2−64F2
C FDl2l3+

+32F2
C FDl2l4+32F2

C FDl3l4−32FCF2
Dl2l3+96FCF2

Dl2
3+4FCl2

1 l2
2−12FCl2

1 l2l3+
+4FCl1l3

2+8FCl1l2
2 l3−4FCl1l2

2 l5−8FCl1l2l2
3 +16FCl1l2l3l4−4FCl1l2l3l5−

−4FCl3
2 l5+16FDl2l2

3 l4+12FCl2
2 l2

3−12FCl2
2 l3l4−4FDl3

3 l4+16FCl2
2 l3l5−12FCl2l2

3 l4+
+4FDl2

1 l2l3+4FDl2
1 l2

3−20FDl1l2
2 l3+12FDl1l2l2

3−4FDl1l2l3l4+4FDl1l3
3)xy3+

+(128c2F2
B F2

C−128c2F2
B FCFD−8c2F2

B l2
3+8c2F2

B l3l5−128c2FBF3
C+128c2FBF2

C FD+
+8c2FBFCl2l3+8c2FBFDl2l3−8c2FBFDl2

3−8c2FBFDl3l4−16c2F2
C l2l3+8c2FCFDl2l3+

+3l1l2
2 l2

3+8c2FCFDl2
3−2c2l2

2 l2
3+2c2l2l3

3+8ceF2
B l2l3+2cel3

2 l3−2cel2
2 l2

3−2cel2
2 l3l6−

−32F3
B FDl1−32F3

B FDl2−32F3
B FDl3+32F3

B FDl4+32F2
B FCFDl1+128F2

B FCFDl2+
+32F2

B FCFDl3−32F2
B F2

Dl3+16F2
B l1l2l3+8F2

B l2
2 l3−128FBF2

C FDl2−32FBF2
C FDl3+

+32FBFCF2
Dl2+128FBFCF2

Dl3−24FBFCl1l2l3−8FBFCl2
2 l3+32FBF3

Dl3+8FBFDl1l2l3+
+16FBFDl1l2

3+8FBFDl2l2
3+32F3

C FDl2−32F2
C F2

Dl2−32F2
C F2

Dl3+16F2
C l1l2l3−l2

2 l3
3−

−8F2
C l2

2 l3+3l2
2 l2

3 l4+8F2
C l2

2 l4−8F2
C l2l3l4+32FCF3

Dl3−8FCFDl1l2l3−8FCFDl1l2
3−

−16FCFDl2l2
3+3l2

2 l2
3 l5−8FCFDl2l3l4+8FCFDl2

3 l4+8F2
Dl1l2l3+8F2

Dl1l2
3−16F2

Dl2l2
3+

+8F2
Dl3

3+l3
1 l2l3−2l2

1 l2
2 l3−2l2

1 l2l2
3−l2

1 l2l3l4−l2
1 l2l3l5+l1l3

2 l3−l1l2
2 l3l4−l2l3

3 l4−l2l2
3 l4l5+

+2l1l2
2 l3l5+l1l2l3

3+2l1l2l2
3 l4−l1l2l2

3 l5+l1l2l3l4l5−l3
2 l2

3−l3
2 l3l5−l2

2 l3l4l5−2l2
2 l2

3 l6)y4+

+(32aF4
B l2−32aF4

B l4−64aF3
B FCl2−32aF3

B FDl3+32aF2
B F2

C l2+32aF2
B FCFDl2+

+32aF2
B FCFDl3−32aFBF2

C FDl2+32aFBFCF2
Dl3+256cF3

B FCFD−256cF2
B F2

C FD−
−32cF2

B FCl2l3−16cF2
B FDl2l3+16cF2

B FDl3l4+16cFBF2
C l2l3−32cFBFCFDl2l3+

+16cFBF2
Dl2

3+16cF3
C l2l3−32cF2

C FDl2l3+16cFCF2
Dl2l3)x3+

+(8aF3
B l1l2−16aF3

B l2
2+16aF3

B l2l4−8aF2
B FCl1l2+48aF2

B FCl2
2−8aF2

B FDl1l3−
−56aFBF2

C l2
2+24aF3

C l2
2−48aFBFCFDl2l3−8aFBF2

Dl2l3+32aFBF2
Dl2

3+24aF3
Dl2

3+
+24aF2

C FDl2l3−48aFCF2
Dl2l3−24aFCF2

Dl2
3−64cF2

B F2
C l2−128cF2

B FCFDl2−
−64cF2

B FCFDl3+64cFBF3
C l2+128cFBF2

C FDl2+64cFBF2
C FDl3−64cFBFCF2

Dl3+
+8cF2

Dl3
3+8cFBFDl2

2 l3−8cFBFDl2l3l4+16cF2
C l2

2 l3−24cF2
C l2l3l4−4cFCFDl2

2 l3−
−20cFCFDl2l2

3 +12cFCFDl2l3l4 +12cFCFDl2
3 l4)x2y+

+(32aF4
B l2−32aF4

B l4−64aF3
B FCl2−32aF3

B FDl3+32aF2
B F2

C l2+32aF2
B FCFDl2+

+32aF2
B FCFDl3−8aF2

B l1l2
2+8aF2

B l1l2l3−8aF2
B l2

2 l3+8aF2
B l2

2 l5+8aF2
B l2l3l4−

−32aFBF2
C FDl2+32aFBFCF2

Dl3+16aFBFCl1l2
2−8aFBFCl1l2l3+24aFBFCl2

2 l3−
−16aFBFCl2

2 l5−8aFBFDl1l2l3−16aFBFDl1l2
3−8aFBFDl2

2 l3−8aFBFDl2l2
3+
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+16aFBFDl2
3 l4−8aF2

C l1l2
2+8aF2

C l1l2l3−24aF2
C l2

2 l3+8aF2
C l2

2 l5−8aF2
C l2l3l4+

+8aFCFDl1l2l3+24aFCFDl2
2 l3+32aFCFDl2l2

3−8aFCFDl2l3l4−8aF2
Dl1l2

3−
−24aF2

Dl2l2
3−8aF2

Dl3
3+8aF2

Dl2
3 l4+256cF3

B FCFD−256cF2
B F2

C FD−32cF2
B FCl2l3−

−16cF2
B FDl2l3+16cF2

B FDl3l4+64cFBF2
C l2

2+16cFBF2
C l2l3−96cFBFCFDl2l3+

+16cFBF2
Dl2

3+4cFBl2
2 l2

3−4cFBl2
2 l3l5−64cF3

C l2
2+16cF3

C l2l3+96cF2
C FDl2l3+

+16cFCF2
Dl2l3−64cFCF2

Dl2
3−4cFCl3

2 l3−4cFCl2
2 l2

3+4cFCl2
2 l3l4−4cFCl2l2

3 l4+
+8cFDl2

2 l2
3−4cFDl2l2

3 l4+4cFDl3
3 l4)xy2+

+(8aF3
B l1l2+16aF3

B l2
2−16aF3

B l2l4−8aF2
B FCl1l2−48aF2

B FCl2
2−8aF2

B FDl1l3+
+16aFBFCFDl2l3−8aFBF2

Dl2l3−32aFBF2
Dl2

3+4aFBl1l2l2
3−2aFBl1l2l3l4+

+2aFBl1l2l3l5−2aFBl3
2 l3+2aFBl2

2 l2
3−2aFBl2

2 l3l5+2aFBl2
2 l3l6+2aFBl2l2

3 l4−
−8aF3

C l2
2−8aF2

C FDl2l3+16aFCF2
Dl2l3+8aFCF2

Dl2
3−2aFCl1l2l2

3+2aFCl3
2 l3−

−4aFCl2
2 l2

3+2aFCl2
2 l3l4−2aFCl2

2 l3l5+2aFCl2l2
3 l4−8aF3

Dl2
3+2aFDl1l2l2

3+
+2aFDl2l3

3−2aFDl2l2
3 l4−64cF2

B F2
C l2+128cF2

B FCFDl2−64cF2
B FCFDl3−

+64cFBF2
C FDl3−64cFBFCF2

Dl3+16cFBFCl2
2 l3−8cFBFDl2

2 l3−8cF2
Dl3

3+
+8cF2

C l2l3l4−4cFCFDl2
2 l3+12cFCFDl2l2

3−4cFCFDl2l3l4−4cFCFDl2
3 l4+

−128cFBF2
C FDl2+8cFBFDl2l3l4+64cFBF3

C l2+40aFBF2
C l2

2+
+cl3

2 l2
3+cl2

2 l3
3+cl2

2 l2
3 l4−2cl2

2 l2
3 l5+cl2l3

3 l4)y3+

+32l2l3FBFCFD(FB−FC +FD)(x2 +y2) = 0
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