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ABSTRACT

We seize an idea of Oswald Giering (see [1] and [2]), who
replaced pairs of faces of a polyhedron by patches of hy-
perbolic paraboloids and link up edge-quadrilaterals of a
polyhedron with the pencil of quadrics determined by that
quadrilateral. Obviously only ruled quadrics can occur.
There is a simple criterion for the existence of a ruled hy-
perboloid of revolution through an arbitrarily given quadri-
lateral. Especially, if a (not planar) quadrilateral allows
one symmetry, there exist two such hyperboloids of revo-
lution through it, and if the quadrilateral happens to be
equilateral, the pencil of quadrics through it contains even
three hyperboloids of revolution with pairwise orthogonal
axes. To mention an example, for right double pyramids,
as for example the octahedron, the axes of the hyper-
boloids of revolution are, on one hand, located in the plane
of the regular guiding polygon, and on the other, they are
parallel to the symmetry axis of the double pyramid.

Not only for platonic solids, but for all polyhedrons, where
one can define edge-quadrilaterals, their pairs of face-
triangles can be replaced by quadric patches, and by this
one could generate roofing of architectural relevance. Es-
pecially patches of hyperbolic paraboloids or, as we present
here, patches of hyperboloids of revolution deliver versions
of such roofing, which are also practically simple to realize.

Key words: polyhedron, quadric, hyperboloid of revolu-
tion, Bézier patch
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Poliedri čije su strane dijelovi posebnih kvadrika

SAŽETAK

Preuzimamo ideju Oswalda Gieringa (vidi [1] i [2]), koji

je par strana poliedra zamijenio dijelom hiperboličnog

paraboloida i povezao bridni četverostran poliedra s pra-

menom kvadrika odred-enim tim četverostranom. Očito se

samo pravčaste kvadrike mogu pojaviti. Postoji jednosta-

van nužan uvjet postojanja pravčastog rotacijskog hiper-

boloida kroz dani četverostran. Posebno, ako (prostorni)

četverostran ima jednu ravninu simetrije, onda postoje dva

rotacijska hiperboloida kroz njega, a ako je četverostran

jednakostraničan, onda pramen kvadrika kroz njega sadrži

čak tri rotacijska hiperboloida s med-usobno okomitim osi-

ma. Na primjer, kod pravilne dvostruke piramide, kao što

je oktaedar, osi rotacijskih hiperboloida su, s jedne strane,

u ravnini pravilnog mnogokuta (osnovke), a s druge strane,

su usporedne s osi simetrije dvostruke piramide.

Parove strana (trokute) ne samo Platonovih tijela, već svih

poliedara kod kojih se mogu definirati bridni četverostrani,

moguće je zamijeniti dijelovima kvadrika, i na taj način

proizvesti krovǐsta od arhitektonskog značaja. Posebno

zanimljiva krovǐsta mogu nastati primjenom dijelova hiper-

boličnih paraboloida, ili kao što je ovdje prikazano, rotacij-

skih hiperboloida koje je jednostavno i realizirati u praksi.

Ključne riječi: poliedar, kvadrika, rotacijski hiperboloid,

Bézierova zakrpa

Excerpt of what we aim to present in the fol-
lowing chapters

Chapter 1 deals with the regular octahedron p as a stan-
dard example and replace pairs of triangles by quadric

patches. Here we can already show the principle of how
to proceed. Among the pencil of quadrics through an edge
quadrilateral of p we look for the hyperbolic paraboloid
(“HP-surface”) and for hyperboloids of revolution (“R-
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hyperboloids”). It turns out that descriptive geometric
methods highly support an analytic treatment of the prob-
lem.

In Chapter 2 we deal with a criterion for quadrilaterals,
which are generators of an R-hyperboloid. For a quadrilat-
eral fulfilling the criterion we give a construction of the
axis and the skirt circle of an R-hyperboloid through it
as well as analytic descriptions of the R-hyperboloid by
its equation and as a tensor-product patch (“TP-patch”).
Additionally, we also ask for the set of R-hyperboloids
through two skew given lines. This set is, to some extent,
a 3D-generalisation of a (planar) elliptic pencil of circles.

The third chapter concerns polyhedrons p, the faces of
which are n-gons (n > 3). By adding pyramids of a cer-
tain height h to these faces one can interpret the origi-
nal polyhedron p as the limit of the set of polyhedrons
p(h) for h→ 0. This gives a more “natural” set of edge-
quadrilaterals than that proposed by Giering [1] and [2]
for the cube. We apply this way of splitting an n-gon-
face into triangles for e.g. a box shaped polyhedron. Fi-
nally we show images of some Johnson polyhedrons with
R-hyperboloid patches as faces.

Concluding we note that Giering’s idea to replace pairs
of planar faces by HP-surfaces works for any polyhedron,
while R-hyperboloids exist only for edge-quadrilaterals
fulfilling the criterion mentioned in Chapter 2. Anyway,
by choosing a certain quadric out of the pencil of quadrics
through an edge-quadrilateral and describe it as a TP-patch
one wins an additional design parameter, what works for
all polyhedrons independent from the criterion. This could
be of relevance for architectural design, too.

1 The regular octahedron and its
R-hyperboloid faces

We connect a Cartesian frame with the regular octahe-
dron p= {A,B,C,D,E,F} such that its midpoint becomes
the origin O and one of its diagonals becomes the z-axis.
The x- and y-axes are parallel to edges BC and AB (Fig-
ure 1). We consider the (equilateral) edge-quadrilateral
H = {A,B,E,F} and the pencil Q of quadrics Φ(t)
through it. Setting the edge length AB =

√
2 we obtain

the vertex coordinates A = (
√

2
2 ,
√

2
2 ,0), B = (

√
2

2 ,−
√

2
2 ,0),

E = (0,0,1), F = (0,0,−1).

Figure 1: The octahedron p, its edge-quadrilateral H =
{A,B,E,F}, and the normals n . . . , which are
common for all quadrics of the pencil Q through
H . The lines a1, a2, a3 (dashed red) represent
the axes of three R-hyperboloids through H .

The pencil Q is spanned by the pairs of face planes Φ1 =
(AEF)∪(BEF) and Φ2 =(ABE)∪(ABF), such that a gen-
eral ruled quadric Φ(t) can be written as

Φ(t) = (1− t)Φ1 + tΦ2. (1)

By the equations of Φ1, Φ2

Φ1 . . .(x+ y)(x− y) = 0,

Φ2 . . .(z+(
√

2.x−1))(z− (
√

2.x−1)) = 0, (2)

follows

Φ(t) . . .(1− t)(x2−y2)+ t(z2−2x2−2
√

2.x−1) = 0. (3)

We see immediately that for t = 1
2 one gets the R-

hyperboloid ΦR1

ΦR1 . . .(x−
√

2)2 + y2− z2 = 1, (4)

and for t = 1
4 the R-hyperboloid ΦR2

ΦR2 . . .(x+
√

2)2 + z2−3y2 = 3. (5)

For t = 1
3 we obtain the hyperbolic paraboloid ΦP

ΦP . . .2y2− z2−2
√

2.x+1 = 0. (6)

These results (4), (5), and (6) verify what one already
knows because of geometric properties of the pencil Q:

(a) The quadrics Φ(t) have the same symmetries as
the quadrilateral H . In our special case of H be-
ing equilateral, the planes xy and xz are symmetry
planes. Therefore, the x-axis is a common axis of
Φ(t). If Φ(t) is a hyperboloid with three axes, a sec-
ond axis is parallel to EF , while the third one is par-
allel to AB.
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(b) The diagonals of an arbitrarily given quadrilateral H
are reciprocal polar lines for all quadrics Φ(t).

(c) The quadrics Φ(t) through H have the surface nor-
mals nA, nB, nE , nF at the vertices A, B, E, F in
common. For an R-hyperboloid ΦRi all surface nor-
mals meet the rotation axis ai. Therefore, ai must
of course intersect these special normals nA, nB, nE ,
nF . In the general case, when H has no symmetries,
the normals nA, nB, nE , nF are pairwise skew, and
we expect (in algebraic sense) two lines li, which
meet these four lines. Such a line li is an axis of
an R-hyperboloid, if and only if it includes the same
angle with each of the four edges of H .

Finally, we visualise the octahedron p with its edge-
quadrilateral H and the three R-hyperboloids ΦR1, ΦR2,
ΦR3 though H in Figure 2, 3 and 4:

Figure 2: R-hyperboloid ΦR1 through an edge-
quadrilateral of an octahedron

Figure 3: R-hyperboloid ΦR2 through an edge-
quadrilateral of an octahedron

Figure 4: R-hyperboloid ΦR3 through an edge-
quadrilateral of an octahedron

2 A criterion for quadrilaterals, which are
generators of an R-hyperboloid

An arbitrarily given quadrilateral H consists of two pairs
of skew generators (e1,e2), ( f1, f2) of different reguli of
the quadrics through H . We look for properties of H , such
that there exists an R-hyperboloid ΦR among the pencil of
quadrics through H , (we continue the numbering of prop-
erties of Chapter 1):

(d) Generators of an R-hyperboloid ΦR include a fixed
angle with its axis a and they are equidistant from a.

Figure 5: One symmetry plane of two intersecting genera-
tors of an R-hyperboloid ΦR contains the axis a
of ΦR.

If we had a quadrilateral of generators on an R-hyperboloid
ΦR, then its normal projection in direction of the axis a of
ΦR yields a planar quadrilateral subscribed to the image of
the circle of the gorge g. Because of property (d) yields,
the lengths of the quadrilateral’s edges are distorted by the
same factor such that relations deduced for the lengths of
edge images also hold for the situation in space.
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There can occur different cases of such a normal projec-
tion, see Figures 6 and 7.

Figure 6: Normal projection of a quadrilateral H =
(ABCD) contained on an R-hyperboloid ΦR; di-
rection of projection parallel to the axis a of ΦR

For example, for the case shown in Figure 6, left, by adding
segment lengths we obtain (see also [4])

A′B′+C′D′ = A′C′+B′D′ ⇐⇒ |e1|+ |e2|= | f1|+ | f2|.
(7.1)

For the case shown in Figure 6, right, because of
P′A′ = R′A′, S′D′ = Q′D′ and
A′B′+P′A′−S′D′−D′B′ = 0 and
C′D′−Q′D′−C′A′+R′A′ = 0,
one derives

|e1|− |e2|= | f1|− | f2|. (7.2)

In the left case in Figure 6 the R-hyperboloid does fill the
interior of the quadrilateral, and therefore it is not suited
for a TP-representation, because a TP-patch is contained
in the interior of the convex hull of H . (An f-generator
passing to an inner point of segment e1 cannot meet seg-
ment e2 in an inner point, see Figure 6, left.)
A similar calculation shows that the cases shown in Figure
7 both lead to

|e1|− |e2|= | f2|− | f1|. (7.3)

Figure 7: Additional cases of images of H

Therewith we can formulate a criterion for the existence
of an R-hyperboloid ΦR through a given quadrilateral
(ABCD), (c.f. [4]):

Criterion 1 The pencil of quadrics through a quadrilat-
eral H = (ABCD) contains an R-hyperboloid ΦR, if and
only if at least one of the three conditions (7.1), (7.2), (7.3)
holds.

We complete this section by the following

Theorem 1 If H is symmetric with respect to a symme-
try plane through CB, then (7.1) and (7.2) are automati-
cally fulfilled and there are two R-hyperboloids ΦR1, ΦR2
through H . If H is equilateral, all three conditions (7.1),
(7.2), (7.3) are fulfilled and there are three R-hyperboloids
ΦR1, ΦR2, ΦR3 through H , and the R-hyperboloids have
pairwise orthogonal axes.

The case with three R-hyperboloids occurs as shown with
the example in Chapter 1.
In the following we identify the points of the quadrilateral
H = (A,B,C,D) with their coordinate vectors, such that
~e1 = B−A, ~e2 = D−C, ~f1 = A−C, ~f2 = D−B. There-
with the edge vectors are oriented such that the following
closure condition (8) is fulfilled

~e1 +~f2−~e2−~f1 = 0. (8)

We will also omit vector arrows, but keep in mind the ori-
entation of the edges of H . As (7.1) does not suit for a
TP-patch representation of the R-hyperboloid, we can fo-
cus on the conditions (7.2) and (7.3), where we assume that
at least one of them is fulfilled.

3 Further conditions for R-hyperboloids
through a given quadrilateral

Two generators e and f of an R-hyperboloid Φ intersect-
ing in P ∈ Φ are symmetric with respect to the plane
spanned by the axis a of Φ and by P (see Figure 5).
This property can be used for finding a condition, that
the pencil Q of hyperboloids through a given quadrilat-
eral H = (e1,e2, f1, f2) contains an R-hyperboloid: Four
of the symmetry planes of (ei, f j) must belong to a pen-
cil of planes. If so, then they will intersect in the axis a
of an R-hyperboloid. In each vertex of H there exist two
symmetry planes σi

X spanned by the normal ei× f j and the
symmetry lines si

X in the planes ei∨ f j, see Figure 8.
From Figure 8 we read off that of all possible combina-
tions of symmetry planes there are only 1

2

(4
2

)
= 3, which

make sense: a) {σ1
A,σ

1
B,σ

1
C,σ

1
D}, b) {σ2

A,σ
2
B,σ

2
C,σ

2
D}, and

c) {σ2
A,σ

1
B,σ

1
C,σ

2
D}. This suits again to the maximally

three R-hyperboloids in the pencil Q. (Here and in the
following we use the labelling in Figure 8.)
The normal vector of σ1

A resp. σ2
A is

s2
A =

e1

‖e1‖
+

f1

‖ f1‖
resp. s1

A =
e1

‖e1‖
− f1

‖ f1‖
, (9)

and, similarly, also for the other symmetry planes, σ1
X has

normal vector s2
X , while s1

X is normal to σ2
X .
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Figure 8: A quadrilateral H and the symmetry planes of
its pairs of consecutive edges.

In case of a) we demand that {s2
A,s

2
B,s

2
C,s

2
D} necessarily

are parallel to a plane. This means that

det(s2
A,s

2
B,s

2
C) = 0 ∧ det(s2

A,s
2
B,s

2
D) = 0. (10)

By replacing s2
X by ei

‖ei‖ ±
f j
‖ f j‖ in (10) we obtain the same

condition (11) for both equations:

‖e1‖.det(e2, f1, f2)−‖e2‖.det(e1, f1, f2) =

= ‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1). (11)

This means that, if one of the necessary conditions (10) is
fulfilled, then the other is fulfilled, too. When we substi-
tute the closure condition (8) e2 = e1+ f2− f1 into (11) we
get det(e1, f1, f2)(‖e1‖−‖ f2‖−‖e2‖+ ‖ f1‖) = 0, which
is equivalent to (7.3).
In case of b), if we proceed in the same manner for the two
conditions (s1

A,s
1
B,s

1
C) = 0 , (s1

A,s
1
B,s

1
D) = 0, and we obtain

the equation

‖e1‖.det(e2, f1, f2)+‖e2‖.det(e1, f1, f2) =

= ‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1), (12)

which turns out to be equivalent to (7.1).
For case c) the conditions read as (s1

A,s
2
B,s

2
C) = 0 and

(s1
A,s

2
B,s

1
D) = 0. The resulting single condition now be-

comes

‖e1‖.det(e2, f1, f2)+‖e2‖.det(e1, f1, f2) =

=−‖ f1‖.det(e1,e2, f2)−‖ f2‖.det(e1,e2, f1), (13)

which is equivalent to (7.2). We collect these statements as

Theorem 2 Four symmetry planes of consecutive edges of
a quadrilateral H intersect in a common line a, if and
only if at least one of the conditions (11), (12), (13) is ful-
filled. These conditions are equivalent to the conditions
(7.3), (7.1) and (7.2) respectively. Therefore, such a com-
mon line a is the axis of an R-hyperboloid Φ through H .

4 Bézier representation of quadrics through
a given quadrilateral

We consider the quadrangle H again and want to calculate
the generators of a hyperboloid Φ(p) through it aiming at a
Bézier-patch representation of Φ(p), see Figure 9. We use
the fact that the f -generators intersect two e-generators of
a ruled quadric “with equal cross-ratios”. This means that

CR(U,E,A,B) =CR(U ′,E ′,C,D). (14)

The generator e1 = AB is parameterised by A=̂0, B=̂1 and
the midpoint E=̂ 1

2 of segment [AB] and similarly for gen-
erator e2 = CD. A third “ f -generator” passing through
E ∈ e1 intersects e2 in a point E ′=̂( 1

2 )
′ =: p+ 1

2 . Obvi-
ously, for p = 0 one gets the paraboloid Φ(0) ∈Q.

Figure 9: The fixed f -generators f1, f2 of H together with
a third f -generator define a hyperboloid Φ(p) ∈
Q.

Putting u′= u+s
qu+r according to (14), then with u= 0 7→ u′=

0, u = 1 7→ u′ = 1, u = 1
2 7→ u′ = 1

2 + p we obtain s = 0,
r = 1−q and finally

u′ =
u

qu+ r
with q(p) =

4p
1+2p

, r(p) =
1−2p
1+2p

. (15)

Another convenient representation of condition (14) then
is

t ′ :=
u′

1−u′
=

u(1−2p)
(1−u)(1+2p)

=: t
1
r
. (16)
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Therewith follows for a Bézier-patch representation for
Φ(p)

X(u,v) = (1− v)((1−u)A+uB)+ v((1−u′)C+u′D),

(u,u′,v ∈ [0,1]), (17)

with v the parameter on generator f (u) = vU +(1− v)U ′.
(As before, we use the same symbols for points and their
coordinate vectors.)
The form parameter p = 0 in (15) describes the unique
paraboloid Φ(0) ∈ Q. The parameter values p = ± 1

2 de-
scribe the singular quadrics, namely the pairs of planes in
the pencil Q. We are now interested in the parameter value
p for an R-hyperboloid in the quadric pencil Q through H ,
which is assumed to fulfil one of the conditions (7.2), (7.3).
Because of the cross-ratio condition (14) it is enough to
demand that one further generator, say f ( 1

2 ), together with
1
2 e1, ( 1

2 + p)e2 and f1 fulfils (7.2) or (7.3). For the vector
f ( 1

2 ) follows

f ( 1
2 ) = f1 +( 1

2 + p)e2− 1
2 e1, (18)

its squared norm is therefore

f 2( 1
2 ) = f 2

1 +( 1
2 + p)2e2

2 +
1
4 e2

1 +2( 1
2 + p)(e2 f1)

−( 1
2 + p)(e1e2)− (e1 f1). (19)

The R-hyperboloid conditions (7.2), (7.3) for f ( 1
2 ) are

∓‖ f ( 1
2 )‖=

1
2‖e1‖− ( 1

2 + p)‖e2‖∓‖e1‖‖ f1‖. (20)

and we square (20) receiving

f 2( 1
2 ) =

1
4 e2

1 +( 1
2 + p)2e2

2 + f 2
1 ±2( 1

2 + p)‖e2‖‖ f1‖
−( 1

2 + p)‖e1‖‖e2‖∓‖e1‖‖ f1‖. (21)

Now we compare (19) and (21) and get a linear equation in
p. (In fact, there occur two such equations because of the
different signs.)

(e1 f1)±‖e1‖‖ f1‖= ( 1
2 + p)[(−‖e1‖‖e2‖+(e1e2))
+2(±‖e2‖‖ f1‖− (e2 f1))]. (22)

Here we see that (22) involves the angles between consec-
utive edges of H , too:

(
1
2
+ p) =

‖e1‖‖ f1‖(cos^e1 f1±1)
‖e1‖‖e2‖(cos^e1e2−1)+2‖e2‖‖ f1‖(±1− cos^e2 f1)

. (23)

We put ^e1 f1 =: α, ^ f1e2 =: γ, ^e1e2 =: ε; then, because
of 1−cosξ= 2sin2

ξ/2 and 1+cosξ= 2cos2 ξ/2 equation
(23) can be written as

p1 =
‖e1‖‖ f1‖cos2 α/2

2‖e2‖‖ f1‖sin2
γ/2−‖e1‖‖e2‖sin2

ε/2
− 1

2
(24.1)

p2 =
‖e1‖‖ f1‖sin2

α/2
2‖e2‖‖ f1‖cos2 γ/2+‖e1‖‖e2‖sin2

ε/2
− 1

2
(24.2)

Now we can state

Theorem 3 An R-hyperboloid Φ(p) through a quadrilat-
eral H , which fulfils the conditions (7.2) resp. (7.3) allows
the tensor-product representation (17), whereby the form
parameter p takes the value p1 (24.1) resp. p2 (24.2).

In the following chapter we will apply these results to some
polyhedrons. As the chosen starting polyhedrons have reg-
ular faces, edge quadrilaterals are symmetric. This facili-
tates the calculation of the parameters p1 and p2.

5 Examples of polyhedrons with patches of
R-hyperboloids as faces

If the start polyhedron has n-gons as faces (n > 3), see
Figure 10 and 11, we split such a face into triangles. It is
also possible to add pyramids to such a face to obtain an
additional form parameter by the pyramid’s height.

Figure 10: The principle, how one can proceed in case of
non-triangular faces of a polyhedron, shown at
a regular dodecahedron

Figure 11: The dodecahedron’s faces are completely re-
placed by paraboloid patches.
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Because the pentagonal faces are tangential to the five
patches connected at the midpoint of the face, the 12 mid-
points must be interpreted as additional vertices, such that
the object has got 32 vertices and 30 quadric patches. Al-
most the same object emerges by adding pyramids to the
pentagonal faces of a dodecahedron, such that it gets 60
isosceles triangles as faces, see Figure 12. This object is
a Catalan polyhedron and is called pentakis-dodecahedron
or kisdodecahedron. Again pairs of triangles are replaced
by quadric patches.

Figure 12: The dodecahedron’s faces are completely re-
placed by paraboloid patches.

Choosing the height of the pyramids added to the faces
of a dodecahedron suitably one can get a Kepler star. We
show the principle of replacing two adjacent triangles by
R-hyperboloid patches through equilateral edge quadrilat-
eral in Figure 13.

Figure 13: A Kepler star with an R-hyperboloid patch
through an equilateral edge quadrilateral

The next object, an elongated pentagonal cupola, might
have at least some architectural relevance by its “windows”
formed by R-hyperboloids, Figure 15. The used edge
quadrilaterals are equilateral. In this case we refrained
from the patch representation according Theorem 3 and
applied condition (7.1) as well as geometric properties de-
rived from the octahedron in Chapter 1.

Figure 14: A Kepler star completely covered with R-
hyperboloid patches

Figure 15: R-hyperboloids through equilateral edge quad-
rangles forming “windows” into an elongated
pentagonal cupola

6 Pencils of R-hyperboloids and final re-
marks

The previous chapters were concerned with R-
hyperboloids through a given quadrilateral of generators
H = (e1e2 f1 f2) and we derived conditions for the exis-
tence of an R-hyperboloid through H . Another approach
could be to consider the pencil of R-hyperboloids through
the skew generators e1, e2 and the second pencil through
f1 and f2. The axes of such a pencil of R-hyperboloids
are generators of the symmetry paraboloid Ψ(e) of e1 and
e2 resp. Ψ( f ) of f1 and f2, c.f. [3]. The two pencils
have an R-hyperboloid in common, if and only if Ψ(e) and
Ψ( f ) have a common generator a, which acts as axis of
the common R-hyperboloid. Obviously the conditions for
that must be again (7.1), (7.2) and (7.3).
In [3] the symmetry paraboloid of two skew lines e1 and
e2 is considered as the set of points, which are equidistant
from these lines. When interpreting it as set of axes of
R-hyperboloids through these lines one takes a line geo-
metric viewpoint. (For line geometry c.f. e.g. [5]). The
place of action is the projectively enclosed Euclidean 3-
space. Indeed, it seems worthwhile to look at pencils
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of R-hyperboloids that way. They can be seen as 3D-
generalisations of pencils of circles. The skew (and real)
proper lines e1 and e2 span a hyperbolic linear congruence
of lines meeting both, e1 and e2. If e1 and e2 coincide in the
way that the line congruence becomes parabolic, we might
ask again for the then parabolic pencil of R-hyperboloids
in this congruence of lines. If e1 and e2 are skew and imag-
inary, they are axes of an elliptic linear congruence. Here
pops up a case, where all R-hyperboloids are coaxial, such
that the symmetry paraboloid Ψ(e) degenerates into a sin-
gle line.
There are many other ways to replace the planar faces of
a polyhedron by patches of curved surfaces. One could
e.g. blow up a balloon in the materialised edge frame
of a closed polyhedron. Such structures are almost om-
nipresent in our environment. Pairs of faces replaced by
minimal surfaces, a topic of differential geometry, will, in
the most cases differ not essentially from quadric patches.
This might justify the use of patches of paraboloids or R-
hyperboloids instead for architectural purposes.
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